期刊文献+
共找到1,527篇文章
< 1 2 77 >
每页显示 20 50 100
Seasonal Variation of the Sea Surface Temperature Growth Rate of ENSO
1
作者 Xinyi XING Xianghui FANG +1 位作者 Da PANG Chaopeng JI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第3期465-477,共13页
El Ni?o–Southern Oscillation(ENSO) exhibits a distinctive phase-locking characteristic, first expressed during its onset in boreal spring, developing during summer and autumn, reaching its peak towards winter, and de... El Ni?o–Southern Oscillation(ENSO) exhibits a distinctive phase-locking characteristic, first expressed during its onset in boreal spring, developing during summer and autumn, reaching its peak towards winter, and decaying over the next spring. Several studies have demonstrated that this feature arises as a result of seasonal variation in the growth rate of ENSO as expressed by the sea surface temperature(SST). The bias towards simulating the phase locking of ENSO by many state-of-the-art climate models is also attributed to the unrealistic depiction of the growth rate. In this study, the seasonal variation of SST growth rate in the Ni?o-3.4 region(5°S–5°N, 120°–170°W) is estimated in detail based on the mixed layer heat budget equation and recharge oscillator model during 1981–2020. It is suggested that the consideration of a variable mixed layer depth is essential to its diagnostic process. The estimated growth rate has a remarkable seasonal cycle with minimum rates occurring in spring and maximum rates evident in autumn. More specifically, the growth rate derived from the meridional advection(surface heat flux) is positive(negative) throughout the year. Vertical diffusion generally makes a negative contribution to the evolution of growth rate and the magnitude of vertical entrainment represents the smallest contributor. Analysis indicates that the zonal advective feedback is regulated by the meridional immigration of the intertropical convergence zone, which approaches its southernmost extent in February and progresses to its northernmost location in September, and dominates the seasonal variation of the SST growth rate. 展开更多
关键词 SST growth rate intertropical convergence zone zonal advective feedback mixed layer depth ENSO seasonal variation
下载PDF
Seasonal variation of mesoscale eddy intensity in the global ocean
2
作者 Yongcan Zu Yue Fang +3 位作者 Shuangwen Sun Libao Gao Yang Yang Guijun Guo 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第1期48-58,共11页
Mesoscale eddies are a prominent oceanic phenomenon that plays an important role in oceanic mass transport and energy conversion.Characterizing by rotational speed,the eddy intensity is one of the most fundamental pro... Mesoscale eddies are a prominent oceanic phenomenon that plays an important role in oceanic mass transport and energy conversion.Characterizing by rotational speed,the eddy intensity is one of the most fundamental properties of an eddy.However,the seasonal spatiotemporal variation in eddy intensity has not been examined from a global ocean perspective.In this study,we unveil the seasonal spatiotemporal characteristics of eddy intensity in the global ocean by using the latest satellite-altimetry-derived eddy trajectory data set.The results suggest that the eddy intensity has a distinct seasonal variation,reaching a peak in spring while attaining a minimum in autumn in the Northern Hemisphere and the opposite in the Southern Hemisphere.The seasonal variation of eddy intensity is more intense in the tropical-subtropical transition zones within latitudinal bands between 15°and 30°in the western Pacific Ocean,the northwestern Atlantic Ocean,and the eastern Indian Ocean because baroclinic instability in these areas changes sharply.Further analysis found that the seasonal variation of baroclinic instability precedes the eddy intensity by a phase of 2–3 months due to the initial perturbations needing time to grow into mesoscale eddies. 展开更多
关键词 seasonal variation mesoscale eddy INTENSITY baroclinic instability global ocean
下载PDF
Downscaling Seasonal Precipitation Forecasts over East Africa with Deep Convolutional Neural Networks
3
作者 Temesgen Gebremariam ASFAW Jing-Jia LUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第3期449-464,共16页
This study assesses the suitability of convolutional neural networks(CNNs) for downscaling precipitation over East Africa in the context of seasonal forecasting. To achieve this, we design a set of experiments that co... This study assesses the suitability of convolutional neural networks(CNNs) for downscaling precipitation over East Africa in the context of seasonal forecasting. To achieve this, we design a set of experiments that compare different CNN configurations and deployed the best-performing architecture to downscale one-month lead seasonal forecasts of June–July–August–September(JJAS) precipitation from the Nanjing University of Information Science and Technology Climate Forecast System version 1.0(NUIST-CFS1.0) for 1982–2020. We also perform hyper-parameter optimization and introduce predictors over a larger area to include information about the main large-scale circulations that drive precipitation over the East Africa region, which improves the downscaling results. Finally, we validate the raw model and downscaled forecasts in terms of both deterministic and probabilistic verification metrics, as well as their ability to reproduce the observed precipitation extreme and spell indicator indices. The results show that the CNN-based downscaling consistently improves the raw model forecasts, with lower bias and more accurate representations of the observed mean and extreme precipitation spatial patterns. Besides, CNN-based downscaling yields a much more accurate forecast of extreme and spell indicators and reduces the significant relative biases exhibited by the raw model predictions. Moreover, our results show that CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of East Africa. The results demonstrate the potential usefulness of CNN in downscaling seasonal precipitation predictions over East Africa,particularly in providing improved forecast products which are essential for end users. 展开更多
关键词 East Africa seasonal precipitation forecasting DOWNSCALING deep learning convolutional neural networks(CNNs)
下载PDF
Seasonal Performance of Solar Power Plants in the Sahel Region: A Study in Senegal, West Africa
4
作者 Serigne Abdoul Aziz Niang Mamadou Simina Drame +4 位作者 Astou Sarr Mame Diarra Toure Ahmed Gueye Seydina Oumar Ndiaye Kharouna Talla 《Smart Grid and Renewable Energy》 2024年第2期79-97,共19页
The main objective of this study is to evaluate the seasonal performance of 20 MW solar power plants in Senegal. The analysis revealed notable seasonal variations in the performance of all stations. The most significa... The main objective of this study is to evaluate the seasonal performance of 20 MW solar power plants in Senegal. The analysis revealed notable seasonal variations in the performance of all stations. The most significant yields are recorded in spring, autumn and winter, with values ranging from 5 to 7.51 kWh/kWp/day for the reference yield and 4.02 to 7.58 kWh/kWp/day for the final yield. These fluctuations are associated with intense solar activity during the dry season and clear skies, indicating peak production. Conversely, minimum values are recorded during the rainy season from June to September, with a final yield of 3.86 kWh/kW/day due to dust, clouds and high temperatures. The performance ratio analysis shows seasonal dynamics throughout the year with rates ranging from 77.40% to 95.79%, reinforcing reliability and optimal utilization of installed capacity. The results of the capacity factor vary significantly, with March, April, May, and sometimes October standing out as periods of optimal performance, with 16% for Kahone, 16% for Bokhol, 18% for Malicounda and 23% for Sakal. Total losses from solar power plants show similar seasonal trends standing out for high loss levels from June to July, reaching up to 3.35 kWh/kWp/day in June. However, using solar trackers at Sakal has increased production by up to 25%, demonstrating the operational stability of this innovative technology compared with the plants fixed panel. Finally, comparing these results with international studies confirms the outstanding efficiency of Senegalese solar power plants, other installations around the world. 展开更多
关键词 Performance Study Photovoltaic Power Plant Season Variations Senegal
下载PDF
Seasonal Prediction of the Record-Breaking Northward Shift of the Western Pacific Subtropical High in July 2021 被引量:4
5
作者 Shuai HU Tianjun ZHOU +1 位作者 Bo WU Xiaolong CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第3期410-427,共18页
The unprecedented Zhengzhou heavy rainfall in July 2021 occurred under the background of a northward shift of the western Pacific subtropical high(WPSH).Although the occurrence of this extreme event could not be captu... The unprecedented Zhengzhou heavy rainfall in July 2021 occurred under the background of a northward shift of the western Pacific subtropical high(WPSH).Although the occurrence of this extreme event could not be captured by seasonal predictions,a skillful prediction of the WPSH variation might have warned us of the increased probability of extreme weather events in Central and Northern China.However,the mechanism for the WPSH variation in July 2021 and its seasonal predictability are still unknown.Here,the observed northward shift of the WPSH in July 2021 is shown to correspond to a meridional dipole pattern of the 850-hPa geopotential height to the east of China,the amplitude of which became the strongest since 1979.The meridional dipole pattern is two nodes of the Pacific–Japan pattern.To investigate the predictability of the WPSH variation,a 21-member ensemble of seasonal predictions initiated from the end of June 2021 was conducted.The predictable and unpredictable components of the meridional dipole pattern were identified from the ensemble simulations.Its predictable component is driven by positive precipitation anomalies over the tropical western Pacific.The positive precipitation anomalies are caused by positive horizonal advection of the mean moist enthalpy by southwesterly anomalies to the northwestern flank of anticyclonic anomalies excited by the existing La Niña,which is skillfully predicted by the model.The leading mode of the unpredictable component is associated with the atmospheric internal intraseasonal oscillations,which are not initialized in the simulations.The relative contributions of the predictable and unpredictable components to the observed northward shift of the WPSH at 850 hPa are 28.0%and 72.0%,respectively. 展开更多
关键词 western pacific subtropical high seasonal prediction seasonal predictability La Niña Pacific-Japan pattern
下载PDF
Time series analysis-based seasonal autoregressive fractionally integrated moving average to estimate hepatitis B and C epidemics in China
6
作者 Yong-Bin Wang Si-Yu Qing +3 位作者 Zi-Yue Liang Chang Ma Yi-Chun Bai Chun-Jie Xu 《World Journal of Gastroenterology》 SCIE CAS 2023年第42期5716-5727,共12页
BACKGROUND Hepatitis B(HB)and hepatitis C(HC)place the largest burden in China,and a goal of eliminating them as a major public health threat by 2030 has been set.Making more informed and accurate forecasts of their s... BACKGROUND Hepatitis B(HB)and hepatitis C(HC)place the largest burden in China,and a goal of eliminating them as a major public health threat by 2030 has been set.Making more informed and accurate forecasts of their spread is essential for developing effective strategies,heightening the requirement for early warning to deal with such a major public health threat.AIM To monitor HB and HC epidemics by the design of a paradigmatic seasonal autoregressive fractionally integrated moving average(SARFIMA)for projections into 2030,and to compare the effectiveness with the seasonal autoregressive integrated moving average(SARIMA).METHODS Monthly HB and HC incidence cases in China were obtained from January 2004 to June 2023.Descriptive analysis and the Hodrick-Prescott method were employed to identify trends and seasonality.Two periods(from January 2004 to June 2022 and from January 2004 to December 2015,respectively)were used as the training sets to develop both models,while the remaining periods served as the test sets to evaluate the forecasting accuracy.RESULTS There were incidents of 23400874 HB cases and 3590867 HC cases from January 2004 to June 2023.Overall,HB remained steady[average annual percentage change(AAPC)=0.44,95%confidence interval(95%CI):-0.94-1.84]while HC was increasing(AAPC=8.91,95%CI:6.98-10.88),and both had a peak in March and a trough in February.In the 12-step-ahead HB forecast,the mean absolute deviation(15211.94),root mean square error(18762.94),mean absolute percentage error(0.17),mean error rate(0.15),and root mean square percentage error(0.25)under the best SARFIMA(3,0,0)(0,0.449,2)12 were smaller than those under the best SARIMA(3,0,0)(0,1,2)12(16867.71,20775.12,0.19,0.17,and 0.27,respectively).Similar results were also observed for the 90-step-ahead HB,12-step-ahead HC,and 90-step-ahead HC forecasts.The predicted HB incidents totaled 9865400(95%CI:7508093-12222709)cases and HC totaled 1659485(95%CI:856681-2462290)cases during 2023-2030.CONCLUSION Under current interventions,China faces enormous challenges to eliminate HB and HC epidemics by 2030,and effective strategies must be reinforced.The integration of SARFIMA into public health for the management of HB and HC epidemics can potentially result in more informed and efficient interventions,surpassing the capabilities of SARIMA. 展开更多
关键词 HEPATITIS seasonal autoregressive fractionally integrated moving average seasonal autoregressive integrated moving average Prediction EPIDEMIC Time series analysis
下载PDF
Seasonal Prediction of Extreme High-Temperature Days in Southwestern China Based on the Physical Precursors 被引量:1
7
作者 Zhiyi ZHOU Juan LI +1 位作者 Haishan CHEN Zhiwei ZHU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第7期1212-1224,共13页
Extreme high temperatures frequently occur in southwestern China,significantly impacting the local ecological system and economic development.However,accurate prediction of extreme high-temperature days(EHDs)in this r... Extreme high temperatures frequently occur in southwestern China,significantly impacting the local ecological system and economic development.However,accurate prediction of extreme high-temperature days(EHDs)in this region is still an unresolved challenge.Based on the spatiotemporal characteristics of EHDs over China,a domain-averaged EHD index over southwestern China(SWC-EHDs)during April-May is defined.The simultaneous dynamic and thermodynamic fields associated with the increased SWC-EHDs are a local upper-level anticyclonic(high-pressure)anomaly and wavy geopotential height anomaly patterns over Eurasia.In tracing the origins of the lower boundary anomalies,two physically meaningful precursors are detected for SWC-EHDs.They are the tripolar SST change tendency from December-January to February-March in the northern Atlantic and the February-March mean snow depth in central Asia.Using these two selected predictors,a physics-based empirical model prediction was applied to the training period of 1961–2005 to obtain a skillful prediction of the EHDs index,attaining a correlation coefficient of 0.76 in the independent prediction period(2006–19),suggesting that 58%of the total SWC-EHDs variability is predictable.This study provides an estimate for the lower bound of the seasonal predictability of EHDs as well as for the hydrological drought over southwestern China. 展开更多
关键词 extreme high-temperature days southwestern China seasonal prediction PREDICTABILITY
下载PDF
Influence of Surface Types on the Seasonality and Inter-Model Spread of Arctic Amplification in CMIP6 被引量:1
8
作者 Yanchi LIU Yunqi KONG +1 位作者 Qinghua YANG Xiaoming HU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第12期2288-2301,共14页
A robust phenomenon termed the Arctic Amplification(AA)refers to the stronger warming taking place over the Arctic compared to the global mean.The AA can be confirmed through observations and reproduced in climate mod... A robust phenomenon termed the Arctic Amplification(AA)refers to the stronger warming taking place over the Arctic compared to the global mean.The AA can be confirmed through observations and reproduced in climate model simulations and shows significant seasonality and inter-model spread.This study focuses on the influence of surface type on the seasonality of AA and its inter-model spread by dividing the Arctic region into four surface types:ice-covered,ice-retreat,ice-free,and land.The magnitude and inter-model spread of Arctic surface warming are calculated from the difference between the abrupt-4×CO_(2)and pre-industrial experiments of 17 CMIP6 models.The change of effective thermal inertia(ETI)in response to the quadrupling of CO_(2) forcing is the leading mechanism for the seasonal energy transfer mechanism,which acts to store heat temporarily in summer and then release it in winter.The ETI change is strongest over the ice-retreat region,which is also responsible for the strongest AA among the four surface types.The lack of ETI change explains the nearly uniform warming pattern across seasons over the ice-free(ocean)region.Compared to other regions,the ice-covered region shows the maximum inter-model spread in JFM,resulting from a stronger inter-model spread in the oceanic heat storage term.However,the weaker upward surface turbulent sensible and latent heat fluxes tend to suppress the inter-model spread.The relatively small inter-model spread during summer is caused by the cancellation of the inter-model spread in ice-albedo feedback with that in the oceanic heat storage term. 展开更多
关键词 Arctic amplification surface type dependence seasonal energy transfer effective thermal inertia
下载PDF
Seasonal Prediction Skill and Biases in GloSea5 Relating to the East Asia Winter Monsoon 被引量:1
9
作者 Daquan ZHANG Lijuan CHEN +1 位作者 Gill MMARTIN Zongjian KE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第11期2013-2028,共16页
The simulation and prediction of the climatology and interannual variability of the East Asia winter monsoon(EAWM),as well as the associated atmospheric circulation,was investigated using the hindcast data from Global... The simulation and prediction of the climatology and interannual variability of the East Asia winter monsoon(EAWM),as well as the associated atmospheric circulation,was investigated using the hindcast data from Global Seasonal Forecast System version 5(GloSea5),with a focus on the evolution of model bias among different forecast lead times.While GloSea5 reproduces the climatological means of large-scale circulation systems related to the EAWM well,systematic biases exist,including a cold bias for most of China’s mainland,especially for North and Northeast China.GloSea5 shows robust skill in predicting the EAWM intensity index two months ahead,which can be attributed to the performance in representing the leading modes of surface air temperature and associated background circulation.GloSea5 realistically reproduces the synergistic effect of El Niño–Southern Oscillation(ENSO)and the Arctic Oscillation(AO)on the EAWM,especially for the western North Pacific anticyclone(WNPAC).Compared with the North Pacific and North America,the representation of circulation anomalies over Eurasia is poor,especially for sea level pressure(SLP),which limits the prediction skill for surface air temperature over East Asia.The representation of SLP anomalies might be associated with the model performance in simulating the interaction between atmospheric circulations and underlying surface conditions. 展开更多
关键词 East Asia winter monsoon(EAWM) Global seasonal Forecast System version 5(GloSea5) El Niño–Southern Oscillation(ENSO) prediction skill model bias
下载PDF
Seasonal metal fluxes derived by the interaction of surface water and groundwater in an aquaculture estuary
10
作者 Xiaoxiong Wang Jordi Garcia-Orellana +5 位作者 Xiaogang Chen Jianan Liu Fenfen Zhang Jianguo Qu Zhuoyi Zhu Jinzhou Du 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第8期113-124,共12页
Submarine groundwater discharge(SGD)plays a major role as a conveyor of metals to coastal waters.However,the seasonal change of metal fluxes derived through SGD is unclear.Here,we evaluated the behaviours and fluxes o... Submarine groundwater discharge(SGD)plays a major role as a conveyor of metals to coastal waters.However,the seasonal change of metal fluxes derived through SGD is unclear.Here,we evaluated the behaviours and fluxes of trace metals(Mn,Fe,Ba,Pb,U,Cr,Zn,Cu)in an estuary under different seasonal conditions.The behaviours of trace metals revealed that SGD was the source of Mn(3.51 mmol/(m^(2)·d)),Fe(0.174 mmol/(m^(2)·d))and Ba(0.024 mmol/(m^(2)·d)),but the Cu sink(−0.55μmol/(m^(2)·d))and other metals exhibited a seasonal source‒sink conversion.The seasonal variation of dissolved organic matter and the fresh groundwater proportion in subterranean estuaries may have an important effect on metals fluxes especially for the Fe,Mn and Ba.Our result shows that the single seasonal metal fluxes estimation applied to the annual scale will cause a large deviation,up to 3.6 times for Fe,5.5 times for Mn,and 15 times for Ba.Therefore,the influence of seasonal fluctuations on SGDderived metal fluxes cannot be ignored,and our findings will be important for comprehending the metal budget and cycle in nearshore environment. 展开更多
关键词 subterranean estuary seawater intrusion heavy metals seasonal changes coastal management
下载PDF
Influence of rangeland protection and seasonal grazing on aboveground vegetation,forage quality and weight gain of small ruminants–a study in Thar Desert,Pakistan
11
作者 ISLAM Muhammad RAZZAQ Abdul +7 位作者 HASSAN Sawsan ZUBAIR Muhammad KALROO Muhammad Waseem KHAN Attaullah GUL Shamim AHMAD Sarfraz RISCHKOWSKY Barbara Ann LOUHAICHI Mounir 《Journal of Mountain Science》 SCIE CSCD 2023年第2期403-414,共12页
The Thar Desert,Sindh,Pakistan is characterized by low productivity.Besides,economy is based on agriculture,livestock and mining,nevertheless,livestock graze freely on public and private land.The aim of this research ... The Thar Desert,Sindh,Pakistan is characterized by low productivity.Besides,economy is based on agriculture,livestock and mining,nevertheless,livestock graze freely on public and private land.The aim of this research was to determine biomass production and to evaluate the effects of continuous and seasonal grazing on protected and unprotected plots.A 45 ha protected rangeland area of Hurrabad in the Umerkot Thar desert was selected and divided into three blocks of 15 ha each.Blocks of the same size were also established in unprotected area.The data for vegetation biomass,canopy cover,forage nutrients and weight gain of animals in two seasons(spring and summer)was collected from both protected and unprotected sites.The results showed that biomass significantly increased in summer in both sites.However,the biomass values in protected sites were significantly higher.Similarly,the vegetation cover also seemed to increase in summer in both protected(90.7%±0.29%)and unprotected sites(39.2%±0.09%).The foliar concentrations of all nutrients varied significantly with season.The average final live-weight gain for does on the protected grazing sites during the 42-day period in spring and the 96 days after the monsoon was almost double that of does grazing on the unprotected site during 2016 and 2017(P<0.05).The study concludes that the protection of grazing lands during certain periods can lead to better production of vegetation and livestock and improve range conditions. 展开更多
关键词 Rangeland productivity seasonal grazing Stocking rate Thar Desert Vegetation quality
原文传递
Stable seasonal migration patterns in giant pandas
12
作者 Meng Wang Yong-Gang Nie +5 位作者 Ronald R.Swaisgood Wei Wei Wen-Liang Zhou Ze-Jun Zhang Gui-Ming Wang Fu-Wen Wei 《Zoological Research》 SCIE CAS CSCD 2023年第2期341-348,共8页
A critical function of animal movement is to maximize access to essential resources in temporally fluctuating and spatially heterogeneous environments.Seasonally mediated resource fluctuations may influence animal mov... A critical function of animal movement is to maximize access to essential resources in temporally fluctuating and spatially heterogeneous environments.Seasonally mediated resource fluctuations may influence animal movements,enabling them to track changing resource distributions,resulting in annual migration patterns.The conservation-dependent giant panda(Ailuropoda melanoleuca) displays seasonal movement patterns;however,the key factor driving these seasonal migration patterns remains poorly understood.Here,we used GPS tracking collars to monitor the movements of six giant pandas over a 12-year period across different elevations,and performed statistical analysis of seasonal migration directions,routes,habitat revisitation,home range overlap,first arrival events,and stability.Our results revealed a compelling pattern of seasonal migrations that facilitated the ability of the pandas to forage at the appropriate time and place to maximize nutritional intake.Our results indicated that pandas utilize spatial memory to locate reliable food resources,as evidenced by their annual return to the same or similar winter and summer home ranges and the consistently maintained percentage of home range overlap.These novel insights into giant panda foraging and movement ecology not only enhance our understanding of its ability to adapt to nutritionally poor dietary resources but also provide important information for the development of resource utilization-based protection and management strategies. 展开更多
关键词 Giant panda seasonal migration Home range Foraging ecology Spatial memory
下载PDF
Seasonal snow cover patterns explain alpine treeline elevation better than temperature at regional scale
13
作者 Mengyue Huang Guoyan Wang +6 位作者 Xiaojuan Bie Yunqing Jiang Xiyue Huang Jing-Ji Li Songlin Shi Tingbin Zhang Pei-Hao Peng 《Forest Ecosystems》 SCIE CSCD 2023年第2期227-237,共11页
Unprecedented modern rates of warming are expected to advance alpine treelines to higher elevations,but global evidence suggests that current treeline dynamics are influenced by a variety of factors.Seasonal snow cove... Unprecedented modern rates of warming are expected to advance alpine treelines to higher elevations,but global evidence suggests that current treeline dynamics are influenced by a variety of factors.Seasonal snow cover has an essential impact on tree recruitment and growth in alpine regions,which may in turn influence current treeline elevation;however,little research has been conducted on its role in regional treeline formation.Based on 11,804treeline locations in the eastern Himalayas,we extracted elevation,climate,and topographic data for treeline and snowline.Specifically,we used linear and structural equation modelling to assess the relationship between these environmental factors and treeline elevation,and the climate-snow-treeline interaction mechanism.The results showed that the treeline elevation increased with summer temperature and permanent or seasonal snowline elevation,but decreased with snow cover days and spring temperature at the treeline positions(P<0.001).Importantly,spring snowline elevation(33.4%)and seasonal snow cover days(21.1%)contributed the most to treeline elevation,outperforming the permanent snowline,temperature,precipitation,and light.Our results support the assertion that the temperature-moisture interaction affects treeline elevation in the eastern Himalayas,but we also found that the effects were strongly mediated by seasonal snow cover patterns.The increasing tendency of snow cover governed by climate humidification observed in the eastern Himalayas,is likely to limit future treeline advancement and may even cause treeline decline due to the mortality of the remaining old trees.Together,our findings highlight the role of seasonal snow cover patterns in determining treeline elevation in the eastern Himalayas,which should be considered when assessing the potential for treeline ascent in snow-mediated alpine systems elsewhere. 展开更多
关键词 Eastern Himalayas Global change Permanent snowline seasonal snow cover Treeline elevation
下载PDF
Spatial Distribution and Seasonal Variation of Hypoxic Zone in the Eastern Equatorial Indian Ocean
14
作者 XIE Linping WANG Baodong +5 位作者 XIN Ming WANG Ying SUN Xia WEI Qinsheng LIU Lin YUAN Chao 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第4期918-929,共12页
The spatial distribution and seasonal variations of the hypoxic zone in the eastern equatorial Indian Ocean were investigated using survey data collected from four cruises from 2013 to 2018.Results showed that hypoxic... The spatial distribution and seasonal variations of the hypoxic zone in the eastern equatorial Indian Ocean were investigated using survey data collected from four cruises from 2013 to 2018.Results showed that hypoxic zone occurred all year round in the eastern equatorial Indian Ocean,and it spread southward in the shape of a double tongue at two depths with one at subsurface centered at a depth of 150 m and the other in intermediate water centered at a depth of 800 m.The southward expansion and maximum thickness of the hypoxic zone were greatest in the spring inter-monsoon and least in the summer monsoon.The hypoxic zone originated from the southward expansion of the hypoxic water in the Bay of Bengal and its spatial distribution was driven by southward output flux of mid-deep(100–1000 m)hypoxic water from the Bay of Bengal.The hypoxia southward expansion was blocked near the equator in the subsurface layer,because of mixing with multiple zonal circulations(e.g.,Wyrtki Jets and the equatorial undercurrent),which meant that the hypoxic zone extended over a smaller area than in the intermediate water.These new findings will contribute to an improved understanding of the hypoxic zone and will contribute to circulation research,particularly about intermediate circulation in the eastern equatorial Indian Ocean. 展开更多
关键词 hypoxic zone spatial distribution vertical structure seasonal variation eastern equatorial Indian Ocean
下载PDF
Thinning intensity aff ects carbon sequestration and release in seasonal freeze–thaw areas
15
作者 Tong Gao Xinyu Song +3 位作者 Yunze Ren Hui Liu Hangfeng Qu Xibin Dong 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第4期993-1006,共14页
To explore how to respond to seasonal freeze–thaw cycles on forest ecosystems in the context of climate change through thinning,we assessed the potential impact of thinning intensity on carbon cycle dynamics.By varyi... To explore how to respond to seasonal freeze–thaw cycles on forest ecosystems in the context of climate change through thinning,we assessed the potential impact of thinning intensity on carbon cycle dynamics.By varying the number of temperature cycles,the eff ects of various thinning intensities in four seasons.The rate of mass,litter organic carbon,and soil organic carbon(SOC)loss in response to temperature variations was examined in two degrees of decomposition.The unfrozen season had the highest decomposition rate of litter,followed by the frozen season.Semi-decomposed litter had a higher decomposition rate than undecomposed litter.The decomposition rate of litter was the highest when the thinning intensity was 10%,while the litter and SOC were low.Forest litter had a good carbon sequestration impact in the unfrozen and freeze–thaw seasons,while the converse was confi rmed in the frozen and thaw seasons.The best carbon sequestration impact was identifi ed in litter,and soil layers under a 20–25%thinning intensity,and the infl uence of undecomposed litter on SOC was more noticeable than that of semi-decomposed litter.Both litter and soil can store carbon:however,carbon is transported from undecomposed litter to semi-decomposed litter and to the soil over time.In summary,the best thinning intensity being 20–25%. 展开更多
关键词 Forest carbon cycle seasonal freeze–thaw THINNING Climate change
下载PDF
Seasonal variation of the shape and location of the Luzon cold eddy
16
作者 Ruili Sun Peiliang Li +3 位作者 Yanzhen Gu Chaojie Zhou Cong Liu Lin Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第5期14-24,共11页
Using observational data from multiple satellites,we studied seasonal variations of the shape and location of the Luzon cold eddy(LCE)northwest of Luzon Island.The shape and location of the LCE have obvious seasonal v... Using observational data from multiple satellites,we studied seasonal variations of the shape and location of the Luzon cold eddy(LCE)northwest of Luzon Island.The shape and location of the LCE have obvious seasonal variations.The LCE occurs,develops,and disappears from December to April of the next year.During this period,the shape of the LCE changed from a flat ellipse to a circular ellipse,and the change in shape can be reflected by the increase of the ellipticity of the LCE from 0.16 to 0.82.The latitude of center location of the LCE changes from 17.4°N to 19°N,and the change in latitude can reach 1.6°.Further study showed that seasonal variation of the northeast monsoon intensity leads to the change in the shape and location of the LCE.The seasonal variation of the LCE shape can significantly alter the spatial distribution of the thermal front and chlorophyll a northwest of the Luzon Island by geostrophic advection. 展开更多
关键词 Luzon cold eddy seasonal variation shape and location thermal front chlorophyll a concentration
下载PDF
Progress of MJO Prediction at CMA from Phase I to Phase II of the Sub-Seasonal to Seasonal Prediction Project
17
作者 Junchen YAO Xiangwen LIU +3 位作者 Tongwen WU Jinghui YAN Qiaoping LI Weihua JIE 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第10期1799-1815,共17页
As one of the participants in the Subseasonal to Seasonal(S2S)Prediction Project,the China Meteorological Administration(CMA)has adopted several model versions to participate in the S2S Project.This study evaluates th... As one of the participants in the Subseasonal to Seasonal(S2S)Prediction Project,the China Meteorological Administration(CMA)has adopted several model versions to participate in the S2S Project.This study evaluates the models’capability to simulate and predict the Madden-Julian Oscillation(MJO).Three versions of the Beijing Climate Center Climate System Model(BCC-CSM)are used to conduct historical simulations and re-forecast experiments(referred to as EXP1,EXP1-M,and EXP2,respectively).In simulating MJO characteristics,the newly-developed high-resolution BCC-CSM outperforms its predecessors.In terms of MJO prediction,the useful prediction skill of the MJO index is enhanced from 15 days in EXP1 to 22 days in EXP1-M,and further to 24 days in EXP2.Within the first forecast week,the better initial condition in EXP2 largely contributes to the enhancement of MJO prediction skill.However,during forecast weeks 2–3,EXP2 shows little advantage compared with EXP1-M because the increased skill at MJO initial phases 6–7 is largely offset by the degraded skill at MJO initial phases 2–3.Particularly at initial phases 2–3,EXP1-M skillfully captures the wind field and Kelvin-wave response to MJO convection,leading to the highest prediction skill of the MJO.Our results reveal that,during the participation of the CMA models in the S2S Project,both the improved model initialization and updated model physics played positive roles in improving MJO prediction.Future efforts should focus on improving the model physics to better simulate MJO convection over the Maritime Continent and further improve MJO prediction at long lead times. 展开更多
关键词 Madden-Julian Oscillation(MJO) Subseasonal to seasonal(S2S) prediction skill improvement initial phase
下载PDF
Seasonal Forecasts of Precipitation during the First Rainy Season in South China Based on NUIST-CFS1.0
18
作者 Sinong LI Huiping YAN Jing-Jia LUO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第10期1895-1910,共16页
Current dynamical models experience great difficulties providing reliable seasonal forecasts of regional/local rainfall in South China.This study evaluates seasonal forecast skill for precipitation in the first rainy ... Current dynamical models experience great difficulties providing reliable seasonal forecasts of regional/local rainfall in South China.This study evaluates seasonal forecast skill for precipitation in the first rainy season(FRS,i.e.,April–June)over South China from 1982 to 2020 based on the global real-time Climate Forecast System of Nanjing University of Information Science and Technology(NUIST-CFS1.0,previously known as SINTEX-F).The potential predictability and the practical forecast skill of NUIST-CFS1.0 for FRS precipitation remain low in general.But NUIST-CFS1.0 still performs better than the average of nine international models in terms of correlation coefficient skill in predicting the interannual precipitation anomaly and its related circulation index.NUIST-CFS1.0 captures the anomalous Philippines anticyclone,which transports moisture and heat northward to South China,favoring more precipitation in South China during the FRS.By examining the correlations between sea surface temperature(SST)and FRS precipitation and the Philippines anticyclone,we find that the model reasonably captures SST-associated precipitation and circulation anomalies,which partly explains the predictability of FRS precipitation.A dynamical downscaling model with 30-km resolution forced by the large-scale circulations of the NUIST-CFS1.0 predictions could improve forecasts of the climatological states and extreme precipitation events.Our results also reveal interesting interdecadal changes in the predictive skill for FRS precipitation in South China based on the NUIST-CFS1.0 hindcasts.These results help improve the understanding and forecasts for FRS precipitation in South China. 展开更多
关键词 seasonal forecast of precipitation first rainy season in South China global climate model prediction
下载PDF
Prediction of Seasonal Tropical Cyclone Activity in the NUIST-CFS1.0 Forecast System
19
作者 Ke PENG Jing-Jia LUO Yan LIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第7期1309-1325,共17页
Prediction skill for the seasonal tropical cyclone(TC)activity in the Northern Hemisphere is investigated using the coupled climate forecast system(version 1.0)of Nanjing University of Information Science and Technolo... Prediction skill for the seasonal tropical cyclone(TC)activity in the Northern Hemisphere is investigated using the coupled climate forecast system(version 1.0)of Nanjing University of Information Science and Technology(NUISTCFS1.0).This assessment is based on the seven-month(May to November)hindcasts consisting of nine ensemble members during 1982–2019.The predictions are compared with the Japanese 55-year Reanalysis and observed tropical storms in the Northern Hemisphere.The results show that the overall distributions of the TC genesis and track densities in model hindcasts agree well with the observations,although the seasonal mean TC frequency and accumulated cyclone energy(ACE)are underestimated in all basins due to the low resolution(T106)of the atmospheric component in the model.NUIST-CFS1.0 closely predicts the interannual variations of TC frequency and ACE in the North Atlantic(NA)and eastern North Pacific(ENP),which have a good relationship with indexes based on the sea surface temperature.In the western North Pacific(WNP),NUIST-CFS1.0 can closely capture ACE,which is significantly correlated with the El Ni?o–Southern Oscillation(ENSO),while it has difficulty forecasting the interannual variation of TC frequency in this area.When the WNP is further divided into eastern and western subregions,the model displays improved TC activity forecasting ability.Additionally,it is found that biases in predicted TC genesis locations lead to inaccurately represented TC–environment relationships,which may affect the capability of the model in reproducing the interannual variations of TC activity. 展开更多
关键词 seasonal tropical cyclone activity interannual variation global ocean-atmosphere coupled forecast system
下载PDF
Seasonal acclimatization and temperature acclimation in small passerine birds is achieved via metabolic adjustments
20
作者 Yujie Xuan Yuan Ran Chen +3 位作者 Jieheng Xu Jiacheng Zhou Ming Li Jinsong Liu 《Avian Research》 SCIE CSCD 2023年第1期108-118,共11页
Temperature and other environmental factors play an integral role in the metabolic adjustments of animals and drive a series of morphological,physiological,and behavioral adaptions essential to survival.However,it is ... Temperature and other environmental factors play an integral role in the metabolic adjustments of animals and drive a series of morphological,physiological,and behavioral adaptions essential to survival.However,it is not clear how the capacity of an organism for temperature acclimation translates into seasonal acclimatization to maintain survival.Basal metabolic rate(BMR),evaporative water loss(EWL),and energy budget were measured in the Chinese Hwamei(Garrulax canorus)following winter and summer acclimatization,and in those acclimatized to 15℃(cold)and 35℃(warm)under laboratory conditions for 28 days.In addition to the above indicators,internal organ masses,as well as state 4 respiration and cytochrome c oxidase(COX)activity were also measured for the liver,skeletal muscle,heart,and kidney.Both winter-acclimatized and cold-acclimated birds exhibited significantly higher BMR,EWL,and energy budget,as well as organ masses,state 4 respiration,and COX activity compared with the summer-acclimatized and warm-acclimated birds.This indicated that the Chinese Hwamei could adapt to seasonal or just temperature changes through some physiological and biochemical thermogenic adjustments,which would be beneficial to cope with natural environmental changes.A general linear model showed that body mass,BMR,GEI,state 4 respiration in the liver and kidney,and COX activity in the skeletal muscle,liver,and kidney were significantly affected by temperature and acclimation.A positive correlation was observed between BMR and each of the other parameters(body mass,EWL,energy budget,heart dry mass,kidney dry mass,state 4 respiration)in the muscle,heart,and kidney and also between BMR and COX activity in the muscle and kidney.The results suggested that similar to seasonal acclimatization,Chinese Hwameis subjected to temperature acclimation also exhibited significant differences in metabolism-related physiological and biochemical parameters,depending on the temperature.The data also supported the prediction that metabolic adjustment might be the primary means by which small birds meet the energetic challenges triggered by cold conditions. 展开更多
关键词 Basal metabolic rate Garrulax canorus Laboratory acdlimation seasonalITY TEMPERATURE
下载PDF
上一页 1 2 77 下一页 到第
使用帮助 返回顶部