This paper concerns the calculation of the wave trough exceedance probabilities in a nonlinear sea. The calculations have been carried out by incorporating a second order nonlinear wave model into an asymptotic method...This paper concerns the calculation of the wave trough exceedance probabilities in a nonlinear sea. The calculations have been carried out by incorporating a second order nonlinear wave model into an asymptotic method. This is a new approach for the calculation of the wave trough exceedance probabilities, and, as all of the calculations are performed in the probability domain, avoids the need for long time-domain simulations. The proposed asymptotic method has been applied to calculate the wave trough depth exceedance probabilities of a sea state with the surface elevation data measured at the coast of Yura in the Japan Sea. It is demonstrated that the proposed new method can offer better predictions than the theoretical Rayleigh wave trough depth distribution model. The calculated results by using the proposed new method have been further compared with those obtained by using the Arhan and Plaisted nonlinear distribution model and the Toffoli et al.’s wave trough depth distribution model, and its accuracy has been once again substantiated. The research findings obtained from this study demonstrate that the proposed asymptotic method can be readily utilized in the process of designing various kinds of ocean engineering structures.展开更多
基金financially supported by the funding of an independent research project from the Chinese State Key Laboratory of Ocean Engineering(Grant No.GKZD010038)
文摘This paper concerns the calculation of the wave trough exceedance probabilities in a nonlinear sea. The calculations have been carried out by incorporating a second order nonlinear wave model into an asymptotic method. This is a new approach for the calculation of the wave trough exceedance probabilities, and, as all of the calculations are performed in the probability domain, avoids the need for long time-domain simulations. The proposed asymptotic method has been applied to calculate the wave trough depth exceedance probabilities of a sea state with the surface elevation data measured at the coast of Yura in the Japan Sea. It is demonstrated that the proposed new method can offer better predictions than the theoretical Rayleigh wave trough depth distribution model. The calculated results by using the proposed new method have been further compared with those obtained by using the Arhan and Plaisted nonlinear distribution model and the Toffoli et al.’s wave trough depth distribution model, and its accuracy has been once again substantiated. The research findings obtained from this study demonstrate that the proposed asymptotic method can be readily utilized in the process of designing various kinds of ocean engineering structures.