期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Germplasm resources and secondary metabolism regulation in Reishi mushroom(Ganoderma lucidum)
1
作者 Xinyu He Yiwen Chen +6 位作者 Zhenhao Li Ling Fang Haimin Chen Zongsuo Liang Ann Abozeid Zongqi Yang Dongfeng Yang 《Chinese Herbal Medicines》 CAS 2023年第3期376-382,共7页
Ganoderma lucidum is a valuable medical macrofungus with a myriad of diverse secondary metabolites,in which triterpenoids are the major constituents.This paper introduced the germplasm resources of genus Ganoderma fro... Ganoderma lucidum is a valuable medical macrofungus with a myriad of diverse secondary metabolites,in which triterpenoids are the major constituents.This paper introduced the germplasm resources of genus Ganoderma from textual research,its distribution and identification at the molecular level.Also we overviewed G.lucidum in the components,the biological activities and biosynthetic pathways of ganoderic acid,aiming to provide scientific evidence for the development and utilization of G.lucidum germplasm resources and the biosynthesis of ganoderic acid. 展开更多
关键词 chemical constituents Ganoderma lucidum(Leyss.ex Fr.)Karst. ganoderic acid germplasm resources pharmacological activities secondary metabolism regulation
原文传递
Genetic manipulation and tools in myxobacteria for the exploitation of secondary metabolism
2
作者 Xinjing Yue Duohong Sheng +1 位作者 Li Zhuo Yue-Zhong Li 《Engineering Microbiology》 2023年第2期39-56,共18页
Myxobacteria are famous for their capacity for social behavior and natural product biosynthesis.The unique sociality of myxobacteria is not only an intriguing scientific topic but also the main limiting factor for the... Myxobacteria are famous for their capacity for social behavior and natural product biosynthesis.The unique sociality of myxobacteria is not only an intriguing scientific topic but also the main limiting factor for their ma-nipulation.After more than half a century of research,a series of genetic techniques for myxobacteria have been developed,rendering these mysterious bacteria manipulable.Here,we review the advances in genetic manipu-lation of myxobacteria,with a particular focus on the exploitation of secondary metabolism.We emphasize the necessity and urgency of constructing the myxobacterial chassis for synthetic biology research and the exploita-tion of untapped secondary metabolism. 展开更多
关键词 MYXOBACTERIA Myxococcus xanthus Genetic manipulation secondary metabolism EPOTHILONE
下载PDF
Global regulation of fungal secondary metabolism in Trichoderma reesei by the transcription factor Ypr1,as revealed by transcriptome analysis
3
作者 Jie Yang Jia-Xiang Li +1 位作者 Fei Zhang Xin-Qing Zhao 《Engineering Microbiology》 2023年第2期8-15,共8页
Trichoderma reesei Rut-C-30 is a well-known robust producer of cellulolytic enzymes,which are used to degrade lignocellulosic biomass for the sustainable production of biofuels and biochemicals.However,studies of its ... Trichoderma reesei Rut-C-30 is a well-known robust producer of cellulolytic enzymes,which are used to degrade lignocellulosic biomass for the sustainable production of biofuels and biochemicals.However,studies of its sec-ondary metabolism and regulation remain scarce.Ypr1 was previously described as a regulator of the biosynthesis of the yellow pigment sorbicillin(a bioactive agent with great pharmaceutical interest)in T.reesei and several other fungi.However,the manner in which this regulator affects global gene transcription has not been explored.In this study,we report the effect of Ypr1 on the regulation of both the secondary and primary metabolism of T.reesei Rut-C30.A global gene transcription profile was obtained using a comparative transcriptomic analysis of the wild-type strain T.reesei Rut-C-30 and its ypr1 deletion mutant.The results of this analysis suggest that,in addition to its role in regulating sorbicillin and the major extracellular(hemi)cellulases,Ypr1 also affects the transcription of genes encoding several other secondary metabolites.Although the primary metabolism of T.reeseiΔypr1 became less active compared with that of T.reesei Rut-C-30,several gene clusters involved in its secondary metabolism were activated,such as the gene clusters for the biosynthesis of specific polyketides and non-ribosomal peptides,together with the“sorbicillinoid-cellulase”super cluster,indicating that specific secondary metabolites and cellulases may be co-regulated in T.reesei Rut-C-30.The results presented in this study may benefit the development of genetic engineering strategies for the production of sorbicillin by T.reesei Rut-C-30,and provide insights for enhancing sorbicillin production in other filamentous fungal producers. 展开更多
关键词 Trichoderma reesei Comparative transcriptomic analysis Yellow pigment Sorbicillin Ypr1 Gene cluster for secondary metabolism
下载PDF
Secondary metabolism in simulated microgravity and space flight 被引量:3
4
作者 Hong Gao Zhiheng Liu Lixin Zhang 《Protein & Cell》 SCIE CSCD 2011年第11期858-861,共4页
Space flight experiments have suggested that microgravity can affect cellular processes in microorganisms.To simulate the microgravity environment on earth,several models have been developed and applied to examine the... Space flight experiments have suggested that microgravity can affect cellular processes in microorganisms.To simulate the microgravity environment on earth,several models have been developed and applied to examine the effect of microgravity on secondary metabolism.In this paper,studies of effects of space flight on secondary metabolism are exemplified and reviewed along with the advantages and disadvantages of the current models used for simulating microgravity.This discussion is both significant and timely to researchers considering the use of simulated microgravity or space flight to explore effects of weightlessness on secondary metabolism. 展开更多
关键词 simulated microgravity space flight MICROORGANISM secondary metabolism
原文传递
Sugarcane leaves-derived polyphenols alleviate metabolic syndrome and modulate gut microbiota of ob/ob mice
5
作者 Li Sun Tao Wang +8 位作者 Baosong Chen Cui Guo Shanshan Qiao Jinghan Lin Huan Liao Huanqin Dai Bin Wang Jingzu Sun Hongwei Liu 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期633-648,共16页
Sugarcane leaves-derived polyphenols(SLP)have been demonstrated to have diverse health-promoting benefits,but the mechanism of action has not been fully elucidated.This study aimed to investigate the anti-metabolic di... Sugarcane leaves-derived polyphenols(SLP)have been demonstrated to have diverse health-promoting benefits,but the mechanism of action has not been fully elucidated.This study aimed to investigate the anti-metabolic disease effects of SLP and the underlying mechanisms in mice.In the current study,we prepared the SLP mainly consisting of three flavonoid glycosides,three phenol derivatives,and two lignans including one new compound,and further demonstrated that SLP reduced body weight gain and fat accumulation,improved glucose and lipid metabolism disorders,ameliorated hepatic steatosis,and regulated short-chain fatty acids(SCFAs)production and secondary bile acids metabolism in ob/ob mice.Notably,SLP largely altered the gut microbiota composition,especially enriching the commensal bacteria Akkermansia muciniphila and Bacteroides acidifaciens.Oral gavage with the above two strains ameliorated metabolic syndrome(MetS),regulated secondary bile acid metabolism,and increased the production of SCFAs in high-fat diet(HFD)-induced obese mice.These results demonstrated that SLP could be used as a prebiotic to attenuate MetS via regulating gut microbiota composition and further activating the secondary bile acids-mediated gut-adipose axis. 展开更多
关键词 Sugarcane leaves-derived polyphenols Metabolic syndrome Bacteroides acidifaciens Akkermansia muciniphila secondary bile acids metabolism
下载PDF
Effects of Waterlogging Stress on the Physiological Characteristics and Secondary Metabolites of Herbaceous Peony (<i>Paeonia lactiflora</i>Pall.)
6
作者 Minmin Liu Qingxia Zhang +4 位作者 Jinguang Xu Mingyue Bao Dongliang Zhang Anqi Xie Xia Sun 《American Journal of Plant Sciences》 2021年第4期536-557,共22页
Herbaceous peony is an ornamental plant with medicinal properties. Waterlogging can affect its yield and quality as it grows and matures. In this study, we subjected “Taohuafeixue”, “Yangfeichuyu” and “Hongxiuqiu... Herbaceous peony is an ornamental plant with medicinal properties. Waterlogging can affect its yield and quality as it grows and matures. In this study, we subjected “Taohuafeixue”, “Yangfeichuyu” and “Hongxiuqiu” herbaceous peony varieties to a simulated waterlogging stress treatment and investigated the effects of waterlogging on their physiological characteristics and the secondary metabolite contents in their leaves and roots. Short-term waterlogging caused the leaves to turn yellow or red and the roots to turn black. The stele and the cell wall of the endothelial cells thickened, and the cortical cells enlarged. Waterlogging did not significantly change plant height, leaf length, <span style="font-family:Verdana;">and leaf area;however, it significantly decreased the root-shoot ratio of</span><span style="font-family:Verdana;"> “Yang</span><span style="font-family:Verdana;">feichuyu” and “Hongxiuqiu” varieties. The activity of antioxidant enzymes</span><span style="font-family:Verdana;"> and the content of osmotic regulators increased under waterlogging. After short-</span><span style="font-family:Verdana;">term waterlogging stress treatment, the content of paeoniflorin and albiflorin increased in the roots of “Taohuafeixue” and “Yangfeichuyu”, and the content of benzoylpaeoniflorin increased in the root of “Hongxiuqiu”</span><span style="font-family:Verdana;">.</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> The content of gallic acid and total flavonoids increased in the leaves of “Taohuafeixue” and “Yangfeichuyu”. After the waterlogging, paeoniflorin and benzoylpaeoniflorin increased in the </span><span style="font-family:Verdana;">autumn root of “Hongxiuqiu”.</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">This study expands our knowledge about the medicinal properties of herbaceous peony and informs about its production and cultivation under waterlogged conditions.</span> 展开更多
关键词 Waterlogging Stress secondary metabolism Herbaceous Peony Antioxidant Enzymes Osmotic Regulation MICROSTRUCTURE
下载PDF
Phytochemical Analysis and Bioactivity Screening of Primary and Secondary Metabolic Products of Medicinal Plants in the Valleys of Medina Region Saudi Arabia
7
作者 Safa Alsaedi Ghalia Aljeddani 《Advances in Biological Chemistry》 CAS 2022年第4期92-115,共24页
Medicinal plants are highly valued for their active compounds. These plants can be used in various fields and preservation of these plants in their environment. The present study aimed to screen medicinal plants used ... Medicinal plants are highly valued for their active compounds. These plants can be used in various fields and preservation of these plants in their environment. The present study aimed to screen medicinal plants used in traditional medicine in Medina valleys for the presence of metabolites, and to answer the following question: is the ethnomedicinal importance of medicinal plants used in Medina valleys conform to their primary and secondary metabolite content. Eight plants (Pulicaria incise, Heliotropium arbainense, Commicarpus grandiflorus, Rumex vesicarius, Senna alexandrina, Rhazya stricta, Withania somnifera and Asphodelus fistulosus) were collected from the Medina valleys and were biochemically analyzed to determine the different compounds after leaves extraction analyzed statistically to clarify the content of primary compounds. The chemical compounds in the most active fraction were determined using quantitative phytochemical and gas chromatography-mass spectrometry (GC/MS) analytical methods, comparing the mass spectra of the GC/MS identified compounds with those of the Center of Excellence in Environmental Studies (CEES) database library. The result showed 16 aroma compounds representing the GC/MS analysis revealed the presence of various compounds like 4,4-Dimethyl octane, 5H-1-Pyrindine and 1,3- Cyclopentadiene, 1,2,5,5-tetramethyl- in the ethanolic extract of Pulicaria incisa. The most prevalent plants were Pulicaria incisa, Senna alexandrina and Heliotropium arbainense the study plants have high content of protein. There is a need to focus phytochemical screening on ethnobotanical studies to complete research into traditional medicine which leads to the discovery of new drugs. 展开更多
关键词 C Phytochemical Medicinal Plants GC-MS Analysis Primary and secondary Metabolic
下载PDF
Molecular regulation of the key specialized metabolism pathways in medicinal plants
8
作者 Min Shi Siwei Zhang +3 位作者 Zizhen Zheng Itay Maoz Lei Zhang Guoyin Kai 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2024年第3期510-531,共22页
The basis of modern pharmacology is the human ability to exploit the production of specialized metabolites from medical plants,for example,terpenoids,alkaloids,and phenolic acids.However,in most cases,the availability... The basis of modern pharmacology is the human ability to exploit the production of specialized metabolites from medical plants,for example,terpenoids,alkaloids,and phenolic acids.However,in most cases,the availability of these valuable compounds is limited by cellular or organelle barriers or spatio-temporal accumulation patterns within different plant tissues.Transcription factors(TFs)regulate biosynthesis of these specialized metabolites by tightly controlling the expression of biosynthetic genes.Cutting-edge technologies and/or combining multiple strategies and approaches have been applied to elucidate the role of TFs.In this review,we focus on recent progress in the transcription regulation mechanism of representative high-value products and describe the transcriptional regulatory network,and future perspectives are discussed,which will help develop high-yield plant resources. 展开更多
关键词 BIOSYNTHESIS medicinal plants OMICS secondary metabolism transcription factors
原文传递
Overexpression of IbPAL1 promotes chlorogenic acid biosynthesis in sweetpotato 被引量:5
9
作者 Yang Yu Yingjie Wang +5 位作者 Yue Yu Peiyong Ma Zhaodong Jia Xiaoding Guo Yizhi Xie Xiaofeng Bian 《The Crop Journal》 SCIE CSCD 2021年第1期204-215,共12页
Sweetpotato[Ipomoea batatas(L.)Lam.],a food crop with both nutritional and medicinal uses,plays essential roles in food security and health-promoting.Chlorogenic acid(CGA),a polyphenol displaying several bioactivities... Sweetpotato[Ipomoea batatas(L.)Lam.],a food crop with both nutritional and medicinal uses,plays essential roles in food security and health-promoting.Chlorogenic acid(CGA),a polyphenol displaying several bioactivities,is distributed in all edible parts of sweetpotato.However,little is known about the specific metabolism of CGA in sweetpotato.In this study,IbPAL1,which encodes an endoplasmic reticulum-localized phenylalanine ammonia lyase(PAL),was isolated and characterized in sweetpotato.CGA accumulation was positively associated with the expression pattern of IbPAL1 in a tissue-specific manner,as further demonstrated by overexpression of IbPAL1.Overexpression of IbPAL1 promoted CGA accumulation and biosynthetic pathway genes expression in leaves,stimulated secondary xylem cell expansion in stems,and inhibited storage root formation.Our results support a potential role for IbPAL1 in sweetpotato CGA biosynthesis and establish a theoretical foundation for detailed mechanism research and nutrient improvement in sweetpotato breeding programs. 展开更多
关键词 Chlorogenic acid Phenylalanine ammonia-lyase(PAL) secondary metabolism SWEETPOTATO
下载PDF
Development of fungal cell factories for the production of secondary metabolites:Linking genomics and metabolism 被引量:1
10
作者 Jens Christian Nielsen Jens Nielsen 《Synthetic and Systems Biotechnology》 SCIE 2017年第1期5-12,共8页
The genomic era has revolutionized research on secondary metabolites and bioinformatics methods have in recent years revived the antibiotic discovery process after decades with only few new active molecules being iden... The genomic era has revolutionized research on secondary metabolites and bioinformatics methods have in recent years revived the antibiotic discovery process after decades with only few new active molecules being identified.New computational tools are driven by genomics and metabolomics analysis,and enables rapid identification of novel secondary metabolites.To translate this increased discovery rate into industrial exploitation,it is necessary to integrate secondary metabolite pathways in the metabolic engineering process.In this review,we will describe the novel advances in discovery of secondary metabolites produced by filamentous fungi,highlight the utilization of genome-scale metabolic models(GEMs)in the design of fungal cell factories for the production of secondary metabolites and review strategies for optimizing secondary metabolite production through the construction of high yielding platform cell factories. 展开更多
关键词 secondary metabolism FUNGI Biosynthetic gene clusters Genome mining Metabolic modeling Cell factories
原文传递
Elevated CO2 offsets the alteration of foliar chemicals(n-icosane,geranyl acetate,and elixene)induced by elevated O3 in three taxa of O3-tolerant eucalypts
11
作者 Eka Novriyanti Qiaozhi Mao +3 位作者 Evgenios Agathokleous Makoto Watanabe Yasuyuki Hashidoko Takayoshi Koike 《Journal of Forestry Research》 SCIE CAS CSCD 2021年第2期789-803,共15页
Eucalypts are important forest resources in southwestern China,and may be tolerant to elevated ground-level ozone(O3)concentrations that can negatively affect plant growth.High CO2 may offset O3-induced effects by pro... Eucalypts are important forest resources in southwestern China,and may be tolerant to elevated ground-level ozone(O3)concentrations that can negatively affect plant growth.High CO2 may offset O3-induced effects by providing excess carbon to produce secondary metabolites or by inducing stomatal closure.Here,the effects of elevated CO2 and O3 on leaf secondary metabolites and other defense chemicals were studied by exposing seedlings of Eucalyptus globulus,E.grandis,and E.camaldulensis×E.deglupta to a factorial combination of two levels of O3(<10 nmol mol^(−1)and 60 nmol mol^(−1))and CO2(ambient:370μmol mol^(−1)and 600μmol mol^(−1))in open-top field chambers.GC-profiles of leaf extracts illustrated the effect of elevated O3 and the countering effect of high CO2 on compounds in leaf epicuticular wax and essential oils,i.e.,n-icosane,geranyl acetate and elixene,compounds known as a first-line defense against insect herbivores.n-Icosane may be involved in tolerance mechanisms of E.grandis and the hybrid,while geranyl acetate and elixene in the tolerance of E.globulus.Elevated O3 and CO2,singly or in combination,affected only leaf physiology but not biomass of various organs.Elevated CO2 impacted several leaf traits,including stomatal conductance,leaf mass per area,carbon,lignin,n-icosane,geranyl acetate and elixene.Limited effects of elevated O3 on leaf physiology(nitrogen,n-icosane,geranyl acetate,elixene)were commonly offset by elevated CO2.We conclude that E.globulus,E.grandis and the hybrid were tolerant to these O3 and CO2 treatments,and n-icosane,geranyl acetate and elixene may be major players in tolerance mechanisms of the tested species. 展开更多
关键词 Carbon dioxide Epicuticular wax EUCALYPTS secondary metabolism Tropospheric ozone
下载PDF
2-Oxoglutarate-dependent dioxygenases in plants:biosynthesis,mechanism and evolution
12
作者 Lin Maa Yifeng Zhanga Wei Gao 《Asian Journal of Traditional Medicines》 CAS 2021年第4期240-253,共14页
2-Oxoglutarate(2OG)-dependent dioxygenases(2-ODDs)are omnipresent iron-containing non-heme enzymes that catalyze various oxidation-reduction reactions in plant growth and development,nucleic acid modification and seco... 2-Oxoglutarate(2OG)-dependent dioxygenases(2-ODDs)are omnipresent iron-containing non-heme enzymes that catalyze various oxidation-reduction reactions in plant growth and development,nucleic acid modification and secondary metabolism.We systematically summarized recent research on the oxidative modifications of plant 2-ODDs and related enzymes,their vital importance in the biosynthesis of plant special metabolites,and their catalytic specificity/flexibility,and discussed the potential of 2-ODD as a new approach for the identification of pivotal genes and the elucidation of biosynthetic pathway. 展开更多
关键词 2-oxoglutarate-dependent dioxygenase secondary metabolism flavonoid TERPENOID BIOSYNTHESIS
下载PDF
Efficient Production of δ-Guaiene, an Aroma Sesquiterpene Compound Accumulated in Agarwood, by Mevalonate Pathway-Engineered Escherichia coli Cells
13
作者 Fumiya Kurosaki Takahiro Kato +1 位作者 Norihiko Misawa Futoshi Taura 《Advances in Bioscience and Biotechnology》 2016年第11期435-445,共11页
Mevalonate pathway for isoprenoid biosynthesis was constructed in Escherichia coli cells by the transformation with a gene cluster isolated from Streptomyces sp., and farnesyl diphosphate synthase and δ-guaiene synth... Mevalonate pathway for isoprenoid biosynthesis was constructed in Escherichia coli cells by the transformation with a gene cluster isolated from Streptomyces sp., and farnesyl diphosphate synthase and δ-guaiene synthase genes were coexpressed in this strain. This transformant was capable of liberating an appreciable amount of δ-guaiene, an aroma sesquiterpene compound accumulated in agarwood, and its concentration was elevated to more than 30 μg/ml culture by the incubation with mevalonolactone as an isoprene precursor in a nutrient-enriched Terrific broth. Coexpression of type 1 isopentenyl diphosphate isomerase plus acetoacetyl-CoA ligase genes also enhanced δ-guaiene production, and the concentration of the compound was approximately 38 - 42 μg/ml culture in the presence of mevalonolactone or lithium acetoacetate. These results clearly indicate that mevalonate pathway-engineered E. coli cells showed an appreciable δ-guaiene producing activity in the en- riched medium in the presence of appropriate isoprene precursors. 展开更多
关键词 Engineered Escherichia coli δ-Guaiene Production ISOPRENOIDS Mevalonate Pathway secondary metabolism SESQUITERPENE
下载PDF
Effects of phenolic acids on soil nitrogen mineralization over successive rotations in Chinese fir plantations 被引量:5
14
作者 Long-Chi Chen Xin Guan +3 位作者 Qing-Kui Wang Qing-Peng Yang Wei-Dong Zhang Si-Long Wang 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第1期303-311,共9页
Phenolic acids are secondary metabolites of plants that significantly affect nutrient cycling processes.To investigate such effects,the soil available nitrogen(N)content,phenolic acid content,and net N mineralization ... Phenolic acids are secondary metabolites of plants that significantly affect nutrient cycling processes.To investigate such effects,the soil available nitrogen(N)content,phenolic acid content,and net N mineralization rate in three successive rotations of Chinese fir plantations in subtropical China were investigated.Net N mineralization and nitrification rates in soils treated with phenolic acids were measured in an ex situ experiment.Compared with first-rotation plantations(FCP),the contents of total soil nitrogen and nitrate in second(SCP)-and third-rotation plantations(TCP)decreased,and that of soil ammonium increased.Soil net N mineralization rates in the second-and third-rotation plantations also increased by 17.8%and 39.9%,respectively.In contrast,soil net nitrification rates decreased by 18.0%and 25.0%,respectively.The concentrations of total phenolic acids in the FCP soils(123.22±6.02 nmol g^-1)were 3.0%and 17.9%higher than in the SCP(119.68±11.69 nmol g^-1)and TCP(104.51±8.57 nmol g^-1,respectively).The total content of phenolic acids was significantly correlated with the rates of net soil N mineralization and net nitrification.The ex situ experiment showed that the net N mineralization rates in soils treated with high(HCPA,0.07 mg N kg^-1 day^-1)and low(LCPA,0.18 mg N kg^-1 day^-1)concentrations of phenolic acids significantly decreased by 78.6%and 42.6%,respectively,comparing with that in control(0.32 mg N kg^-1 day^-1).Soil net nitrification rates under HCPA and LCPA were significantly higher than that of the control.The results suggested that low contents of phenolic acids in soil over successive rotations increased soil net N mineralization rates and decreased net nitrification rates,leading to consequent reductions in the nitrate content and enhancement of the ammonium content,then resulting in enhancing the conservation of soil N of successive rotations in Chinese fir plantation. 展开更多
关键词 secondary metabolics Nitrogen cycle Chinese fir VANILLIN Vanillic acid q-Hydroxybenzoicacid
下载PDF
General and specialized tyrosine metabolism pathways in plants 被引量:5
15
作者 Jing-Jing Xu Xin Fang +2 位作者 Chen-Yi Li Lei Yang Xiao-Ya Chen 《aBIOTECH》 2020年第2期97-105,共9页
The tyrosine metabolism pathway serves as a starting point for the production of a variety of structurally diverse natural compounds in plants,such as tocopherols,plastoquinone,ubiquinone,betalains,salidroside,benzyli... The tyrosine metabolism pathway serves as a starting point for the production of a variety of structurally diverse natural compounds in plants,such as tocopherols,plastoquinone,ubiquinone,betalains,salidroside,benzylisoquinoline alkaloids,and so on.Among these,tyrosine-derived metabolites,tocopherols,plastoquinone,and ubiquinone are essential to plant survival.In addition,this pathway provides us essential micronutrients(e.g.,vitamin E and ubiquinone)and medicine(e.g.,morphine,salidroside,and salvianolic acid B).However,our knowledge of the plant tyrosine metabolism pathway remains rudimentary,and genes encoding the pathway enzymes have not been fully defined.In this review,we summarize and discuss recent advances in the tyrosine metabolism pathway,key enzymes,and important tyrosine-derived metabolites in plants. 展开更多
关键词 TYROSINE Tyrosine-derived metabolites secondary metabolism PLANTS
原文传递
Phytohormones Jasmonic Acid,Salicylic Acid,Gibberellins,and Abscisic Acid are Key Mediators of Plant Secondary Metabolites 被引量:1
16
作者 Zong-You Lv Wen-Jing Sun +4 位作者 Rui Jiang Jun-Feng Chen Xiao Ying Lei Zhang Wan-Sheng Chen 《World Journal of Traditional Chinese Medicine》 2021年第3期307-325,共19页
Until recently,many studies on the role of phytohormones in plant secondary metabolism focused on jasmonic acid(JA),salicylic acid(SA),gibberellins(GA),and abscisic acid(ABA).It is now clear that phytohormone?induced ... Until recently,many studies on the role of phytohormones in plant secondary metabolism focused on jasmonic acid(JA),salicylic acid(SA),gibberellins(GA),and abscisic acid(ABA).It is now clear that phytohormone?induced regulation of signaling occurs via regulation of the biosynthetic pathway genes at the transcriptional level or through posttranslational regulation,or an increase in secondary metabolite deposition(e.g.,trichomes).Here,we summarize recent advances,updating the current reports on the molecular machinery of phytohormones JA,SA,GA,and ABA involved in plant secondary metabolites.This review emphasizes the differences and similarities among the four phytohormones in regulating various secondary metabolic biosynthetic pathways and also provides suggestions for further research. 展开更多
关键词 Abscisic acid GIBBERELLINS jasmonic acid salicylic acid secondary metabolism
原文传递
Variation of photosynthesis,secondary metabolites and antioxidant activities in third generation of spaceflight-induced Salvia miltiorrhiza
17
作者 Liang Peng Mei Ru Zongsuo Liang 《Chinese Herbal Medicines》 CAS 2022年第4期592-601,共10页
Objective: Spaceflight has long been perceived as an effective way to improve the quantity and quality of plants with wide applications. In order to obtain stable and inheritable descendants of spaceflightinduced Salv... Objective: Spaceflight has long been perceived as an effective way to improve the quantity and quality of plants with wide applications. In order to obtain stable and inheritable descendants of spaceflightinduced Salvia miltiorrhiza lines, we investigated and analyzed four lines m16, m50, m51, m57(three individuals of each line) and the ground control(three individuals) of the third generation of spaceflight-induced S. miltiorrhiza from primary/secondary metabolism and antioxidative abilities.Methods: A portable photosynthesis system(Li-6400) with red/blue LED light source was used to perform the photosynthetic characteristics to evaluate their primary productivity. The secondary metabolites(phenolic acids, tanshinones, total phenolics and flavonoids) and antioxidant activity of roots were analyzed to assess their quality.Results: Compared with control, line m16 presented weak photosynthetic ability, but high apparent quantum yield(AQY), higher contents of secondary metabolites, and stronger antioxidative abilities.Line m57 had a strong gas exchange ability, relatively higher secondary metabolites contents, and ascending antioxidative abilities. Lines m50 and m51 were in the middle level of lines m16 and m57.The principal component analysis for all the original data revealed three components including a rootrelated index, a leaf-related index, and a CO_(2) response parameter could be used to distinguish spaceflight-induced S. miltiorrhiza lines.Conclusion: Line m57 could be an appropriate material for the investigation of targeted breeding towards high production, and line m16 could be used to identify essential genes and unravel sophisticated pathways underlying the secondary metabolisms. 展开更多
关键词 antioxidative ability Salvia miltiorrhiza Bge. secondary metabolism SPACEFLIGHT third generation primary metabolism
原文传递
OpNAC1 transcription factor regulates the biosynthesis of the anticancer drug camptothecin by targeting loganic acid O-methyltransferase in Ophiorrhiza pumila
18
作者 Xiaolong Hao Can Wang +10 位作者 Wei Zhou Qingyan Ruan Chenhong Xie Yinkai Yang Chengyu Xiao Yan Cai Jingyi Wang Yao Wang Xuebin Zhang Itay Maoz Guoyin Kai 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2023年第1期133-149,共17页
Camptothecin(CPT) is an anticancer pentacyclic quinoline alkaloid widely used to treat cancer patients worldwide. However, the biosynthetic pathway and transcriptional regulation of camptothecin are largely unknown. O... Camptothecin(CPT) is an anticancer pentacyclic quinoline alkaloid widely used to treat cancer patients worldwide. However, the biosynthetic pathway and transcriptional regulation of camptothecin are largely unknown. Ophiorrhiza pumila, the herbaceous plant from the Rubiaceae family, has emerged as a model plant for studying camptothecin biosynthesis and regulation. In this study, a high-quality reference genome of O. pumila with estimated size of ~456.90Mb was reported, and the accumulation level of camptothecin in roots was higher than that in stems and leaves. Based on its spatial distribution in the plant, we examined gene functions and expression by combining genomics with transcriptomic analysis.Two loganic acid O-methyltransferase(OpLAMTs)were identified in strictosidine-producing plant O.pumila, and enzyme catalysis assays showed that OpLAMT1 and not OpLAMT2 could convert loganic acid into loganin. Further knock-out of OpL AMT1expression led to the elimination of loganin and camptothecin accumulation in O. pumila hairy roots.Four key residues were identified in OpLAMT1 protein crucial for the catalytic activity of loganic acid to loganin. By co-expression network, we identified a NAC transcription factor, OpNAC1, as a candidate gene for regulating camptothecin biosynthesis.Transgenic hairy roots and biochemical assays demonstrated that OpNAC1 suppressed OpLAMT1 expression. Here, we reported on two camptothecin metabolic engineering strategies paving the road for industrial-scale production of camptothecin in CPT-producing plants. 展开更多
关键词 camptothecin biosynthesis metabolic engineering strategies Ophiorrhiza pumila plant secondary metabolism transcriptional regulation
原文传递
Mass spectrometry imaging and single-cell transcriptional profiling reveal the tissue-specific regulation of bioactive ingredient biosynthesis in Taxus leaves
19
作者 Xiaori Zhan Tian Qiu +13 位作者 Hongshan Zhang Kailin Hou Xueshuang Liang Cheng Chen Zhijing Wang Qicong Wu Xiaojia Wang Xiao-lin Li Mingshuang Wang Shangguo Feng Houqing Zeng Chunna Yu Huizhong Wang Chenjia Shen 《Plant Communications》 SCIE CSCD 2023年第5期29-45,共17页
Taxus leaves provide the raw industrial materials for taxol,a natural antineoplastic drug widely used in the treatment of various cancers.However,the precise distribution,biosynthesis,and transcriptional regulation of... Taxus leaves provide the raw industrial materials for taxol,a natural antineoplastic drug widely used in the treatment of various cancers.However,the precise distribution,biosynthesis,and transcriptional regulation of taxoids and other active components in Taxus leaves remain unknown.Matrix-assisted laser desorption/ionization–mass spectrometry imaging analysis was used to visualize various secondary metabolites in leaf sections of Taxus mairei,confirming the tissue-specific accumulation of different active metabolites.Single-cell sequencing was used to produce expression profiles of 8846 cells,with a median of 2352 genes per cell.Based on a series of cluster-specific markers,cells were grouped into 15 clusters,suggesting a high degree of cell heterogeneity in T.mairei leaves.Our data were used to create the first Taxus leaf metabolic single-cell atlas and to reveal spatial and temporal expression patterns of several secondary metabolic pathways.According to the cell-type annotation,most taxol biosynthesis genes are expressed mainly in leaf mesophyll cells;phenolic acid and flavonoid biosynthesis genes are highly expressed in leaf epidermal cells(including the stomatal complex and guard cells);and terpenoid and steroid biosynthesis genes are expressed specifically in leaf mesophyll cells.A number of novel and cell-specific transcription factors involved in secondary metabolite biosynthesis were identified,including MYB17,WRKY12,WRKY31,ERF13,GT_2,and bHLH46.Our research establishes the transcriptional landscape of major cell types in T.mairei leaves at a single-cell resolution and provides valuable resources for studying the basic principles of cell-type-specific regulation of secondary metabolism. 展开更多
关键词 scRNA-seq taxol biosynthesis Taxus mairei secondary metabolism transcription regulation
原文传递
Exploiting Natural Variation in Tomato to Define Pathway Structure and Metabolic Regulation of Fruit Polyphenolics in the Lycopersicum Complex 被引量:4
20
作者 Takayuki Tohge Federico Scossa +13 位作者 Regina Wendenburg Pierre Frasse llse Balbo Mutsumi Watanabe Saleh Alseekh Sagar Sudam Jadhav Jay C.Delfin Marc Lohse Patrick Giavalisco Bjoern Usadel Youjun Zhang Jie Luo Mondher Bouzayen Alisdair R.Fernie 《Molecular Plant》 SCIE CAS CSCD 2020年第7期1027-1046,共20页
While the structures of plant primary metabolic pathways are generally well defined and highly conserved across species,those defining specialized metabolism are less well characterized and more highly variable across... While the structures of plant primary metabolic pathways are generally well defined and highly conserved across species,those defining specialized metabolism are less well characterized and more highly variable across species.In this study,we investigated polyphenolic metabolism in the lycopersicum complex by characterizing the underlying biosynthetic and decorative reactions that constitute the metabolic network of polyphenols across eight different species of tomato.For this purpose,GC-MS-and LC-MS-based metabolomics of different tissues of Solatium lycopersicum and wild tomato species were carried out,in concert with the evaluation of cross-hybridized microarray data for MapMan-based transcriptomic analysis,and publicly available RNA-sequencing data for annotation of biosynthetic genes.The combined data were used to compile species-specific metabolic networks of polyphenolic metabolism,allowing the establishment of an entire pan-species biosynthetic framework as well as annotation of the functions of decoration enzymes involved in the formation of metabolic diversity of the flavonoid pathway.The combined results are discussed in the context of the current understanding of tomato flavonol biosynthesis as well as a global view of metabolic shifts during fruit ripening.Our results provide an example as to how large-scale biology approaches can be used for the definition and refinement of large specialized metabolism pathways. 展开更多
关键词 Solanumly copersicum secondary metabolism natural diversity wild accessions pathway elucidation gene discovery
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部