期刊文献+
共找到57,506篇文章
< 1 2 250 >
每页显示 20 50 100
Pectin methylesterase inhibitors GhPMEI53 and AtPMEI19 improve seed germination by modulating cell wall plasticity in cotton and Arabidopsis 被引量:2
1
作者 Yayue Pei Yakong Wang +7 位作者 Zhenzhen Wei Ji Liu Yonghui Li Shuya Ma Ye Wang Fuguang Li Jun Peng Zhi Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第10期3487-3505,共19页
The germination process of seeds is influenced by the interplay between two opposing factors,pectin methylesterase(PME)and pectin methylesterase inhibitor(PMEI),which collectively regulate patterns of pectin methylest... The germination process of seeds is influenced by the interplay between two opposing factors,pectin methylesterase(PME)and pectin methylesterase inhibitor(PMEI),which collectively regulate patterns of pectin methylesterification.Despite the recognized importance of pectin methylesterification in seed germination,the specific mechanisms that govern this process remain unclear.In this study,we demonstrated that the overexpression of GhPMEI53is associated with a decrease in PME activity and an increase in pectin methylesterification.This leads to seed cell wall softening,which positively regulates cotton seed germination.AtPMEI19,the homologue in Arabidopsis thaliana,plays a similar role in seed germination to GhPMEI53,indicating a conserved function and mechanism of PMEI in seed germination regulation.Further studies revealed that GhPMEI53 and AtPMEI19 directly contribute to promoting radicle protrusion and seed germination by inducing cell wall softening and reducing mechanical strength.Additionally,the pathways of abscicic acid(ABA)and gibberellin(GA)in the transgenic materials showed significant changes,suggesting that GhPMEI53/AtPMEI19-mediated pectin methylesterification serves as a regulatory signal for the related phytohormones involved in seed germination.In summary,GhPMEI53 and its homologs alter the mechanical properties of cell walls,which influence the mechanical resistance of the endosperm or testa.Moreover,they impact cellular phytohormone pathways(e.g.,ABA and GA)to regulate seed germination.These findings enhance our understanding of pectin methylesterification in cellular morphological dynamics and signaling transduction,and contribute to a more comprehensive understanding of the PME/PMEI gene superfamily in plants. 展开更多
关键词 COTTON seed germination cell wall pectin demethylesterification PMEI ABA
下载PDF
The structure-directing role of heterologous seeds in the synthesis of zeolite 被引量:2
2
作者 Haoyang Zhang Binyu Wang Wenfu Yan 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期792-801,共10页
Zeolites have been widely used as catalysts,ion-exchangers,and adsorbents in chemical industries,detergent industry,steel industry,glass industry,ceramic industry,medical and healthfield,and environmentalfield,and recen... Zeolites have been widely used as catalysts,ion-exchangers,and adsorbents in chemical industries,detergent industry,steel industry,glass industry,ceramic industry,medical and healthfield,and environmentalfield,and recently applied in energy storage.Seed-assisted synthesis is a very effective approach in promoting the crystallization of zeolites.In some cases,the target zeolite cannot be formed in the absence of seed zeolite.In homologous seed-assisted synthesis,the structure of the seed zeolite is the same to that of the target zeolite,while the structure of the seed zeolite is different to that of the target zeolite in the heterologous seed-assisted synthesis.In this review,we briefly summarized the heterologous seed-assisted syntheses of zeolites and analyzed the structure-directing effect of heterologous seeds and surveyed the“common composite building units(CBUs)hypothesis”and the“common secondary building units(SBUs)hypothesis”.However,both hypotheses cannot explain all observations on the heterologous seed-assisted syntheses.Finally,we proposed that the formation of the target zeolite does need nuclei with the structure of target zeolite and the formation of the nuclei of the target zeolite can be promoted by either the undissolved seed crystals with the same CBUs or SBUs to the target zeolite or by the facilitated appropriate distribution of the specific building units due to the presence of the heterologous seed that does not have any common CBUs and SBUs with the target zeolite. 展开更多
关键词 ZEOLITE Heterologous seed SYNTHESIS Structure-directing effect
下载PDF
Targeted mutations of BnPAP2 lead to a yellow seed coat in Brassica napus L. 被引量:1
3
作者 Wei Huang Ruyu Jiao +9 位作者 Hongtao Cheng Shengli Cai Jia Liu Qiong Hu Lili Liu Bao Li Tonghua Wang Mei Li Dawei Zhang Mingli Yan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期724-730,共7页
The yellow seed trait is preferred by breeders for its potential to improve the seed quality and commercial value of Brassica napus.In the present study,we produced yellow seed mutants using a CRISPR/Cas9 system when ... The yellow seed trait is preferred by breeders for its potential to improve the seed quality and commercial value of Brassica napus.In the present study,we produced yellow seed mutants using a CRISPR/Cas9 system when the two BnPAP2 homologs were knocked out.Histochemical staining of the seed coat demonstrated that proanthocyanidin accumulation was significantly reduced in the pap2 double mutants and decreased specifically in the endothelial and palisade layer cells of the seed coat.Transcriptomic and metabolite profiling analysis suggested that disruption of the BnPAP2 genes could reduce the expression of structural and regulated genes in the phenylpropanoid and flavonoid biosynthetic pathways.The broad suppression of these genes might hinder proanthocyanidin accumulation during seed development,and thereby causing the yellow seed trait in B.napus.These results indicate that BnPAP2 might play a vital role in the regulatory network controlling proanthocyanidin accumulation. 展开更多
关键词 yellow seed BnPAP2 PROANTHOCYANIDINS CRISPR/Cas9
下载PDF
Plant life form determines spatiotemporal variability and climate response of plant seed rain in subtropical forests
4
作者 Yuyang Xie Zehao Shen +2 位作者 Xuejing Wang Liu Yang Jie Zhang 《Forest Ecosystems》 SCIE CSCD 2024年第2期193-201,共9页
Spatiotemporal variation of seed rain reflects the response of plants in terms of their reproductive strategy to environmental gradients.In this study,we collected seeds from four sites in the Dalaoling Nature Reserve... Spatiotemporal variation of seed rain reflects the response of plants in terms of their reproductive strategy to environmental gradients.In this study,we collected seeds from four sites in the Dalaoling Nature Reserve,Hubei Province,China,between 2011 and 2014,measured seed output and seed mass as seed rain traits,and compared their interannual and elevational variation.Then,we ran phylogenetic generalized mixed linear models(PGLMMs) to explore the effects of temperature and precipitation as well as interspecific differences on seed rain,and fitted the best regression models for seed rain vs.weather of canopy and understory species.The results showed no correlation between values of seed output and seed mass.However,the variation of the two traits showed significantly positive correlation.Seed output of canopy species generally decreased with increasing elevation,and showed significant interannual difference;however,seed output of understory species and seed mass for both canopy and understory species did not show consistency tends along elevational or in interannual variation.Seed output was significantly affected by temperature and precipitation,while seed mass mainly varied due to interspecific differences.Weather explained more the variation of the seed output of canopy species than that of understory species,with R^(2) values of 43.0%and 29.9%,respectively.These results suggested that canopy plants contributed more to the reproductive dynamics of the whole communities,and the canopy's buffer effect on the underground weakened the response of understory plants to weather variation in terms of their reproductive strategy. 展开更多
关键词 seed rain seed output seed mass ELEVATION Interannual variation Lifeform
下载PDF
Spatiotemporal characteristics of seed rain and soil seed bank of artificial Caragana korshinskii Kom. forest in the Tengger Desert, China
5
作者 SHEN Jianxiang WANG Xin +9 位作者 WANG Lei WANG Jiahui QU Wenjie ZHANG Xue CHANG Xuanxuan YANG Xinguo CHEN Lin QIN Weichun ZHANG Bo NIU Jinshuai 《Journal of Arid Land》 SCIE CSCD 2024年第4期550-566,共17页
Vegetation restoration and reconstruction are effective approaches to desertification control and achieving social and economic sustainability in desert areas.However,the self-succession ability of native plants durin... Vegetation restoration and reconstruction are effective approaches to desertification control and achieving social and economic sustainability in desert areas.However,the self-succession ability of native plants during the later periods of vegetation restoration remains unclear.Therefore,this study was conducted to bridge the knowledge gap by investigating the regeneration dynamics of artificial forest under natural conditions.The information of seed rain and soil seed bank was collected and quantified from an artificial Caragana korshinskii Kom.forest in the Tengger Desert,China.The germination tests were conducted in a laboratory setting.The analysis of species quantity and diversity in seed rain and soil seed bank was conducted to assess the impact of different durations of sand fixation(60,40,and 20 a)on the progress of vegetation restoration and ecological conditions in artificial C.korshinskii forest.The results showed that the top three dominant plant species in seed rain were Echinops gmelinii Turcz.,Eragrostis minor Host.,and Agropyron mongolicum Keng.,and the top three dominant plant species in soil seed bank were E.minor,Chloris virgata Sw.,and E.gmelinii.As restoration period increased,the density of seed rain and soil seed bank increased first and then decreased.While for species richness,as restoration period increased,it gradually increased in seed rain but decreased in soil seed bank.There was a positive correlation between seed rain density and soil seed bank density among all the three restoration periods.The species similarity between seed rain or soil seed bank and aboveground vegetation decreased with the extension of restoration period.The shape of the seeds,specifically those with external appendages such as spines and crown hair,clearly had an effect on their dispersal,then resulting in lower seed density in soil seed bank.In addition,precipitation was a crucial factor in promoting rapid germination,also resulting in lower seed density in soil seed bank.Our findings provide valuable insights for guiding future interventions during the later periods of artificial C.korshinskii forest,such as sowing and restoration efforts using unmanned aerial vehicles. 展开更多
关键词 ecological restoration soil seed bank seed rain artificial forest vegetation desertification Caragana korshinskii Tengger Desert
下载PDF
Effects of wind speed,underlying surface,and seed morphological traits on the secondary seed dispersal in the Tengger Desert,China
6
作者 QU Wenjie ZHAO Wenzhi +3 位作者 YANG Xinguo WANG Lei ZHANG Xue QU Jianjun 《Journal of Arid Land》 SCIE CSCD 2024年第4期531-549,共19页
The maintenance of sand-fixing vegetation is important for the stability of artificial sand-fixing systems in which seed dispersal plays a key role.Based on field wind tunnel experiments using 11 common plant species ... The maintenance of sand-fixing vegetation is important for the stability of artificial sand-fixing systems in which seed dispersal plays a key role.Based on field wind tunnel experiments using 11 common plant species on the southeastern edge of the Tengger Desert,China,we studied the secondary seed dispersal in the fixed and semi-fixed sand dunes as well as in the mobile dunes in order to understand the limitations of vegetation regeneration and the maintenance of its stability.Our results indicated that there were significant variations among the selected 11 plant species in the threshold of wind speed(TWS).The TWS of Caragana korshinskii was the highest among the 11 plant species,whereas that of Echinops gmelinii was the lowest.Seed morphological traits and underlying surface could generally explain the TWS.During the secondary seed dispersal processes,the proportions of seeds that did not disperse(no dispersal)and only dispersed over short distance(short-distance dispersal within the wind tunnel test section)were significantly higher than those of seeds that were buried(including lost seeds)and dispersed over long distance(long-distance dispersal beyond the wind tunnel test section).Compared with other habitats,the mobile dunes were the most difficult places for secondary seed dispersal.Buried seeds were the easiest to be found in the semi-fixed sand dunes,whereas fixed sand dunes were the best sites for seeds that dispersed over long distance.The results of linear mixed models showed that after controlling the dispersal distance,smaller and rounder seeds dispersed farther.Shape index and wind speed were the two significant influencing factors on the burial of seeds.The explanatory power of wind speed,underlying surface,and seed morphological traits on the seeds that did not disperse and dispersed over short distance was far greater than that on the seeds that were buried and dispersed over long distance,implying that the processes and mechanisms of burial and long-distance dispersal are more complex.In summary,most seeds in the study area either did not move,were buried,or dispersed over short distance,promoting local vegetation regeneration. 展开更多
关键词 seed dispersal seed morphological traits wind speed vegetation regeneration wind tunnel Tengger Desert
下载PDF
A comparative study on the role of conventional,chemical,and nanopriming for better salt tolerance during seed germination of direct seeding rice
7
作者 Yixue Mu Yusheng Li +7 位作者 Yicheng Zhang Xiayu Guo Shaokun Song Zheng Huang Lin Li Qilin Ma Mohammad Nauman Khan Lixiao Nie 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第12期3998-4017,共20页
Salinity is one of the most significant risks to crop production and food security as it harms plant physiology and biochemistry.The salt stress during the rice emergence stages severely hampers the seed germination a... Salinity is one of the most significant risks to crop production and food security as it harms plant physiology and biochemistry.The salt stress during the rice emergence stages severely hampers the seed germination and seedling growth of direct-seeded rice.Recently,nanoparticles(NPs)have been reported to be effectively involved in many plant physiological processes,particularly under abiotic stresses.To our knowledge,no comparative studies have been performed to study the efficiency of conventional,chemical,and seed nanopriming for better plant stress tolerance.Therefore,we conducted growth chamber and field experiments with different salinity levels(0,1.5,and 3‰),two rice varieties(CY1000 and LLY506),and different priming techniques such as hydropriming,chemical priming(ascorbic acid,salicylic acid,and γ-aminobutyric acid),and nanopriming(zinc oxide nanoparticles).Salt stress inhibited rice seed germination,germination index,vigor index,and seedling growth.Also,salt stress increased the over accumulation of reactive oxygen species(H_(2)O_(2) and O_(2)^(-)·)and malondialdehyde(MDA)contents.Furthermore,salt-stressed seedlings accumulated higher sodium(Na^(+))ions and significantly lower potassium(K^(+))ions.Moreover,the findings of our study demonstrated that,among the different priming techniques,seed nanopriming with zinc oxide nanoparticles(NanoZnO)significantly contributed to rice salt tolerance.ZnO nanopriming improved rice seed germination and seedling growth in the pot and field experiments under salt stress.The possible mechanism behind ZnO nanopriming improved rice salt tolerance included higher contents of α-amylase,soluble sugar,and soluble protein and higher activities of antioxidant enzymes to sustain better seed germination and seedling growth.Moreover,another mechanism of ZnO nanopriming induced rice salt tolerance was associated with better maintenance of(K^(+))ions content.Our research concluded that NanoZnO could promote plant salt tolerance and be adopted as a practical nanopriming technique,promoting global crop production in saltaffected agricultural lands. 展开更多
关键词 rice SALINITY ROS scavenging seed nanopriming GERMINATION mechanism
下载PDF
Seed-assisted growth for high-performance perovskite solar cells:A review
8
作者 Zhimin Fang Ting Nie +1 位作者 Jianning Ding Shengzhong(Frank)Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期588-610,共23页
The rapid increase in the power conversion efficiency(PCE)of perovskite solar cells(PSCs)is closely related to the development of deposition techinique for perovskite layer.The high-quality perovskite film enables eff... The rapid increase in the power conversion efficiency(PCE)of perovskite solar cells(PSCs)is closely related to the development of deposition techinique for perovskite layer.The high-quality perovskite film enables efficient charge transportation and less trap states,which are eventually translated into enhanced device performance.Seed-assisted growth(SAG)is a potential technique for depositing highly-crystallized perovskite films with preferential crystal orientation among the numerous approaches related to crystallization modulation.In this review,we summarize the recent advances in the SAG technique for both one-step and two-step processed perovskite films.Additionally,seeding at the buried interface and on the top surface are also introduced.We present different seeds and their corresponding seeding mechanism in detail,such as inorganic nanomaterials,organic ammoniums,alkali metal halides,and perovskite seeds.Finally,challenges and perspectives are proposed to investigate the potential expansion of seeding engineering in high-performance PSCs,particularly large-area devices. 展开更多
关键词 Perovskite solar cell seed CRYSTALLIZATION Efficiency
下载PDF
Differential roles of seed and sprout regeneration in forest diversity and productivity after disturbance
9
作者 Marek Mejstrík Martin Svatek +2 位作者 Martina Pollastrini Martin Sramek Radim Matula 《Forest Ecosystems》 SCIE CSCD 2024年第3期371-380,共10页
Natural regeneration after disturbances is a key phase of forest development,which determines the trajectory of successional changes in tree species composition and diversity.Regenerating trees can originate from eith... Natural regeneration after disturbances is a key phase of forest development,which determines the trajectory of successional changes in tree species composition and diversity.Regenerating trees can originate from either seeds or sprouts produced by disturbed trees with sprouting ability.Although both regeneration strategies often develop and co-occur after a disturbance,they tend to affect forest development differently due to significant functional differences.However,the origin of tree regeneration is rarely distinguished in post-disturbance forest surveys and ecological studies,and the differential roles of seed and sprout regeneration in forest productivity and diversity remain poorly understood.To address these research gaps,we explored the role of sprout and seed regeneration in the formation of woody species diversity and above-ground biomass(AGB)productivity in early-stage forest development.Data were collected in two experimental forest stands in the Czech Republic,where trees were cut with varying intensities with the density of residual(uncut)trees ranging from 0 to 275 trees per hectare.All trees were mapped and their sizes were measured before cutting and then,either as a stump with sprouts or a residual tree,remeasured 11 years later.In addition,all tree saplings were mapped and measured 11 years after logging,and their origin(sprout or seed)was identified.To assess abundances and productivity,we estimated AGB of all2,685 sprouting stumps of 19 woody species and 504 generative(i.e.,seed origin)individuals of 16 woody species,using allometric equations.Mixed-effects models were used to analyze the effects of each regeneration strategy on woody species diversity and the total AGB under varying densities of residual trees.Nonmetric multidimensional scaling was used to evaluate the effect of regeneration strategies on species composition.AGB and diversity of sprouts were significantly higher than those of seed regeneration.Sprouts formed on average97.1%of the total regeneration AGB in H ady and 98.6%in Sobe s ice.The average species richness of sprouts was4.7 in H ady and 2.2 in Sob e sice,while the species richness of seed regeneration averaged 2.1 and 1.1 in H ady and Sob e sice,respectively.Increasing density of residual trees reduced AGB and diversity of both sprouts and seed regeneration,but seed regeneration was affected to a greater extent.Residual trees had an especially strong inhibitory effect on the establishment of seed regeneration.Consequently,seed-originated saplings were nearly absent in plots with high residual tree density,and abundant sprouts accounted for most of the AGB and diversity.However,unlike sprouts whose species composition resembled that of the original stand,seed regeneration brought in new species,enriching the stand?s overall species pool and beta diversity.Our results demonstrated differential roles of sprout and seed regeneration in the early stage of forest succession.Sprout regeneration was the main source of woody AGB productivity as well as species diversity,and its importance increased with the increasing density of standing mature trees.The results indicate the crucial yet previously underestimated role of sprout regeneration in post-disturbance forest dynamics.They suggest that the presence of residual mature trees,whether retained after partial cutting or undisturbed,can substantially suppress seed regeneration while the role of sprout regeneration in early succession becomes more distinctly evident. 展开更多
关键词 RESPROUTING seedING Residual trees Tree diversity Above-ground biomass
下载PDF
An allelic variation in the promoter of the LRR-RLK gene,qSS6.1,is associated with melon seed size
10
作者 Xiaoxue Liang Jiyu Wang +11 位作者 Lei Cao Xuanyu Du Junhao Qiang Wenlong Li Panqiao Wang Juan Hou Xiang Li Wenwen Mao Huayu Zhu Luming Yang Qiong Li Jianbin Hu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第10期3522-3536,共15页
Seed size is an important agronomic trait in melons that directly affects seed germination and subsequent seedling growth.However,the genetic mechanism underlying seed size in melon remains unclear.In the present stud... Seed size is an important agronomic trait in melons that directly affects seed germination and subsequent seedling growth.However,the genetic mechanism underlying seed size in melon remains unclear.In the present study,we employed Bulked-Segregant Analysis sequencing(BSA-seq)to identify a candidate region(~1.35 Mb)on chromosome 6 that corresponds to seed size.This interval was confirmed by QTL mapping of three seed size-related traits from an F2 population across three environments.This mapping region represented nine QTLs that shared an overlapping region on chromosome 6,collectively referred to as qSS6.1.New InDel markers were developed in the qSS6.1 region,narrowing it down to a 68.35 kb interval that contains eight annotated genes.Sequence variation analysis of the eight genes identified a SNP with a C to T transition mutation in the promoter region of MELO3C014002,a leucine-rich repeat receptor-like kinase(LRR-RLK)gene.This mutation affected the promoter activity of the MELO3C014002 gene and was successfully used to differentiate the large-seeded accessions(C-allele)from the small-seeded accessions(T-allele).qRT-PCR revealed differential expression of MELO3C014002 between the two parental lines.Its predicted protein has typical LRR-RLK family domains,and phylogenetic analyses reveled its similarity with the homologs in several plant species.Altogether,these findings suggest MELO3C014002 as the most likely candidate gene involved in melon seed size regulation.Our results will be helpful for better understanding the genetic mechanism regulating seed size in melons and for genetically improving this important trait through molecular breeding pathways. 展开更多
关键词 MELON QTL mapping seed size candidate gene allelic variation
下载PDF
qSTA2-2,a novel QTL that contributes to seed starch synthesis in Zea mays L.
11
作者 Minghao Cai Xuhui Li +6 位作者 Zhi Liang Jie Wang Delin Li Zhipeng Yuan Riliang Gu Jianhua Wang Li Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1118-1133,共16页
The seed storage materials accumulate during seed development,and are essential for seed germination and seedling establishment.Here we employed two bi-parental populations of an F2:3 population developed from a cross... The seed storage materials accumulate during seed development,and are essential for seed germination and seedling establishment.Here we employed two bi-parental populations of an F2:3 population developed from a cross of improved 220(I220,small seeds with low starch)and PH4CV(large seeds with high starch),as well as recombinant-inbred lines(RILs)of X178(high starch)and its improved introgression line I178(low starch),to identify the genes that control seed storage materials.We identified a total of 12 QTLs for starch,protein and oil,which explained 3.44-10.79%of the phenotypic variances.Among them,qSTA2-1 identified in F2:3 and qSTA2-2 identified in the RILs partially overlapped at an interval of 7.314-9.554 Mb,and they explained 3.44-10.21%of the starch content variation,so they were selected for further study.Fine mapping of qSTA2-2 with the backcrossed populations of ^(I220)/PH4CV in each generation narrowed it down to a 199.7 kb interval that contains 14 open reading frames(ORFs).Transcriptomic analysis of developing seeds from the near-isogenic lines(NILs)of ^(I220)/PH4CV(BC_(5)F_(2))showed that only 11 ORFs were expressed in 20 days after pollination(DAP)seeds.Five of them were upregulated and six of them were downregulated in NIL^(I220),and the differentially expressed genes(DEGs)between NIL^(I220) and NIL^(PH4CV) were enriched in starch metabolism,hormone signal transduction and glycosaminoglycan degradation.Of the eleven NIL^(I220) differential expressed ORFs,ORF4(Zm00001d002260)and ORF5(Zm00001d002261)carry 75%protein sequence similarity,both encodes an glycolate oxidase,were the possible candidates of qSTA2-2.Further analysis and validation indicated that mutation of the qSTA2-2 locus resulted in the dysfunction of ABA accumulation,the embryo/endosperm ratio and the starch and hormone levels. 展开更多
关键词 QTL mapping seed starch transcriptomic analysis HORMONE
下载PDF
Seed Storability in Rice: Physiological Foundations, Molecular Mechanisms, and Applications in Breeding
12
作者 ZHOU Tianshun YU Dong +3 位作者 WU Liubing XU Yusheng DUAN Meijuan YUAN Dingyang 《Rice science》 SCIE CSCD 2024年第4期401-416,I0023-I0024,共18页
Long-term storage of crop seeds is critical for the conservation of germplasm resources, ensuring food supply, and supporting sustainable production. Rice, as a major food staple, has a substantial stock for consumpti... Long-term storage of crop seeds is critical for the conservation of germplasm resources, ensuring food supply, and supporting sustainable production. Rice, as a major food staple, has a substantial stock for consumption and production worldwide. However, its food value and seed viability tend to decline during storage. Understanding the physiological responses and molecular mechanisms of aging tolerance forms the basis for enhancing seed storability in rice. This review outlines the latest progress in influential factors, evaluation methods, and identification indices of seed storability. It also discusses the physiological consequences, molecular mechanisms, and strategies for breeding aging-tolerant rice in detail. Finally, it highlights challenges in seed storability research that require future attention. This review offers a theoretical foundation and research direction for uncovering the mechanisms behind seed storability and breeding aging-tolerant rice. 展开更多
关键词 RICE seed storability physiological response molecular mechanism aging-tolerant breeding
下载PDF
Arginine promotes seed energy metabolism,increasing wheat seed germination at low temperature
13
作者 Jiayu Li Zhiyuan Li +3 位作者 Yangyang Tang Jianke Xiao Vinay Nangia Yang Liu 《The Crop Journal》 SCIE CSCD 2024年第4期1185-1195,共11页
Low temperatures during germination inhibit seed growth,lead to small and weak seedlings,and significantly reduce the wheat yield.Alleviating the adverse effects of low temperature on wheat seed germination is highly ... Low temperatures during germination inhibit seed growth,lead to small and weak seedlings,and significantly reduce the wheat yield.Alleviating the adverse effects of low temperature on wheat seed germination is highly important for achieving high and stable wheat yields.In this study,Tongmai 6(insensitive)and Zhengmai 113(sensitive),which have different low-temperature sensitivities during germination were treated with low temperature during germination.The transcriptome,metabolome and physiological data revealed that low temperature decreased the germination rate,downregulated the expression of a large number of genes involved in regulating glycometabolism,and inhibited carbon,nitrogen(especially amino acids)and energy metabolism in the seeds.Arginine content increased at low temperature,and its increase in the low-temperature-tolerant variety was significantly greater than that in the sensitive variety.Arginine priming experiment showed that treatment with an appropriate concentration of arginine improved the seed germination rate.The conversion of starch to soluble sugar significantly increased under exogenous arginine conditions,the content of key metabolites in energy metabolism increased,and the utilization of ATP in the seeds increased.Taken together,arginine priming increased seed germination at low temperature by relieving inhibition of seed carbon and nitrogen metabolism and improving seed energy metabolism. 展开更多
关键词 Low temperature seed germination ARGININE Energy metabolism WHEAT
下载PDF
Fine-mapping and primary analysis of candidate genes associated with seed coat color in mung bean(Vigna radiata L.)
14
作者 Qian Wang Huimin Cao +10 位作者 Jingcheng Wang Zirong Gu Qiuyun Lin Zeyan Zhang Xueying Zhao Wei Gao Huijun Zhu Hubin Yan Jianjun Yan Qingting Hao Yaowen Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第8期2571-2588,共18页
Seed coat color affects the appearance and commodity quality of mung beans(Vigna radiata L.).The substances that affect mung bean seed coat color are mainly flavonoids,which have important medicinal value.Mapping the ... Seed coat color affects the appearance and commodity quality of mung beans(Vigna radiata L.).The substances that affect mung bean seed coat color are mainly flavonoids,which have important medicinal value.Mapping the seed coat color gene in mung beans would facilitate the development of new varieties and improve their value.In this study,an F2 mapping population consisting of 546 plants was constructed using Jilv9(black seed coat)and BIS9805(green seed coat).Using bulk segregated analysis(BSA)sequencing and kompetitive allele-specific PCR(KASP)markers,the candidate region related to seed coat color was finally narrowed to 0.66 Mb on chromosome(Chr.)4 and included eight candidate genes.Combined transcriptome and metabolome analyses showed that three of the eight candidate genes(LOC106758748,LOC106758747,and LOC106759075)were differentially expressed,which may have caused the differences in flavonoid metabolite content between Jilv9 and BIS9805.These findings can provide a research basis for cloning the genes related to seed coat color and accelerate molecular markerassisted selection breeding in mung beans. 展开更多
关键词 mung bean seed coat color bulk segregated analysis sequencing TRANSCRIPTOME METABOLISM FLAVONOIDS
下载PDF
Natural variation in the cytochrome c oxidase subunit 5B OsCOX5B regulates seed vigor by altering energy production in rice
15
作者 Chengwei Huang Zhijuan Ji +7 位作者 Qianqian Huang Liling Peng Wenwen Li Dandan Wang Zepeng Wu Jia Zhao Yongqi He Zhoufei Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第9期2898-2910,共13页
Seed vigor is a crucial trait for the direct seeding of rice.Here we examined the genetic regulation of seed vigor traits in rice,including germination index(GI)and germination potential(GP),using a genome-wide associ... Seed vigor is a crucial trait for the direct seeding of rice.Here we examined the genetic regulation of seed vigor traits in rice,including germination index(GI)and germination potential(GP),using a genome-wide association study approach.One major quantitative trait locus,qGI6/qGP6,was identified simultaneously for both GI and GP.The candidate gene encoding the cytochrome c oxidase subunit 5B(OsCOX5B)was validated for qGI6/qGP6.The disruption of OsCOX5B caused the vigor traits to be significantly lower in Oscox5b mutants than in the japonica Nipponbare wild type(WT).Gene co-expression analysis revealed that OsCOX5B influences seed vigor mainly by modulating the tricarboxylic acid cycle process.The glucose levels were significantly higher while the pyruvic acid and adenosine triphosphate levels were significantly lower in Oscox5b mutants than in WT during seed germination.The elite haplotype of OsCOX5B facilitates seed vigor by increasing its expression during seed germination.Thus,we propose that OsCOX5B is a potential target for the breeding of rice varieties with enhanced seed vigor for direct seeding. 展开更多
关键词 cytochrome c oxidase natural variation RICE seed vigor
下载PDF
Highly ordered crystallization of α-FAPbl_(3) films via homogeneous seeds for efficient perovskite solar cells
16
作者 Guohui Luo Linfeng Zhang +11 位作者 Liyun Guo Xiuhong Geng Penghui Ren Yi Zhang Haihua Hu Xiaoping Wu Lingbo Xu Ping Lin Haiyan He Xuegong Yu Peng Wang Can Cui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期625-634,共10页
Formamidine lead triiodide(FAPbI_(3))perovskites have become the most promising photovoltaic materials for perovskite solar cells with record power conversion efficiency(PCE).However,random nucleation,phase transition... Formamidine lead triiodide(FAPbI_(3))perovskites have become the most promising photovoltaic materials for perovskite solar cells with record power conversion efficiency(PCE).However,random nucleation,phase transition,and lattice defects are still the key challenges limiting the quality of FAPbI_(3) films.Previous studies show that the introduction or adding of seeds in the precursor is effective to promote the nucleation and crystallization of perovskite films.Nevertheless,the seed-assisted approach focuses on heterogeneous seeds or hetero-composites,which inevitably induce a lattice-mismatch,the genera-tion of strain or defects,and the phase segregation in the perovskite films.Herein,we first demonstrate that high-quality perovskite films are controllably prepared using α-and δ-phases mixed FAPbI_(3) micro-crystal as the homogeneous seeds with the one-step antisolvent method.The partially dissolved seeds with suitable sizes improve the crystallinity of the perovskite flm with preferable orientation,improved carrier lifetime,and increased carrier mobility.More importantly,the α-phase-containing seeds promote the formation of α-phase FAPbI_(3) films,leading to the reduction of residual lattice strain and the suppres-sion of I-ion migration.Besides,the adding of dimethyl 2,6-pyridine dicarboxylate(DPD)into the pre-cursor further suppresses the generation of defects,contributing to the PCE of devices prepared in air ambient being significantly improved to 23.75%,among the highest PCEs for fully air-processed FAPbI_(3) solar cells.The unpackaged target devices possess a high stability,maintaining 80%of the initial PCE under simulated solar illumination exceeding 800 h. 展开更多
关键词 Perovskite solar cells FAPbI_(3) Homogeneous seeds Strain Phase stability
下载PDF
Improved length of calcium sulfate crystal seeds and whiskers via ball milling and hydration treatment
17
作者 Yuke Li Yuxin Liu +1 位作者 Jizhen Huang Yi Mei 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期102-109,共8页
Elucidating the effect of growth periods on the quality of calcium sulfate whiskers(CSWs)prepared from calcium sulfate dihydrate(DH)is imperative.Herein,crystal seeds and whiskers were prepared from DH in a water–gly... Elucidating the effect of growth periods on the quality of calcium sulfate whiskers(CSWs)prepared from calcium sulfate dihydrate(DH)is imperative.Herein,crystal seeds and whiskers were prepared from DH in a water–glycerol system.Longer whiskers were obtained from crystal seeds prepared via hydration of DH for 30 s than via ball milling for 5 min followed by hydration for 20 s.The attachment of cetyltrimethyl ammonium bromide and glycerol additives to the whisker tops promoted whisker growth.The whisker sponges exhibited good thermal barrier properties and compression cycle stability. 展开更多
关键词 Hemihydrate gypsum whisker HYDRATION Ball milling/hydration Crystal seed Growth process
下载PDF
Genome-wide association study reveals that JASMONATE ZIM-DOMAIN 5 regulates seed germination in rice
18
作者 Shan Sun Liling Peng +5 位作者 Qianqian Huang Zhibo Huang Chengjing Wang Jia Zhao Zhoufei Wang Yongqi He 《The Crop Journal》 SCIE CSCD 2024年第4期1001-1009,共9页
Seed germination is a complex trait regulated by multiple genes in rice.However,the regulators of rice seed germination have yet to be sufficiently determined.Here,a quantitative trait locus(QTL)for rice seed germinat... Seed germination is a complex trait regulated by multiple genes in rice.However,the regulators of rice seed germination have yet to be sufficiently determined.Here,a quantitative trait locus(QTL)for rice seed germination was identified in a genome-wide association study.The candidate gene JASMONATE ZIM-DOMAIN 5(OsJAZ5)of the QTL was verified that positively regulates seed germination.OsJAZ5 regulation of seed germination involves an OsABI3-mediated abscisic acid pathway.Overexpression of OsJAZ5 facilitated seed germination.The application of OsJAZ5 might be useful for increasing seed germination for rice direct seeding. 展开更多
关键词 Abscisic acid JASMONATE ZIM-DOMAIN Oryza sativa seed germination
下载PDF
Identification of P-type plasma membrane H^(+)-ATPases in common wheat and characterization of TaHA7 associated with seed dormancy and germination
19
作者 Bingli Jiang Wei Gao +8 位作者 Yating Jiang Shengnan Yan Jiajia Cao Litian Zhang Yue Zhang Jie Lu Chuanxi Ma Cheng Chang Haiping Zhang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第7期2164-2177,共14页
The P-type plasma membrane(PM)H^(+)-ATPases(HAs)are crucial for plant development,growth,and defense.The HAs have been thoroughly characterized in many different plants.However,despite their importance,the functions o... The P-type plasma membrane(PM)H^(+)-ATPases(HAs)are crucial for plant development,growth,and defense.The HAs have been thoroughly characterized in many different plants.However,despite their importance,the functions of HAs in germination and seed dormancy(SD)have not been validated in wheat.Here,we identified 28 TaHA genes(TaHA1-28)in common wheat,which were divided into five subfamilies.An examination of gene expression in strong-and weak-SD wheat varieties led to the discovery of six candidate genes(TaHA7/-12/-14/-16/-18/-20).Based on a single nucleotide polymorphism(SNP)mutation(C/T)in the TaHA7 coding region,a CAPS marker(HA7)was developed and validated in 168 wheat varieties and 171 Chinese mini-core collections that exhibit diverse germination and SD phenotypes.We further verified the roles of the two allelic variations of TaHA7 in germination and SD using wheat mutants mutagenized with ethyl methane sulphonate(EMS)in‘Jimai 22’and‘Jing 411’backgrounds,and in transgenic Arabidopsis lines.TaHA7 appears to regulate germination and SD by mediating gibberellic acid(GA)and abscisic acid(ABA)signaling,metabolism,and biosynthesis.The results presented here will enable future research regarding the TaHAs in wheat. 展开更多
关键词 wheat P-type plasma membrane H^(+)-ATPase seed dormancy abscisic acid GIBBERELLIN
下载PDF
Calculation and prediction of divertor detachment via impurity seeding by using one-dimensional model
20
作者 周文杰 刘晓菊 +5 位作者 邬潇河 李邦 石奇奇 樊皓尘 杨艳杰 李国强 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期370-379,共10页
Achieving the detachment of divertor can help to alleviate excessive heat load and sputtering problems on the target plates,thereby extending the lifetime of divertor components for fusion devices.In order to provide ... Achieving the detachment of divertor can help to alleviate excessive heat load and sputtering problems on the target plates,thereby extending the lifetime of divertor components for fusion devices.In order to provide a fast but relatively reliable prediction of plasma parameters along the flux tube for future device design,a one-dimensional(1D)modeling code for the operating point of impurity seeded detached divertor is developed based on Python language,which is a fluid model based on previous work(Plasma Phys.Control.Fusion 58045013(2016)).The experimental observation of the onset of divertor detachment by neon(Ne)and argon(Ar)seeding in EAST is well reproduced by using the 1D modeling code.The comparison between the 1D modeling and two-dimensional(2D)simulation by the SOLPS-ITER code for CFETR detachment operation with Ne and Ar seeding also shows that they are in good agreement.We also predict the radiative power loss and corresponding impurity concentration requirement for achieving divertor detachment via different impurity seeding under high heating power conditions in EAST and CFETR phase II by using the 1D model.Based on the predictions,the optimized parameter space for divertor detachment operation on EAST and CFETR is also determined.Such a simple but reliable 1D model can provide a reasonable parameter input for a detailed and accurate analysis by 2D or three-dimensional(3D)modeling tools through rapid parameter scanning. 展开更多
关键词 divertor detachment impurity seeding one-dimensional modeling
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部