Task scheduling in cloud computing environments is a multi-objective optimization problem, which is NP hard. It is also a challenging problem to find an appropriate trade-off among resource utilization, energy consump...Task scheduling in cloud computing environments is a multi-objective optimization problem, which is NP hard. It is also a challenging problem to find an appropriate trade-off among resource utilization, energy consumption and Quality of Service(QoS) requirements under the changing environment and diverse tasks. Considering both processing time and transmission time, a PSO-based Adaptive Multi-objective Task Scheduling(AMTS) Strategy is proposed in this paper. First, the task scheduling problem is formulated. Then, a task scheduling policy is advanced to get the optimal resource utilization, task completion time, average cost and average energy consumption. In order to maintain the particle diversity, the adaptive acceleration coefficient is adopted. Experimental results show that the improved PSO algorithm can obtain quasi-optimal solutions for the cloud task scheduling problem.展开更多
An object oriented multi robotic graphic simulation environment is described in this paper. Object oriented programming is used to model the physical objects of the robotic workcell in the form of software objects ...An object oriented multi robotic graphic simulation environment is described in this paper. Object oriented programming is used to model the physical objects of the robotic workcell in the form of software objects or classes. The virtual objects are defined to provide the user with a user friendly interface including realistic graphic simulation and clarify the software architecture. The programming method of associating the task object with active object effectively increases the software reusability, maintainability and modifiability. Task level programming is also demonstrated through a multi robot welding task that allows the user to concentrate on the most important aspects of the tasks. The multi thread programming technique is used to simulate the interaction of multiple tasks. Finally, a virtual test is carried out in the graphic simulation environment to observe design and program errors and fix them before downloading the software to the real workcell.展开更多
A concurrency control mechanism for collaborative work is akey element in a mixed reality environment. However, conventional lockingmechanisms restrict potential tasks or the support of non-owners, thusincreasing the ...A concurrency control mechanism for collaborative work is akey element in a mixed reality environment. However, conventional lockingmechanisms restrict potential tasks or the support of non-owners, thusincreasing the working time because of waiting to avoid conflicts. Herein, wepropose an adaptive concurrency control approach that can reduce conflictsand work time. We classify shared object manipulation in mixed reality intodetailed goals and tasks. Then, we model the relationships among goal,task, and ownership. As the collaborative work progresses, the proposedsystem adapts the different concurrency control mechanisms of shared objectmanipulation according to the modeling of goal–task–ownership. With theproposed concurrency control scheme, users can hold shared objects andmove and rotate together in a mixed reality environment similar to realindustrial sites. Additionally, this system provides MS Hololens and Myosensors to recognize inputs from a user and provides results in a mixed realityenvironment. The proposed method is applied to install an air conditioneras a case study. Experimental results and user studies show that, comparedwith the conventional approach, the proposed method reduced the number ofconflicts, waiting time, and total working time.展开更多
基金partially been sponsored by the National Science Foundation of China(No.61572355,61272093,610172063)Tianjin Research Program of Application Foundation and Advanced Technology under grant No.15JCYBJC15700
文摘Task scheduling in cloud computing environments is a multi-objective optimization problem, which is NP hard. It is also a challenging problem to find an appropriate trade-off among resource utilization, energy consumption and Quality of Service(QoS) requirements under the changing environment and diverse tasks. Considering both processing time and transmission time, a PSO-based Adaptive Multi-objective Task Scheduling(AMTS) Strategy is proposed in this paper. First, the task scheduling problem is formulated. Then, a task scheduling policy is advanced to get the optimal resource utilization, task completion time, average cost and average energy consumption. In order to maintain the particle diversity, the adaptive acceleration coefficient is adopted. Experimental results show that the improved PSO algorithm can obtain quasi-optimal solutions for the cloud task scheduling problem.
文摘An object oriented multi robotic graphic simulation environment is described in this paper. Object oriented programming is used to model the physical objects of the robotic workcell in the form of software objects or classes. The virtual objects are defined to provide the user with a user friendly interface including realistic graphic simulation and clarify the software architecture. The programming method of associating the task object with active object effectively increases the software reusability, maintainability and modifiability. Task level programming is also demonstrated through a multi robot welding task that allows the user to concentrate on the most important aspects of the tasks. The multi thread programming technique is used to simulate the interaction of multiple tasks. Finally, a virtual test is carried out in the graphic simulation environment to observe design and program errors and fix them before downloading the software to the real workcell.
基金supported by“Regional Innovation Strategy (RIS)”through the National Research Foundation of Korea (NRF)funded by the Ministry of Education (MOE) (2021RIS-004).
文摘A concurrency control mechanism for collaborative work is akey element in a mixed reality environment. However, conventional lockingmechanisms restrict potential tasks or the support of non-owners, thusincreasing the working time because of waiting to avoid conflicts. Herein, wepropose an adaptive concurrency control approach that can reduce conflictsand work time. We classify shared object manipulation in mixed reality intodetailed goals and tasks. Then, we model the relationships among goal,task, and ownership. As the collaborative work progresses, the proposedsystem adapts the different concurrency control mechanisms of shared objectmanipulation according to the modeling of goal–task–ownership. With theproposed concurrency control scheme, users can hold shared objects andmove and rotate together in a mixed reality environment similar to realindustrial sites. Additionally, this system provides MS Hololens and Myosensors to recognize inputs from a user and provides results in a mixed realityenvironment. The proposed method is applied to install an air conditioneras a case study. Experimental results and user studies show that, comparedwith the conventional approach, the proposed method reduced the number ofconflicts, waiting time, and total working time.