This study aims to investigate the effects of different mapping unit scales and study area scales on the uncertainty rules of landslide susceptibility prediction(LSP).To illustrate various study area scales,Ganzhou Ci...This study aims to investigate the effects of different mapping unit scales and study area scales on the uncertainty rules of landslide susceptibility prediction(LSP).To illustrate various study area scales,Ganzhou City in China,its eastern region(Ganzhou East),and Ruijin County in Ganzhou East were chosen.Different mapping unit scales are represented by grid units with spatial resolution of 30 and 60 m,as well as slope units that were extracted by multi-scale segmentation method.The 3855 landslide locations and 21 typical environmental factors in Ganzhou City are first determined to create spatial datasets with input-outputs.Then,landslide susceptibility maps(LSMs)of Ganzhou City,Ganzhou East and Ruijin County are pro-duced using a support vector machine(SVM)and random forest(RF),respectively.The LSMs of the above three regions are then extracted by mask from the LSM of Ganzhou City,along with the LSMs of Ruijin County from Ganzhou East.Additionally,LSMs of Ruijin at various mapping unit scales are generated in accordance.Accuracy and landslide suscepti-bility indexes(LSIs)distribution are used to express LSP uncertainties.The LSP uncertainties under grid units significantly decrease as study area scales decrease from Ganzhou City,Ganzhou East to Ruijin County,whereas those under slope units are less affected by study area scales.Of course,attentions should also be paid to the broader representativeness of large study areas.The LSP accuracy of slope units increases by about 6%–10%compared with those under grid units with 30 m and 60 m resolution in the same study area's scale.The significance of environmental factors exhibits an averaging trend as study area scale increases from small to large.The importance of environmental factors varies greatly with the 60 m grid unit,but it tends to be consistent to some extent in the 30 m grid unit and the slope unit.展开更多
Natural gas hydrate is an energy resource for methane that has a carbon quantity twice more than all traditional fossil fuels combined.However,their practical application in the field has been limited due to the chall...Natural gas hydrate is an energy resource for methane that has a carbon quantity twice more than all traditional fossil fuels combined.However,their practical application in the field has been limited due to the challenges of long-term preparation,high costs and associated risks.Experimental studies,on the other hand,offer a safe and cost-effective means of exploring the mechanisms of hydrate dissociation and optimizing exploitation conditions.Gas hydrate decomposition is a complicated process along with intrinsic kinetics,mass transfer and heat transfer,which are the influencing factors for hydrate decomposition rate.The identification of the rate-limiting factor for hydrate dissociation during depressurization varies with the scale of the reservoir,making it challenging to extrapolate findings from laboratory experiments to the actual exploitation.This review aims to summarize current knowledge of investigations on hydrate decomposition on the subject of the research scale(core scale,middle scale,large scale and field tests)and to analyze determining factors for decomposition rate,considering the various research scales and their associated influencing factors.展开更多
With the rapid development in advanced industries,such as microelectronics and optics sectors,the functional feature size of devises/components has been decreasing from micro to nanometric,and even ACS for higher perf...With the rapid development in advanced industries,such as microelectronics and optics sectors,the functional feature size of devises/components has been decreasing from micro to nanometric,and even ACS for higher performance,smaller volume and lower energy consumption.By this time,a great many quantum structures are proposed,with not only an extreme scale of several or even single atom,but also a nearly ideal lattice structure with no material defect.It is almost no doubt that such structures play critical role in the next generation products,which shows an urgent demand for the ACSM.Laser machining is one of the most important approaches widely used in engineering and scientific research.It is high-efficient and applicable for most kinds of materials.Moreover,the processing scale covers a huge range from millimeters to nanometers,and has already touched the atomic level.Laser–material interaction mechanism,as the foundation of laser machining,determines the machining accuracy and surface quality.It becomes much more sophisticated and dominant with a decrease in processing scale,which is systematically reviewed in this article.In general,the mechanisms of laser-induced material removal are classified into ablation,CE and atomic desorption,with a decrease in the scale from above microns to angstroms.The effects of processing parameters on both fundamental material response and machined surface quality are discussed,as well as theoretical methods to simulate and understand the underlying mechanisms.Examples at nanometric to atomic scale are provided,which demonstrate the capability of laser machining in achieving the ultimate precision and becoming a promising approach to ACSM.展开更多
[Objective] The purpose of this study is to investigate the effects of differ- ent phytohormones on the adventitious bud differentiation of oriental lily. [Method] The bulb scales of the test-tube plantlets of Tiber, ...[Objective] The purpose of this study is to investigate the effects of differ- ent phytohormones on the adventitious bud differentiation of oriental lily. [Method] The bulb scales of the test-tube plantlets of Tiber, Rodina and Constanta were cul- tured in media supplemented with different cytokinin and auxin at different concen- tration, and then the adventitious buds in each treatment were calculated. [Result] Cytokinins had different influence on the adventitious bud differentiation of the three oriental lily cultivars. Among them, 6-BA had the best effect to induce the adventi- tious bud differentiation from bulb scales of Tiber and Rodina, but there was some difference in the optimal concentration. KT had the best effect to induce the adven- titious bud differentiation of Constanta. The auxins had little influence on the quality of the adventitious bud of the three oriental lily cultivars, but caused some difference in differentiation coefficients. [Conclusion] The most suitable media for the adventi- tious bud differentiation from bulb scales in vitro of Tiber, Rodina and Constanta were MS+0.2 mg/L 6-BA+0.2 mg/L 2,4-D, MS+I.0 mg/L 6-BA+0.2 mg/L IAA, MS+ 1.0 mg/L KT+0.5 mg/L 2,4-D, respectively.展开更多
The upmost segment (Holocene series) of the Milanggouwan stratigraphic section (MGS 1) in the Salawusu River valley shows 11 sedimentary cycles of dune sands and fluvio-lacustrine facies, or dune sands and paleoso...The upmost segment (Holocene series) of the Milanggouwan stratigraphic section (MGS 1) in the Salawusu River valley shows 11 sedimentary cycles of dune sands and fluvio-lacustrine facies, or dune sands and paleosols. The analysis of the magnetic susceptibility of this segment suggests that there are 11 magnetic susceptibility cycles with the value alternating from low to high, in which the layers of the dune sands correspond to the lower value of the magnetic susceptibility and the layers of fluvio-lacustrine facies and paleosols correspond to the higher peaks. The study reveals that the low and high magnetic susceptibility values indicate the climate dominated by cold-arid winter monsoon and warm-humid summer monsoon of East Asia, respectively, and the study area has experienced at least 22 times of milleunial-centennial scales climate alternation from the cold-arid to the warm-humid during the Holocene. In terms of the time and the climate nature, the variations basically correspond to those of the North Atlantic and some records of cold-warm changes in China as well. They might be caused by the alternation of winter and summer monsoons in the Mu Us Desert induced by global climate fluctuations in the Holocene.展开更多
To improve China's residential environment evaluation system and enhance its guiding role, current research results are analyzed and summarized from three aspects including research scales, evaluation methods and app...To improve China's residential environment evaluation system and enhance its guiding role, current research results are analyzed and summarized from three aspects including research scales, evaluation methods and applied technology by means of comparison, induction and empirical application. The guiding role of the current macro-scale evaluation system of urban planning and construction is generally not obvious, whereas the guiding role of medium and micro-scale systems to the improvement of residential environments is improving. There are diversified methods for determining the threshold values and the weights of indices in China's evaluation system. For instance, the analytic hierarchy process(AHP) method is adopted to determine the weights of indices. The advantages and disadvantages of the method are analyzed on the basis of empirical calculation. In the course of comprehensive analyses, a nonlinear model can reflect interactions among indices more than a linear model; the evaluation model under the ARCGIS platform prevails since it combines space and attribute, and it has intuitive results. So far, the methodological system of China's residential environment evaluation has not been established; its subject coverage and research category should be expanded, and its guiding role should be enhanced.展开更多
With the development of carbon electricity,achieving a low-carbon economy has become a prevailing and inevitable trend.Improving low-carbon expansion generation planning is critical for carbon emission mitigation and ...With the development of carbon electricity,achieving a low-carbon economy has become a prevailing and inevitable trend.Improving low-carbon expansion generation planning is critical for carbon emission mitigation and a lowcarbon economy.In this paper,a two-layer low-carbon expansion generation planning approach considering the uncertainty of renewable energy at multiple time scales is proposed.First,renewable energy sequences considering the uncertainty in multiple time scales are generated based on the Copula function and the probability distribution of renewable energy.Second,a two-layer generation planning model considering carbon trading and carbon capture technology is established.Specifically,the upper layer model optimizes the investment decision considering the uncertainty at a monthly scale,and the lower layer one optimizes the scheduling considering the peak shaving at an hourly scale and the flexibility at a 15-minute scale.Finally,the results of different influence factors on low-carbon generation expansion planning are compared in a provincial power grid,which demonstrate the effectiveness of the proposed model.展开更多
There are millimeter, micron and nanometer scales of pores and fractures in coal to describe different scales of coal pores and fissures communicating path and to quantitatively characterize their permeability. Such i...There are millimeter, micron and nanometer scales of pores and fractures in coal to describe different scales of coal pores and fissures communicating path and to quantitatively characterize their permeability. Such information provides an important basis for studying coalbed methane output mechanism. The pores and fissures in a large number of coal samples were observed and counted by scanning electron microscopy and optical microscopy. The probability distribution models of pore-fissure network were then established. Different scales of pore-fissures 2D network models were reconstructed by Monte Carlo method. The 2D seepage models were obtained through assignment zero method and using Matlab software. The effect of permeability on different scale pore-fractures network was obtained by two-dimensional seepage equation. Predicted permeability is compared with the measured ones. The results showed that the dominant order of different scale pore-fractures connected path from high to low is millimeter-sized fractures, seepage pores and micron-size fractures. The contribution of coal reservoir permeability from large to small is millimeter-size fractures, micron-size fractures and seepage pores. Different parameters in different scale pore-fractures are of different influence permeability.Reconstruction of different scale pore-fractures network can clearly display the connectivity of porefractures, which can provide a basis for selecting migration path and studying gas flow pattern.展开更多
Evaluation of the quality of small-bowel cleansing is required to assess the reliability of findings in capsule endoscopy(CE). Moreover, consensus regarding the need of intestinal preparation for CE remains to be achi...Evaluation of the quality of small-bowel cleansing is required to assess the reliability of findings in capsule endoscopy(CE). Moreover, consensus regarding the need of intestinal preparation for CE remains to be achieved. The presence of multiple grading scales for smallbowel preparation in CE, which are time-consuming and complicated, adds difficulty to the comparison of different small-bowel cleansing regimens and their application in clinical practice. Nowadays, a validated scale universally accepted for grading small-bowel cleansing is lacking. In fact, there are numerous grading systems with very different technical characteristics, namely, the parameters and the portion of the CE video that are analyzed, the objectivity of the analysis, the lesser or greater dependency on the operator, and the validation of the score. The authors performed a review which aims to systematize and summarize currently available smallbowel grading scales in CE.展开更多
In order to study the scale characteristics of heterogeneities in complex media, a random medium is constructed using a statistical method and by changing model parameters (autocorrelation lengths a and b), the scal...In order to study the scale characteristics of heterogeneities in complex media, a random medium is constructed using a statistical method and by changing model parameters (autocorrelation lengths a and b), the scales of heterogeneous geologic bodies in the horizontal and the vertical Cartesian directions may be varied in the medium. The autocorrelation lengths a and b represent the mean scale of heterogeneous geologic bodies in the horizontal and vertical Cartesian directions in the randQm medium, respectively. Based on this model, the relationship between model autocorrelation lengths and heterogeneous geologic body scales is studied by horizontal velocity variation and standard deviation. The horizontal velocity variation research shows that velocities are in random perturbation. The heterogeneous geologic body scale increases with increasing autocorrelation length. The recursion equation for the relationship between autocorrelation lengths and heterogeneous geologic body scales is determined from the velocity standard deviation research and the actual heterogeneous geologic body scale magnitude can be estimated by the equation.展开更多
We focus on Mei symmetry for time scales nonshifted mechanical systems within Lagrangian framework and its resulting new conserved quantities.Firstly,the dynamic equations of time scales nonshifted holonomic systems a...We focus on Mei symmetry for time scales nonshifted mechanical systems within Lagrangian framework and its resulting new conserved quantities.Firstly,the dynamic equations of time scales nonshifted holonomic systems and time scales nonshifted nonholonomic systems are derived from the generalized Hamilton’s principle.Secondly,the definitions of Mei symmetry on time scales are given and its criterions are deduced.Finally,Mei’s symmetry theorems for time scales nonshifted holonomic conservative systems,time scales nonshifted holonomic nonconservative systems and time scales nonshifted nonholonomic systems are established and proved,and new conserved quantities of above systems are obtained.Results are illustrated with two examples.展开更多
The generalized Chaplygin equations for nonholonomic systems on time scales are proposed and studied. The Hamil- ton principle for nonholonomic systems on time scales is established, and the corresponding generalized ...The generalized Chaplygin equations for nonholonomic systems on time scales are proposed and studied. The Hamil- ton principle for nonholonomic systems on time scales is established, and the corresponding generalized Chaplygin equa- tions are deduced. The reduced Chaplygin equations are also presented. Two special cases of the generalized Chaplygin equations on time scales, where the time scales are equal to the set of real numbers and the integer set, are discussed. Finally, several examples are given to illustrate the application of the results.展开更多
: The oscillation for a class of second order nonlinear variable delay dynamic equation on time scales with nonlinear neutral term and damping term was discussed in this article. By using the generalized Riccati tech...: The oscillation for a class of second order nonlinear variable delay dynamic equation on time scales with nonlinear neutral term and damping term was discussed in this article. By using the generalized Riccati technique, integral averaging technique and the time scales theory, some new sufficient conditions for oscillation of the equation are proposed. These results generalize and extend many knownresults for second order dynamic equations. Some examples are given to illustrate the main results of this article.展开更多
The theory of time scales,which unifies continuous and discrete analysis,provides a powerful mathematical tool for the study of complex dynamic systems.It enables us to understand more clearly the essential problems o...The theory of time scales,which unifies continuous and discrete analysis,provides a powerful mathematical tool for the study of complex dynamic systems.It enables us to understand more clearly the essential problems of continuous systems and discrete systems as well as other complex systems.In this paper,the theory of generalized canonical transformation for second-order Birkhoffian systems on time scales is proposed and studied,which extends the canonical transformation theory of Hamilton canonical equations.First,the condition of generalized canonical transformation for the second-order Birkhoffian system on time scales is established.Second,based on this condition,six basic forms of generalized canonical transformation for the second-order Birkhoffian system on time scales are given.Also,the relationships between new variables and old variables for each of these cases are derived.In the end,an example is given to show the application of the results.展开更多
Empirical orthogonal function (EOF) analysis reveals a co-variability of Sea surface temperatures (SSTs) in the Southern Hemisphere (0°-60°S). In the South Indian and Atlantic Oceans, there is a subtro...Empirical orthogonal function (EOF) analysis reveals a co-variability of Sea surface temperatures (SSTs) in the Southern Hemisphere (0°-60°S). In the South Indian and Atlantic Oceans, there is a subtropical dipole pattern slanted in the southwest-northeast direction. In the South Pacific Ocean, a meridional tripole structure emerges, whose middle pole co-varies with the dipoles in the South Indian and Atlantic Oceans and is used in this study to track subtropical Pacific variability. The South Indian and Atlantic Ocean dipoles and the subtropical Pacific variability are phase-locked in austral summer. On the inter-decadal time scales, the dipoles in the South Indian and Atlantic Oceans weaken in amplitude after 1979/1980. No such weakening is found in the subtropical South Pacific Ocean. Interestingly, despite the reduced amplitude, the correlation of the Indian Ocean and Atlantic dipoles with E1 Nino and Southern Oscillation (ENSO) are enhanced after 1979/1980. The same increase in correlation is found for subtropical South Pacific variability after 1979/1980. These inter-decadal modulations imply that the Southern Hemisphere participates in part of the climate shift in the late 1970s. The correlation between Southern Hemisphere SST and ENSO reduces after 2000.展开更多
This paper is concerned with the oscillatory behavior of a class of third-order noonlinear variable delay neutral functional dynamic equations on time scale. By using the generalized Riccati transformation and inequal...This paper is concerned with the oscillatory behavior of a class of third-order noonlinear variable delay neutral functional dynamic equations on time scale. By using the generalized Riccati transformation and inequality technique, we establish some new oscilla- tion criteria for the equations. Our results extend and improve some known results, but also unify the oscillation of third-order nonlinear variable delay functional differential equations and functional difference equations with a nonlinear neutral term. Some examples are given to illustrate the importance of our results.展开更多
The Routh and Whittaker methods of reduction for Lagrange system on time scales with nabla derivatives are studied.The equations of motion for Lagrange system on time scales are established, and their cyclic integrals...The Routh and Whittaker methods of reduction for Lagrange system on time scales with nabla derivatives are studied.The equations of motion for Lagrange system on time scales are established, and their cyclic integrals and generalized energy integrals are given. The Routh functions and Whittaker functions of Lagrange system are constructed, and the order of differential equations of motion for the system are reduced by using the cyclic integrals or the generalized energy integrals with nabla derivatives. The results show that the reduced Routh equations and Whittaker equations hold the form of Lagrnage equations with nabla derivatives. Finally, two examples are given to illustrate the application of the results.展开更多
A fast-slow coupled model of the hydro-turbine governing system (HTGS) is established by introducing frequency disturbance in this paper. Based on the proposed model, the performances of two time scales for bursting...A fast-slow coupled model of the hydro-turbine governing system (HTGS) is established by introducing frequency disturbance in this paper. Based on the proposed model, the performances of two time scales for bursting oscillations in the HTGS are investigated and the effect of periodic excitation of frequency disturbance is analyzed by using the bifurcation diagrams, time waveforms and phase portraits. We find that stability and operational characteristics of the HTGS change with the value of system parameter kd. Furthermore, the comparative analyses for the effect of the bursting oscillations on the system with different amplitudes of the periodic excitation a are carried out. Meanwhile, we obtain that the relative deviation of the mechanical torque mt rises with the increase of a. These methods and results of the study, combined with the performance of two time scales and the fast-slow coupled engineering model, provide some theoretical bases for investigating interesting physical phenomena of the engineering system.展开更多
With the increasing proportion of wind power integration, the volatility of wind power brings huge challenges to the safe and stable operation of the electric power system. At present, the indexes commonly used to eva...With the increasing proportion of wind power integration, the volatility of wind power brings huge challenges to the safe and stable operation of the electric power system. At present, the indexes commonly used to evaluate the volatility of wind power only consider its overall characteristics, such as the standard deviation of wind power, the average of power variables, etc., while ignoring the detailed volatility of wind power, that is, the features of the frequency distribution of power variables. However, how to accurately describe the detailed volatility of wind power is the key foundation to reduce its adverse influences. To address this, a quantitative method for evaluating the detailed volatility of wind power at multiple temporal-spatial scales is proposed. First, the volatility indexes which can evaluate the detailed fluctuation characteristics of wind power are presented, including the upper confidence limit, lower confidence limit and confidence interval of power variables under the certain confidence level. Then, the actual wind power data from a location in northern China is used to illustrate the application of the proposed indexes at multiple temporal(year–season–month–day) and spatial scales(wind turbine–wind turbines–wind farm–wind farms) using the calculation time windows of 10 min, 30 min, 1 h, and 4 h. Finally, the relationships between wind power forecasting accuracy and its corresponding detailed volatility are analyzed to further verify the effectiveness of the proposed indexes. The results show that the proposed volatility indexes can effectively characterize the detailed fluctuations of wind power at multiple temporal-spatial scales. It is anticipated that the results of this study will serve as an important reference for the reserve capacity planning and optimization dispatch in the electric power system which with a high proportion of renewable energy.展开更多
基金the Natural Science Foundation of China(41807285)Interdisciplinary Innovation Fund of Natural Science,NanChang University(9167-28220007-YB2107).
文摘This study aims to investigate the effects of different mapping unit scales and study area scales on the uncertainty rules of landslide susceptibility prediction(LSP).To illustrate various study area scales,Ganzhou City in China,its eastern region(Ganzhou East),and Ruijin County in Ganzhou East were chosen.Different mapping unit scales are represented by grid units with spatial resolution of 30 and 60 m,as well as slope units that were extracted by multi-scale segmentation method.The 3855 landslide locations and 21 typical environmental factors in Ganzhou City are first determined to create spatial datasets with input-outputs.Then,landslide susceptibility maps(LSMs)of Ganzhou City,Ganzhou East and Ruijin County are pro-duced using a support vector machine(SVM)and random forest(RF),respectively.The LSMs of the above three regions are then extracted by mask from the LSM of Ganzhou City,along with the LSMs of Ruijin County from Ganzhou East.Additionally,LSMs of Ruijin at various mapping unit scales are generated in accordance.Accuracy and landslide suscepti-bility indexes(LSIs)distribution are used to express LSP uncertainties.The LSP uncertainties under grid units significantly decrease as study area scales decrease from Ganzhou City,Ganzhou East to Ruijin County,whereas those under slope units are less affected by study area scales.Of course,attentions should also be paid to the broader representativeness of large study areas.The LSP accuracy of slope units increases by about 6%–10%compared with those under grid units with 30 m and 60 m resolution in the same study area's scale.The significance of environmental factors exhibits an averaging trend as study area scale increases from small to large.The importance of environmental factors varies greatly with the 60 m grid unit,but it tends to be consistent to some extent in the 30 m grid unit and the slope unit.
基金Financial support received from the National Natural Science Foundation of China(22178379)the National Key Research and Development Program of China(2021YFC2800902)is gratefully acknowledged.
文摘Natural gas hydrate is an energy resource for methane that has a carbon quantity twice more than all traditional fossil fuels combined.However,their practical application in the field has been limited due to the challenges of long-term preparation,high costs and associated risks.Experimental studies,on the other hand,offer a safe and cost-effective means of exploring the mechanisms of hydrate dissociation and optimizing exploitation conditions.Gas hydrate decomposition is a complicated process along with intrinsic kinetics,mass transfer and heat transfer,which are the influencing factors for hydrate decomposition rate.The identification of the rate-limiting factor for hydrate dissociation during depressurization varies with the scale of the reservoir,making it challenging to extrapolate findings from laboratory experiments to the actual exploitation.This review aims to summarize current knowledge of investigations on hydrate decomposition on the subject of the research scale(core scale,middle scale,large scale and field tests)and to analyze determining factors for decomposition rate,considering the various research scales and their associated influencing factors.
基金supported by the National Natural Science Foundation of China(Nos.52035009,52105475).
文摘With the rapid development in advanced industries,such as microelectronics and optics sectors,the functional feature size of devises/components has been decreasing from micro to nanometric,and even ACS for higher performance,smaller volume and lower energy consumption.By this time,a great many quantum structures are proposed,with not only an extreme scale of several or even single atom,but also a nearly ideal lattice structure with no material defect.It is almost no doubt that such structures play critical role in the next generation products,which shows an urgent demand for the ACSM.Laser machining is one of the most important approaches widely used in engineering and scientific research.It is high-efficient and applicable for most kinds of materials.Moreover,the processing scale covers a huge range from millimeters to nanometers,and has already touched the atomic level.Laser–material interaction mechanism,as the foundation of laser machining,determines the machining accuracy and surface quality.It becomes much more sophisticated and dominant with a decrease in processing scale,which is systematically reviewed in this article.In general,the mechanisms of laser-induced material removal are classified into ablation,CE and atomic desorption,with a decrease in the scale from above microns to angstroms.The effects of processing parameters on both fundamental material response and machined surface quality are discussed,as well as theoretical methods to simulate and understand the underlying mechanisms.Examples at nanometric to atomic scale are provided,which demonstrate the capability of laser machining in achieving the ultimate precision and becoming a promising approach to ACSM.
基金Supported by Special Fund for the Dominant Subjects Development of the Higher Education Institutions of Jiangsu ProvinceScience and Technology Innovation Fund of Nanjing Forestry University(X09-120-4)~~
文摘[Objective] The purpose of this study is to investigate the effects of differ- ent phytohormones on the adventitious bud differentiation of oriental lily. [Method] The bulb scales of the test-tube plantlets of Tiber, Rodina and Constanta were cul- tured in media supplemented with different cytokinin and auxin at different concen- tration, and then the adventitious buds in each treatment were calculated. [Result] Cytokinins had different influence on the adventitious bud differentiation of the three oriental lily cultivars. Among them, 6-BA had the best effect to induce the adventi- tious bud differentiation from bulb scales of Tiber and Rodina, but there was some difference in the optimal concentration. KT had the best effect to induce the adven- titious bud differentiation of Constanta. The auxins had little influence on the quality of the adventitious bud of the three oriental lily cultivars, but caused some difference in differentiation coefficients. [Conclusion] The most suitable media for the adventi- tious bud differentiation from bulb scales in vitro of Tiber, Rodina and Constanta were MS+0.2 mg/L 6-BA+0.2 mg/L 2,4-D, MS+I.0 mg/L 6-BA+0.2 mg/L IAA, MS+ 1.0 mg/L KT+0.5 mg/L 2,4-D, respectively.
基金Under the auspices of National Basic Research Program of China (No. 2010CB833405)National Natural Science Foundation of China (No. 40772118, 49971009)
文摘The upmost segment (Holocene series) of the Milanggouwan stratigraphic section (MGS 1) in the Salawusu River valley shows 11 sedimentary cycles of dune sands and fluvio-lacustrine facies, or dune sands and paleosols. The analysis of the magnetic susceptibility of this segment suggests that there are 11 magnetic susceptibility cycles with the value alternating from low to high, in which the layers of the dune sands correspond to the lower value of the magnetic susceptibility and the layers of fluvio-lacustrine facies and paleosols correspond to the higher peaks. The study reveals that the low and high magnetic susceptibility values indicate the climate dominated by cold-arid winter monsoon and warm-humid summer monsoon of East Asia, respectively, and the study area has experienced at least 22 times of milleunial-centennial scales climate alternation from the cold-arid to the warm-humid during the Holocene. In terms of the time and the climate nature, the variations basically correspond to those of the North Atlantic and some records of cold-warm changes in China as well. They might be caused by the alternation of winter and summer monsoons in the Mu Us Desert induced by global climate fluctuations in the Holocene.
基金The National Key Technology R&D Program during the 11th Five-Year Plan(No.2006BAJ11B04-2)the Soft Science Project of the Ministry of Construction of China(No.2008-R2-25)
文摘To improve China's residential environment evaluation system and enhance its guiding role, current research results are analyzed and summarized from three aspects including research scales, evaluation methods and applied technology by means of comparison, induction and empirical application. The guiding role of the current macro-scale evaluation system of urban planning and construction is generally not obvious, whereas the guiding role of medium and micro-scale systems to the improvement of residential environments is improving. There are diversified methods for determining the threshold values and the weights of indices in China's evaluation system. For instance, the analytic hierarchy process(AHP) method is adopted to determine the weights of indices. The advantages and disadvantages of the method are analyzed on the basis of empirical calculation. In the course of comprehensive analyses, a nonlinear model can reflect interactions among indices more than a linear model; the evaluation model under the ARCGIS platform prevails since it combines space and attribute, and it has intuitive results. So far, the methodological system of China's residential environment evaluation has not been established; its subject coverage and research category should be expanded, and its guiding role should be enhanced.
基金supported partly by the National Key R&D Program of China(2018YFA0702200)the Science and Technology Project of State Grid Shandong Electric Power Company(520604190002)。
文摘With the development of carbon electricity,achieving a low-carbon economy has become a prevailing and inevitable trend.Improving low-carbon expansion generation planning is critical for carbon emission mitigation and a lowcarbon economy.In this paper,a two-layer low-carbon expansion generation planning approach considering the uncertainty of renewable energy at multiple time scales is proposed.First,renewable energy sequences considering the uncertainty in multiple time scales are generated based on the Copula function and the probability distribution of renewable energy.Second,a two-layer generation planning model considering carbon trading and carbon capture technology is established.Specifically,the upper layer model optimizes the investment decision considering the uncertainty at a monthly scale,and the lower layer one optimizes the scheduling considering the peak shaving at an hourly scale and the flexibility at a 15-minute scale.Finally,the results of different influence factors on low-carbon generation expansion planning are compared in a provincial power grid,which demonstrate the effectiveness of the proposed model.
基金in major projects of Henan Province University Science and Technology Innovation Talent Support Program of China (No. 15HASTIT050)Funding Scheme for Henan Province the Young Key Teachers (No. 2013GGJS-049) of ChinaScience and Technology Department of Henan Province of China (No. 142102210050)
文摘There are millimeter, micron and nanometer scales of pores and fractures in coal to describe different scales of coal pores and fissures communicating path and to quantitatively characterize their permeability. Such information provides an important basis for studying coalbed methane output mechanism. The pores and fissures in a large number of coal samples were observed and counted by scanning electron microscopy and optical microscopy. The probability distribution models of pore-fissure network were then established. Different scales of pore-fissures 2D network models were reconstructed by Monte Carlo method. The 2D seepage models were obtained through assignment zero method and using Matlab software. The effect of permeability on different scale pore-fractures network was obtained by two-dimensional seepage equation. Predicted permeability is compared with the measured ones. The results showed that the dominant order of different scale pore-fractures connected path from high to low is millimeter-sized fractures, seepage pores and micron-size fractures. The contribution of coal reservoir permeability from large to small is millimeter-size fractures, micron-size fractures and seepage pores. Different parameters in different scale pore-fractures are of different influence permeability.Reconstruction of different scale pore-fractures network can clearly display the connectivity of porefractures, which can provide a basis for selecting migration path and studying gas flow pattern.
文摘Evaluation of the quality of small-bowel cleansing is required to assess the reliability of findings in capsule endoscopy(CE). Moreover, consensus regarding the need of intestinal preparation for CE remains to be achieved. The presence of multiple grading scales for smallbowel preparation in CE, which are time-consuming and complicated, adds difficulty to the comparison of different small-bowel cleansing regimens and their application in clinical practice. Nowadays, a validated scale universally accepted for grading small-bowel cleansing is lacking. In fact, there are numerous grading systems with very different technical characteristics, namely, the parameters and the portion of the CE video that are analyzed, the objectivity of the analysis, the lesser or greater dependency on the operator, and the validation of the score. The authors performed a review which aims to systematize and summarize currently available smallbowel grading scales in CE.
基金sponsored by the 973 Program (No. 2009CB219505)the Talents Introduction Special Project of Guangdong Ocean University (No. 0812182)
文摘In order to study the scale characteristics of heterogeneities in complex media, a random medium is constructed using a statistical method and by changing model parameters (autocorrelation lengths a and b), the scales of heterogeneous geologic bodies in the horizontal and the vertical Cartesian directions may be varied in the medium. The autocorrelation lengths a and b represent the mean scale of heterogeneous geologic bodies in the horizontal and vertical Cartesian directions in the randQm medium, respectively. Based on this model, the relationship between model autocorrelation lengths and heterogeneous geologic body scales is studied by horizontal velocity variation and standard deviation. The horizontal velocity variation research shows that velocities are in random perturbation. The heterogeneous geologic body scale increases with increasing autocorrelation length. The recursion equation for the relationship between autocorrelation lengths and heterogeneous geologic body scales is determined from the velocity standard deviation research and the actual heterogeneous geologic body scale magnitude can be estimated by the equation.
基金supported by the National Natural Science Foundation of China(Grants 11972241 and 11572212)the Natural Science Foundation of Jiangsu Province of China(Grant BK20191454).
文摘We focus on Mei symmetry for time scales nonshifted mechanical systems within Lagrangian framework and its resulting new conserved quantities.Firstly,the dynamic equations of time scales nonshifted holonomic systems and time scales nonshifted nonholonomic systems are derived from the generalized Hamilton’s principle.Secondly,the definitions of Mei symmetry on time scales are given and its criterions are deduced.Finally,Mei’s symmetry theorems for time scales nonshifted holonomic conservative systems,time scales nonshifted holonomic nonconservative systems and time scales nonshifted nonholonomic systems are established and proved,and new conserved quantities of above systems are obtained.Results are illustrated with two examples.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11572212 and 11272227)the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province,China(Grant No.KYLX16-0414)
文摘The generalized Chaplygin equations for nonholonomic systems on time scales are proposed and studied. The Hamil- ton principle for nonholonomic systems on time scales is established, and the corresponding generalized Chaplygin equa- tions are deduced. The reduced Chaplygin equations are also presented. Two special cases of the generalized Chaplygin equations on time scales, where the time scales are equal to the set of real numbers and the integer set, are discussed. Finally, several examples are given to illustrate the application of the results.
基金Supported by the Scientific Research Fund of Hunan Provincial Education Department(09A082)
文摘: The oscillation for a class of second order nonlinear variable delay dynamic equation on time scales with nonlinear neutral term and damping term was discussed in this article. By using the generalized Riccati technique, integral averaging technique and the time scales theory, some new sufficient conditions for oscillation of the equation are proposed. These results generalize and extend many knownresults for second order dynamic equations. Some examples are given to illustrate the main results of this article.
基金supported by the National Natural Science Foundation of China(Grants 11972241 and 11572212)
文摘The theory of time scales,which unifies continuous and discrete analysis,provides a powerful mathematical tool for the study of complex dynamic systems.It enables us to understand more clearly the essential problems of continuous systems and discrete systems as well as other complex systems.In this paper,the theory of generalized canonical transformation for second-order Birkhoffian systems on time scales is proposed and studied,which extends the canonical transformation theory of Hamilton canonical equations.First,the condition of generalized canonical transformation for the second-order Birkhoffian system on time scales is established.Second,based on this condition,six basic forms of generalized canonical transformation for the second-order Birkhoffian system on time scales are given.Also,the relationships between new variables and old variables for each of these cases are derived.In the end,an example is given to show the application of the results.
基金jointly supported by the National Basic Research Program(2012CB955603,2010CB950302)National High Technology Research and Development Program of China(No.2010AA012304)the Knowledge Innovation Program of the Chinese Academy of Sciences(SQ201006 and XDA05090404)
文摘Empirical orthogonal function (EOF) analysis reveals a co-variability of Sea surface temperatures (SSTs) in the Southern Hemisphere (0°-60°S). In the South Indian and Atlantic Oceans, there is a subtropical dipole pattern slanted in the southwest-northeast direction. In the South Pacific Ocean, a meridional tripole structure emerges, whose middle pole co-varies with the dipoles in the South Indian and Atlantic Oceans and is used in this study to track subtropical Pacific variability. The South Indian and Atlantic Ocean dipoles and the subtropical Pacific variability are phase-locked in austral summer. On the inter-decadal time scales, the dipoles in the South Indian and Atlantic Oceans weaken in amplitude after 1979/1980. No such weakening is found in the subtropical South Pacific Ocean. Interestingly, despite the reduced amplitude, the correlation of the Indian Ocean and Atlantic dipoles with E1 Nino and Southern Oscillation (ENSO) are enhanced after 1979/1980. The same increase in correlation is found for subtropical South Pacific variability after 1979/1980. These inter-decadal modulations imply that the Southern Hemisphere participates in part of the climate shift in the late 1970s. The correlation between Southern Hemisphere SST and ENSO reduces after 2000.
基金Supported by the NNSF of China(11071222)Supported by the NSF of Hunan Province(12JJ6006)Supported by Scientific Research Fund of Education Department of Guangxi Zhuang Autonomous Region(2013YB223)
文摘This paper is concerned with the oscillatory behavior of a class of third-order noonlinear variable delay neutral functional dynamic equations on time scale. By using the generalized Riccati transformation and inequality technique, we establish some new oscilla- tion criteria for the equations. Our results extend and improve some known results, but also unify the oscillation of third-order nonlinear variable delay functional differential equations and functional difference equations with a nonlinear neutral term. Some examples are given to illustrate the importance of our results.
基金supported by the National Natural Science Foundation of China(Grant Nos.11572212 and 11272227)the Innovation Program for Graduate Student of Jiangsu Province,China(Grant No.KYLX16-0414)
文摘The Routh and Whittaker methods of reduction for Lagrange system on time scales with nabla derivatives are studied.The equations of motion for Lagrange system on time scales are established, and their cyclic integrals and generalized energy integrals are given. The Routh functions and Whittaker functions of Lagrange system are constructed, and the order of differential equations of motion for the system are reduced by using the cyclic integrals or the generalized energy integrals with nabla derivatives. The results show that the reduced Routh equations and Whittaker equations hold the form of Lagrnage equations with nabla derivatives. Finally, two examples are given to illustrate the application of the results.
基金Project supported by the Scientific Research Foundation of the National Natural Science Foundation of China–Outstanding Youth Foundation(Grant No.51622906)the National Natural Science Foundation of China(Grant No.51479173)+3 种基金the Fundamental Research Funds for the Central Universities,China(Grant No.201304030577)the Scientific Research Funds of Northwest A&F University,China(Grant No.2013BSJJ095)the Science Fund for Excellent Young Scholars from Northwest A&F University(Grant No.Z109021515)the Shaanxi Provincial Nova Program,China(Grant No.2016KJXX-55)
文摘A fast-slow coupled model of the hydro-turbine governing system (HTGS) is established by introducing frequency disturbance in this paper. Based on the proposed model, the performances of two time scales for bursting oscillations in the HTGS are investigated and the effect of periodic excitation of frequency disturbance is analyzed by using the bifurcation diagrams, time waveforms and phase portraits. We find that stability and operational characteristics of the HTGS change with the value of system parameter kd. Furthermore, the comparative analyses for the effect of the bursting oscillations on the system with different amplitudes of the periodic excitation a are carried out. Meanwhile, we obtain that the relative deviation of the mechanical torque mt rises with the increase of a. These methods and results of the study, combined with the performance of two time scales and the fast-slow coupled engineering model, provide some theoretical bases for investigating interesting physical phenomena of the engineering system.
基金supported in part by the National Key R&D Program of China (No.2017YFE0109000)the project of China Datang Corporation Ltd
文摘With the increasing proportion of wind power integration, the volatility of wind power brings huge challenges to the safe and stable operation of the electric power system. At present, the indexes commonly used to evaluate the volatility of wind power only consider its overall characteristics, such as the standard deviation of wind power, the average of power variables, etc., while ignoring the detailed volatility of wind power, that is, the features of the frequency distribution of power variables. However, how to accurately describe the detailed volatility of wind power is the key foundation to reduce its adverse influences. To address this, a quantitative method for evaluating the detailed volatility of wind power at multiple temporal-spatial scales is proposed. First, the volatility indexes which can evaluate the detailed fluctuation characteristics of wind power are presented, including the upper confidence limit, lower confidence limit and confidence interval of power variables under the certain confidence level. Then, the actual wind power data from a location in northern China is used to illustrate the application of the proposed indexes at multiple temporal(year–season–month–day) and spatial scales(wind turbine–wind turbines–wind farm–wind farms) using the calculation time windows of 10 min, 30 min, 1 h, and 4 h. Finally, the relationships between wind power forecasting accuracy and its corresponding detailed volatility are analyzed to further verify the effectiveness of the proposed indexes. The results show that the proposed volatility indexes can effectively characterize the detailed fluctuations of wind power at multiple temporal-spatial scales. It is anticipated that the results of this study will serve as an important reference for the reserve capacity planning and optimization dispatch in the electric power system which with a high proportion of renewable energy.