According to the measured data after impoundment and operation of the Three Gorges Reservoir,the reservoir sediment deposition and downstream river channel scouring are described briefly and compared with the research...According to the measured data after impoundment and operation of the Three Gorges Reservoir,the reservoir sediment deposition and downstream river channel scouring are described briefly and compared with the research results achieved in the demonstration stage.It is indicated through analysis that the reservoir sediment deposition and downstream river channel scouring during 8-year impoundment and operation are still within the original forecast,so the original forecasting results are feasible.The further observation and comparison should be conducted because the comparison between the observed data and the original forecast is not so sufficient in time and the prototype observation and related research work should be strengthened in the future.展开更多
The phenomenon of aggradation due to sediment accumulation upstream reservoirs had been studied in this research. For this purpose, groups of experiments were conducted in a laboratory with 25 m long, 0.80 m wide and ...The phenomenon of aggradation due to sediment accumulation upstream reservoirs had been studied in this research. For this purpose, groups of experiments were conducted in a laboratory with 25 m long, 0.80 m wide and 0.70 m deep channel. A block was built at the end of the channel to work as a dam to impound water. The channel was supplied with drainage pipes on both sides to release water out in a manner similar to what happens in reservoirs. The bed of the channel was filled with sand of 0.80 mm median sieve diameter and 0.72 geometric standard deviation. The slope was 0.0093 for all experiments. Two sizes of sand were used representing the sediment. The median diameter and geometric standard deviation of the first were 0.365 mm and 0.46 mm, respectively. The second sample had 0.65 mm median diameter and 0.67 standard deviation. A total of 70 experiments were conducted in two groups to examine effects of sediment transport rate, particle size of sediment and flow velocity on aggradation characteristics. The results showed that there was a strong linear direct relationship between aggradation elements (length and depth) with the rate of sediment transport. Groups of dimensionless parameters affecting the aggradation characteristics were used to develop empirical equations to predict the length, maximum depth of aggradation and predict transient bed profile. The results of empirical approach were compared with the measurement data and previous numerical method. The results indicated that the percentage error was 19% to 31% for length of aggradation and -21% to 26% for maximum depth of aggradation. The results also showed that the sediment materials were deposited closer to the body of the dam when the released water from the dam is higher than the inflow.展开更多
Soil erosion and associated off-site sedimentation are threatening the sustainable use of the Three Gorges Dam. To initiate management intervention to reduce sediment yields, there is an increasing need for reliable i...Soil erosion and associated off-site sedimentation are threatening the sustainable use of the Three Gorges Dam. To initiate management intervention to reduce sediment yields, there is an increasing need for reliable information on soil erosion in the Three Gorges Reservoir Region (TGRR). The purpose of this study is to use 137Cs tracing methods to construct a sediment budget for a small agricultural catchment in the TGRR. Cores were taken from a pond and from paddy fields, for laTCs measurements. The results show that the average sedimentation rate in the pond since 1963 is 1.50 g cm-2 yr-1 and the corresponding amount of sediment deposited is 1,553 t. The surface erosion rate for the sloping cultivated lands and the sedimentation rate in the paddy fields were estimated to be 3,770 t km-2 yr-1 and 2,600 t km-2 yr^1 respectively. Based on the estimated erosion and deposition rates, and the area of each unit, the post 197o sediment budget for the catchment has been constructed. A sediment delivery ratio of 0.5 has been estimated for the past 42 years. The data indicate that the sloping cultivated lands are the primary sediment source areas, and that the paddy fields are deposition zones. The typical land use pattern (with the upper parts characterized by sloping cultivated land and the lower parts by paddy fields) plays an important role in reducing sediment yield from agricultural catchments in the TGRR. A 137Cs profile for the sediment deposited in a pond is shownto provide an effective means of estimating the land surface erosion rate in the upstream catchment.展开更多
As there are many heavily sedimentladen rivers in China, with high sediment concentration and a large quantity of sediment load, the sedimentation problems of the reservoirs built on those rivers are so serious that t...As there are many heavily sedimentladen rivers in China, with high sediment concentration and a large quantity of sediment load, the sedimentation problems of the reservoirs built on those rivers are so serious that the amount of sediment deposited in the reservoirs is great and the rate of sedimentation is accelerated. According to the statistics, up to the end of 1981, a total amount of 11.5×109m3 of sediment were accumulated in those reservoirs, i.e. 14.2% of the total designed capacity were lost. The average annual loss in storage capacity reached 2.3 percent, being the highest in the world. Silting of impounding lakes not only has an effect on the benefits of the reservoirs and seriously threatens the life of reservoirs, but also results in many environmental problems which were not fully estimated in the planning of the reservoirs. In this paper, the situation of reservoir deposition in China are described from the following aspects: 1) the characteristics of hydrology and sediment of the rivers; 2) the seriousness of reservoir sedimentation in China; 3) problems caused by reservoir deposition; 4) the methods of minimizing sediment deposition, etc.展开更多
Plain reservoirs are shallow, and have low dams and widespread water surfaces.Therefore, wind-wave-induced damage to the dam is one of the important factors affecting the safety of the reservoir.To improve upon unsati...Plain reservoirs are shallow, and have low dams and widespread water surfaces.Therefore, wind-wave-induced damage to the dam is one of the important factors affecting the safety of the reservoir.To improve upon unsatisfactory plain reservoir wave-clipping schemes, a numerical method is proposed to predict and analyze waves in the reservoir in the presence of artificial islands, constructed from dredged sediment.The MIKE21 SW model is applied to a specific plain reservoir for finding the optimal artificial island parameters.The simulated wave height attenuation results are seen to agree well with empirically predicted values.Thus, the validity and reliability of the numerical model are established.Artificial islands at suitable locations in the reservoir can attenuate the wave heights by approximately 10%e30%, which justifies the efficacy of the clipping scheme making use of dredging and island construction.展开更多
In this preliminary study, it is shown that for a reservoir on a river of rich runoff like the Yangtze of a rich runoff, an elaborate scheme of sediment management may be devised to substantially reduce the reservoir ...In this preliminary study, it is shown that for a reservoir on a river of rich runoff like the Yangtze of a rich runoff, an elaborate scheme of sediment management may be devised to substantially reduce the reservoir deposition. The mathematical model applied in this investigation has been fairly well verified with the long term field data on the sediment transport by an unsteady flow in the lower Yellow River. In view of the importance of TGP, however, a further investigation with physical models and mathematical models of other versions is planned. Great financial benefits are involved.展开更多
According to variations of 137Cs and clay contents, 44 flood couplets were identified in a profile of res- ervoir deposit with a vertical length of 28.12 m in the Yuntaishan Gully. Couplet 27 at the middle of the prof...According to variations of 137Cs and clay contents, 44 flood couplets were identified in a profile of res- ervoir deposit with a vertical length of 28.12 m in the Yuntaishan Gully. Couplet 27 at the middle of the profile had the highest average 137Cs content of 12.65 Bq·kg?1, which indicated the 1963s' deposits, then 137Cs content decreased both downward and upward in the profile. The second top and bottom couplets had average 137Cs contents of 2.15 Bq·kg?1 and 0.92 Bq·kg?1, respectively. By integrated analysis of reservoir construction and management history, variations of 137Cs contents over the profile, sediment yields of flood couplets and rainfall data during the period of 1958-1970, individual storms related to the flood couplets were identified. 44 floods with a total sediment yield of 2.36×104 m3 occurred and flood events in a year varied between 1 and 10 times during the period of 1960-1970. 7-10 flood events occurred during the wet period of 1961-1964 with very wet autumn, while only 1-2 events during the dry period of 1965-1969. Average annual specific sediment yield was 1.29×104 t·km?2·a?1 for the Yuntaishan Gully during the period of 1960-1970, which was slightly higher than 1.11 ×104 t·km?2·a?1 for the Upper Yanhe River Basin above the Ganguyi Hydrological Station and slightly lower than 1.40 ×104 t·km?2·a?1 for the nearby Zhifang Gully during the same period. Annual specific sediment yields for the Yuntaishan Gully were correlated to the wet season's rainfalls well.展开更多
There are many sediment trapping reservoirs in the Hill Loess Plateau.The Huangtuwa small catchment is selected as a research field where samples were collected in a sediment deposit profile with a vertical length of ...There are many sediment trapping reservoirs in the Hill Loess Plateau.The Huangtuwa small catchment is selected as a research field where samples were collected in a sediment deposit profile with a vertical length of 12.73 m.By the variation of fine particle content and pollen concentration,54 flood couples were identified.Taking the freeze-thawing disturbed texture as the sign of the latest flood couple in a year,it is ascertained that those 54 floods should happen in 31 years.Using pyramid volume calculation formula,the sediment yields of flood ranged between 716―30376 t·km-2.The average sediment yield was 7106 t·km-2.The annual sediment yields varied between 968―55579 t·(km2·a) -1,and the average value is 12629 t·(km2·a) -1.Compared with the modern annual sediment discharge of the Huaining River,the erosion rate in the Huangtuwa region 450 years ago was similar to the modern erosion rate.In the period from the 27th year to the 31st year,the average annual sediment yield increased sharply to 31309 t·(km2·a) -1.It implied that re-reclamation of the abandoned land in the catchment since the landslide disaster,where vegetation had rehabilitated already,caused very severe soil erosion in the catchment.展开更多
基金support from the Technology Pillar Program during the"Eleventh Five-year Plan"Period (No.2006BAB05B02No.2006BAB05B03) are acknowledged
文摘According to the measured data after impoundment and operation of the Three Gorges Reservoir,the reservoir sediment deposition and downstream river channel scouring are described briefly and compared with the research results achieved in the demonstration stage.It is indicated through analysis that the reservoir sediment deposition and downstream river channel scouring during 8-year impoundment and operation are still within the original forecast,so the original forecasting results are feasible.The further observation and comparison should be conducted because the comparison between the observed data and the original forecast is not so sufficient in time and the prototype observation and related research work should be strengthened in the future.
文摘The phenomenon of aggradation due to sediment accumulation upstream reservoirs had been studied in this research. For this purpose, groups of experiments were conducted in a laboratory with 25 m long, 0.80 m wide and 0.70 m deep channel. A block was built at the end of the channel to work as a dam to impound water. The channel was supplied with drainage pipes on both sides to release water out in a manner similar to what happens in reservoirs. The bed of the channel was filled with sand of 0.80 mm median sieve diameter and 0.72 geometric standard deviation. The slope was 0.0093 for all experiments. Two sizes of sand were used representing the sediment. The median diameter and geometric standard deviation of the first were 0.365 mm and 0.46 mm, respectively. The second sample had 0.65 mm median diameter and 0.67 standard deviation. A total of 70 experiments were conducted in two groups to examine effects of sediment transport rate, particle size of sediment and flow velocity on aggradation characteristics. The results showed that there was a strong linear direct relationship between aggradation elements (length and depth) with the rate of sediment transport. Groups of dimensionless parameters affecting the aggradation characteristics were used to develop empirical equations to predict the length, maximum depth of aggradation and predict transient bed profile. The results of empirical approach were compared with the measurement data and previous numerical method. The results indicated that the percentage error was 19% to 31% for length of aggradation and -21% to 26% for maximum depth of aggradation. The results also showed that the sediment materials were deposited closer to the body of the dam when the released water from the dam is higher than the inflow.
基金funded by National Key Technology R&D Program (Grant No.2011BAD31B03)the Action Plan for West Development of Chinese Academy of Sciences(Grant No. KZCX2-XB3-09)+1 种基金the National Natural Science Foundation of China (Grant Nos.41201275,41101259,41001163)Western Light-Western Doctor of CAS
文摘Soil erosion and associated off-site sedimentation are threatening the sustainable use of the Three Gorges Dam. To initiate management intervention to reduce sediment yields, there is an increasing need for reliable information on soil erosion in the Three Gorges Reservoir Region (TGRR). The purpose of this study is to use 137Cs tracing methods to construct a sediment budget for a small agricultural catchment in the TGRR. Cores were taken from a pond and from paddy fields, for laTCs measurements. The results show that the average sedimentation rate in the pond since 1963 is 1.50 g cm-2 yr-1 and the corresponding amount of sediment deposited is 1,553 t. The surface erosion rate for the sloping cultivated lands and the sedimentation rate in the paddy fields were estimated to be 3,770 t km-2 yr-1 and 2,600 t km-2 yr^1 respectively. Based on the estimated erosion and deposition rates, and the area of each unit, the post 197o sediment budget for the catchment has been constructed. A sediment delivery ratio of 0.5 has been estimated for the past 42 years. The data indicate that the sloping cultivated lands are the primary sediment source areas, and that the paddy fields are deposition zones. The typical land use pattern (with the upper parts characterized by sloping cultivated land and the lower parts by paddy fields) plays an important role in reducing sediment yield from agricultural catchments in the TGRR. A 137Cs profile for the sediment deposited in a pond is shownto provide an effective means of estimating the land surface erosion rate in the upstream catchment.
文摘As there are many heavily sedimentladen rivers in China, with high sediment concentration and a large quantity of sediment load, the sedimentation problems of the reservoirs built on those rivers are so serious that the amount of sediment deposited in the reservoirs is great and the rate of sedimentation is accelerated. According to the statistics, up to the end of 1981, a total amount of 11.5×109m3 of sediment were accumulated in those reservoirs, i.e. 14.2% of the total designed capacity were lost. The average annual loss in storage capacity reached 2.3 percent, being the highest in the world. Silting of impounding lakes not only has an effect on the benefits of the reservoirs and seriously threatens the life of reservoirs, but also results in many environmental problems which were not fully estimated in the planning of the reservoirs. In this paper, the situation of reservoir deposition in China are described from the following aspects: 1) the characteristics of hydrology and sediment of the rivers; 2) the seriousness of reservoir sedimentation in China; 3) problems caused by reservoir deposition; 4) the methods of minimizing sediment deposition, etc.
基金supported by the National Key Research and Development Program of China(Grants No.2016YFC0401603,2016YFC0401605,and 2016YFC0401607)the Central Public-interest Scientific Institution Basal Research Fund(Grants No.Y717012 and Y718007)
文摘Plain reservoirs are shallow, and have low dams and widespread water surfaces.Therefore, wind-wave-induced damage to the dam is one of the important factors affecting the safety of the reservoir.To improve upon unsatisfactory plain reservoir wave-clipping schemes, a numerical method is proposed to predict and analyze waves in the reservoir in the presence of artificial islands, constructed from dredged sediment.The MIKE21 SW model is applied to a specific plain reservoir for finding the optimal artificial island parameters.The simulated wave height attenuation results are seen to agree well with empirically predicted values.Thus, the validity and reliability of the numerical model are established.Artificial islands at suitable locations in the reservoir can attenuate the wave heights by approximately 10%e30%, which justifies the efficacy of the clipping scheme making use of dredging and island construction.
文摘In this preliminary study, it is shown that for a reservoir on a river of rich runoff like the Yangtze of a rich runoff, an elaborate scheme of sediment management may be devised to substantially reduce the reservoir deposition. The mathematical model applied in this investigation has been fairly well verified with the long term field data on the sediment transport by an unsteady flow in the lower Yellow River. In view of the importance of TGP, however, a further investigation with physical models and mathematical models of other versions is planned. Great financial benefits are involved.
基金Supported by CAS(Grant No.KZCX3-SW 422)NNSF(Grant Nos.90502002,40271015)+1 种基金ISWC(B105101-109)IAEA(12322/RO)
文摘According to variations of 137Cs and clay contents, 44 flood couplets were identified in a profile of res- ervoir deposit with a vertical length of 28.12 m in the Yuntaishan Gully. Couplet 27 at the middle of the profile had the highest average 137Cs content of 12.65 Bq·kg?1, which indicated the 1963s' deposits, then 137Cs content decreased both downward and upward in the profile. The second top and bottom couplets had average 137Cs contents of 2.15 Bq·kg?1 and 0.92 Bq·kg?1, respectively. By integrated analysis of reservoir construction and management history, variations of 137Cs contents over the profile, sediment yields of flood couplets and rainfall data during the period of 1958-1970, individual storms related to the flood couplets were identified. 44 floods with a total sediment yield of 2.36×104 m3 occurred and flood events in a year varied between 1 and 10 times during the period of 1960-1970. 7-10 flood events occurred during the wet period of 1961-1964 with very wet autumn, while only 1-2 events during the dry period of 1965-1969. Average annual specific sediment yield was 1.29×104 t·km?2·a?1 for the Yuntaishan Gully during the period of 1960-1970, which was slightly higher than 1.11 ×104 t·km?2·a?1 for the Upper Yanhe River Basin above the Ganguyi Hydrological Station and slightly lower than 1.40 ×104 t·km?2·a?1 for the nearby Zhifang Gully during the same period. Annual specific sediment yields for the Yuntaishan Gully were correlated to the wet season's rainfalls well.
基金Supported by National Natural Science Foundation of China (Grant Nos. 90502002 and 40671120)
文摘There are many sediment trapping reservoirs in the Hill Loess Plateau.The Huangtuwa small catchment is selected as a research field where samples were collected in a sediment deposit profile with a vertical length of 12.73 m.By the variation of fine particle content and pollen concentration,54 flood couples were identified.Taking the freeze-thawing disturbed texture as the sign of the latest flood couple in a year,it is ascertained that those 54 floods should happen in 31 years.Using pyramid volume calculation formula,the sediment yields of flood ranged between 716―30376 t·km-2.The average sediment yield was 7106 t·km-2.The annual sediment yields varied between 968―55579 t·(km2·a) -1,and the average value is 12629 t·(km2·a) -1.Compared with the modern annual sediment discharge of the Huaining River,the erosion rate in the Huangtuwa region 450 years ago was similar to the modern erosion rate.In the period from the 27th year to the 31st year,the average annual sediment yield increased sharply to 31309 t·(km2·a) -1.It implied that re-reclamation of the abandoned land in the catchment since the landslide disaster,where vegetation had rehabilitated already,caused very severe soil erosion in the catchment.