The enrichment of Ni from a low-grade saprolitic laterite ore,which has been pre-treated by high pressure grinding roller(HPGR) to be 74% passing 0.074 mm and contains 0.92% Ni,18.47% Fe,10.61% MgO and 42.27% SiO2,w...The enrichment of Ni from a low-grade saprolitic laterite ore,which has been pre-treated by high pressure grinding roller(HPGR) to be 74% passing 0.074 mm and contains 0.92% Ni,18.47% Fe,10.61% MgO and 42.27% SiO2,was conducted by using pelletizing,rotary kiln reduction and magnetic separation process on a semi industrial scale,and the effects of reduction duration,mass ratio of coal to pellets(C/P),the types of magnetic separator,the sections of grinding-separation and the grinding fineness on the recovery of Ni and Fe were examined.It is shown that nickel concentrate containing 3.13 % Ni and 59.20 % Fe was achieved at recoveries of 84.36 % and 71.51% for Ni and Fe,respectively under the following conditions:reducing at (1120±40) ℃ for 120 min,C/P being 1.0,wet grinding of reduced pellets up to 70%-87% passing 0.074 mm and a magnetic field intensity of 238.8 kA/m during the first section of grinding-magnetic separation,and a grinding fineness of 84%-91% passing 0.045 mm and a magnetic intensity of 39.8 kA/m during the second section of grinding-magnetic separation.The enriched Ni containing concentrate has a low content of S and P,and can be used for further processing to produce high-grade ferronickel alloy.展开更多
The method of producing ferronickel at low temperature(1250–1400℃)has been applied since the 1950s at Nippon Yakin Kogyo,Oheyama Works,Japan.Limestone was used as an additive to adjust the slag composition for lower...The method of producing ferronickel at low temperature(1250–1400℃)has been applied since the 1950s at Nippon Yakin Kogyo,Oheyama Works,Japan.Limestone was used as an additive to adjust the slag composition for lowering the slag melting point.The ferronickel product was recovered by means of a magnetic separator from semi-molten slag and metal after water quenching.To increase the efficiency of magnetic separation,a large particle size of ferronickel is desired.Therefore,in this study,the influences of CaO,CaF_(2),and H_(3)BO_(3) additives on the evolution of ferronickel particle at≤1250℃were investigated.The experiments were conducted at 900–1250℃with the addition of CaO,CaF_(2),and H_(3)BO_(3).The reduction processes were carried out in a horizontal tube furnace for 2 h under argon atmosphere.At 1250℃,with the CaO addition of 10 wt%of the ore weight,ferronickel particles with size of 20μm were obtained.The ferronickel particle size increased to 165μm by adding 10 wt%CaO and 10 wt%CaF_(2).The addition of boric acid further increased the ferronickel particle size to 376μm,as shown by the experiments with the addition of 10 wt%CaO,10 wt%CaF_(2),and 10 wt%H_(3)BO_(3).展开更多
The global nickel sulphide resources are becoming more difficult to mine and, as a result, there is increasing interest in the current and future development of the oxidic nickel laterite deposits. In comparison to th...The global nickel sulphide resources are becoming more difficult to mine and, as a result, there is increasing interest in the current and future development of the oxidic nickel laterite deposits. In comparison to the sulphide ores, the nickel laterites cannot be readily upgraded by conventional means and growing attention is being focused on the development of new methods for processing these ores. In this paper, firstly, brief overviews of laterite ore mineralogy and the conventional techniques used to extract the nickel from both the limonitic and the saprolitic nickeliferous laterites are provided. Secondly, previous research on the thermodynamic modelling of the reduction of the laterites is discussed. Thirdly, an improved thermodynamic model is used to predict the equilibrium products arising from the solid state reduction of both the limonitic and the saprolitic ores. Based on these thermodynamic predictions, the reduction behaviors of the two ore types are compared in terms of nickel recovery and grade in the ferronickel product. The effects of reduction temperature, ore composition and carbon additions were studied. Finally, the results from the simulations are compared to the experimental data available in the literature.展开更多
In order to explain the formation process of slope hazards, and to identify the key factors leading to instability of a slope, Emeishan basalt saprolite in vadose zones of the Touzhai landslide in Zhaotong, Yunnan, wa...In order to explain the formation process of slope hazards, and to identify the key factors leading to instability of a slope, Emeishan basalt saprolite in vadose zones of the Touzhai landslide in Zhaotong, Yunnan, was studied. The formation and evolution of Emeishan basalt saprolite was examined using, amongst other techniques, field investigations,thin section analysis, scanning electron microscopy(SEM) observations, chemical analysis, physical and water-physical property tests of rock masses. Field observations revealed that the majority of the weathered rock blocks were presented as a concentric layer structure in which an internal corestone was enveloped with several layers of external saprolized crust. Chemical and mineralogical analysis identified that iron was the most sensitive element and that the weathering progress usually started with the oxidation of Fe2+ to Fe3+ in rock blocks. Alkaline elements such as Si, Ca, Mg, Na and K were also dissolved and Fe and Al were concentrated in saprolized crusts. Results indicated that loss on ignition(LOI) also increased significantly. SEM results showed that the weathering intensity of thebasalt blocks decreased gradually from the outside to the inside, and the mineral morphology significantly differed on both sides of the weathering front. The saprolized crusts presented cellular microstructure features due to the generation of micropore and clay minerals. Thin section analysis showed that plagioclase was relatively more stable than pyroxene and chlorite during weathering. With a centripetal propagation of the weathering front, saprolized crusts became thicker and corestones became smaller; fresh Emeishan basalt blocks gradually turned into saprolized blocks. Due to the loose structure and low strength of saprolite, the quality of the Emeishan basalt mass significantly deteriorated, this being a potentially important factor which caused the Touzhai landslide to occur.展开更多
Landscape distribution, macroscopic, microscopic, mineral and geochemical characterizations were conducted on the Doumbouo-Fokoué bauxite ore deposit in order to estimate bauxites potential and its implication to...Landscape distribution, macroscopic, microscopic, mineral and geochemical characterizations were conducted on the Doumbouo-Fokoué bauxite ore deposit in order to estimate bauxites potential and its implication to general lowering of the relief. Fourteen bauxitic plateaus covering a surface area of 5.7 km2 were identified. Bauxitic pedons show deep weathered profiles (10.0 - 12.0 m) with thick bauxitic mantle (4.0 - 8.0 m). Saprolite and pisolith bauxitic facies own high aluminium (47.5% - 49.5% Al2O3), relatively low iron (20.0% - 22.0% Fe2O3) and low silica contents (1.8% - 7.6% SiO2). Gibbsite is the dominant mineral (49% - 68% of minerals detected by X-ray);meanwhile hematite, goethite and kaolinite occur in small amounts. Bauxitization corresponds to intense allitization with abundant accumulation of gibbsite and development of lateritic iron bearing ortho-bauxites. Bauxite ores yielded bauxite reserves of 9.2 million tons. They occur as old and residual bauxitic mantles representing remnants of the Miocene residual lateritic deposits in West Cameroon referring to the African surface of Valeton [1]. Its mean altitude (1532 - 1590 m als) below the African surface reveals general lowering of the relief.展开更多
Numerous examples of long term landscape are presented relating soil and regolith tolandforms going back to Cenozoic or Mesozoic times. Many conventional approaches to soil areinappropriate for such materials. It is i...Numerous examples of long term landscape are presented relating soil and regolith tolandforms going back to Cenozoic or Mesozoic times. Many conventional approaches to soil areinappropriate for such materials. It is important to study the entire regolith, and realise it seldomreveals all the changes of climate ithas experienced.展开更多
基金Project(NDRC-Hitech Office 2009-606)supported by the National Development and Reform Commission of ChinaProject(50974135)supported by the National Natural Science Foundation of China
文摘The enrichment of Ni from a low-grade saprolitic laterite ore,which has been pre-treated by high pressure grinding roller(HPGR) to be 74% passing 0.074 mm and contains 0.92% Ni,18.47% Fe,10.61% MgO and 42.27% SiO2,was conducted by using pelletizing,rotary kiln reduction and magnetic separation process on a semi industrial scale,and the effects of reduction duration,mass ratio of coal to pellets(C/P),the types of magnetic separator,the sections of grinding-separation and the grinding fineness on the recovery of Ni and Fe were examined.It is shown that nickel concentrate containing 3.13 % Ni and 59.20 % Fe was achieved at recoveries of 84.36 % and 71.51% for Ni and Fe,respectively under the following conditions:reducing at (1120±40) ℃ for 120 min,C/P being 1.0,wet grinding of reduced pellets up to 70%-87% passing 0.074 mm and a magnetic field intensity of 238.8 kA/m during the first section of grinding-magnetic separation,and a grinding fineness of 84%-91% passing 0.045 mm and a magnetic intensity of 39.8 kA/m during the second section of grinding-magnetic separation.The enriched Ni containing concentrate has a low content of S and P,and can be used for further processing to produce high-grade ferronickel alloy.
基金the Program of Research,Community Service,and Innovation of the Institut Teknologi Bandung(P3MI–ITB)for funding this research。
文摘The method of producing ferronickel at low temperature(1250–1400℃)has been applied since the 1950s at Nippon Yakin Kogyo,Oheyama Works,Japan.Limestone was used as an additive to adjust the slag composition for lowering the slag melting point.The ferronickel product was recovered by means of a magnetic separator from semi-molten slag and metal after water quenching.To increase the efficiency of magnetic separation,a large particle size of ferronickel is desired.Therefore,in this study,the influences of CaO,CaF_(2),and H_(3)BO_(3) additives on the evolution of ferronickel particle at≤1250℃were investigated.The experiments were conducted at 900–1250℃with the addition of CaO,CaF_(2),and H_(3)BO_(3).The reduction processes were carried out in a horizontal tube furnace for 2 h under argon atmosphere.At 1250℃,with the CaO addition of 10 wt%of the ore weight,ferronickel particles with size of 20μm were obtained.The ferronickel particle size increased to 165μm by adding 10 wt%CaO and 10 wt%CaF_(2).The addition of boric acid further increased the ferronickel particle size to 376μm,as shown by the experiments with the addition of 10 wt%CaO,10 wt%CaF_(2),and 10 wt%H_(3)BO_(3).
文摘The global nickel sulphide resources are becoming more difficult to mine and, as a result, there is increasing interest in the current and future development of the oxidic nickel laterite deposits. In comparison to the sulphide ores, the nickel laterites cannot be readily upgraded by conventional means and growing attention is being focused on the development of new methods for processing these ores. In this paper, firstly, brief overviews of laterite ore mineralogy and the conventional techniques used to extract the nickel from both the limonitic and the saprolitic nickeliferous laterites are provided. Secondly, previous research on the thermodynamic modelling of the reduction of the laterites is discussed. Thirdly, an improved thermodynamic model is used to predict the equilibrium products arising from the solid state reduction of both the limonitic and the saprolitic ores. Based on these thermodynamic predictions, the reduction behaviors of the two ore types are compared in terms of nickel recovery and grade in the ferronickel product. The effects of reduction temperature, ore composition and carbon additions were studied. Finally, the results from the simulations are compared to the experimental data available in the literature.
基金funded by the Joint Funds of the Natural Science Foundation of China with the Natural Science Foundation of Yunnan (Grant No. U1502232,U1033601)the Research Fund for the Doctoral Program of Higher Education of China(Grant No. 20135314110005)
文摘In order to explain the formation process of slope hazards, and to identify the key factors leading to instability of a slope, Emeishan basalt saprolite in vadose zones of the Touzhai landslide in Zhaotong, Yunnan, was studied. The formation and evolution of Emeishan basalt saprolite was examined using, amongst other techniques, field investigations,thin section analysis, scanning electron microscopy(SEM) observations, chemical analysis, physical and water-physical property tests of rock masses. Field observations revealed that the majority of the weathered rock blocks were presented as a concentric layer structure in which an internal corestone was enveloped with several layers of external saprolized crust. Chemical and mineralogical analysis identified that iron was the most sensitive element and that the weathering progress usually started with the oxidation of Fe2+ to Fe3+ in rock blocks. Alkaline elements such as Si, Ca, Mg, Na and K were also dissolved and Fe and Al were concentrated in saprolized crusts. Results indicated that loss on ignition(LOI) also increased significantly. SEM results showed that the weathering intensity of thebasalt blocks decreased gradually from the outside to the inside, and the mineral morphology significantly differed on both sides of the weathering front. The saprolized crusts presented cellular microstructure features due to the generation of micropore and clay minerals. Thin section analysis showed that plagioclase was relatively more stable than pyroxene and chlorite during weathering. With a centripetal propagation of the weathering front, saprolized crusts became thicker and corestones became smaller; fresh Emeishan basalt blocks gradually turned into saprolized blocks. Due to the loose structure and low strength of saprolite, the quality of the Emeishan basalt mass significantly deteriorated, this being a potentially important factor which caused the Touzhai landslide to occur.
文摘Landscape distribution, macroscopic, microscopic, mineral and geochemical characterizations were conducted on the Doumbouo-Fokoué bauxite ore deposit in order to estimate bauxites potential and its implication to general lowering of the relief. Fourteen bauxitic plateaus covering a surface area of 5.7 km2 were identified. Bauxitic pedons show deep weathered profiles (10.0 - 12.0 m) with thick bauxitic mantle (4.0 - 8.0 m). Saprolite and pisolith bauxitic facies own high aluminium (47.5% - 49.5% Al2O3), relatively low iron (20.0% - 22.0% Fe2O3) and low silica contents (1.8% - 7.6% SiO2). Gibbsite is the dominant mineral (49% - 68% of minerals detected by X-ray);meanwhile hematite, goethite and kaolinite occur in small amounts. Bauxitization corresponds to intense allitization with abundant accumulation of gibbsite and development of lateritic iron bearing ortho-bauxites. Bauxite ores yielded bauxite reserves of 9.2 million tons. They occur as old and residual bauxitic mantles representing remnants of the Miocene residual lateritic deposits in West Cameroon referring to the African surface of Valeton [1]. Its mean altitude (1532 - 1590 m als) below the African surface reveals general lowering of the relief.
文摘Numerous examples of long term landscape are presented relating soil and regolith tolandforms going back to Cenozoic or Mesozoic times. Many conventional approaches to soil areinappropriate for such materials. It is important to study the entire regolith, and realise it seldomreveals all the changes of climate ithas experienced.