Achieving optimal alignment in total knee arthroplasty(TKA) is a critical factor in ensuring optimal outcomes and long-term implant survival. Traditionally, mechanical alignment has been favored to achieve neutral pos...Achieving optimal alignment in total knee arthroplasty(TKA) is a critical factor in ensuring optimal outcomes and long-term implant survival. Traditionally, mechanical alignment has been favored to achieve neutral postoperative joint alignment. However, contemporary approaches, such as kinematic alignments and hybrid techniques including adjusted mechanical, restricted kinematic, inverse kinematic, and functional alignments, are gaining attention for their ability to restore native joint kinematics and anatomical alignment, potentially leading to enhanced functional outcomes and greater patient satisfaction. The ongoing debate on optimal alignment strategies considers the following factors: long-term implant durability, functional improvement, and resolution of individual anatomical variations. Furthermore, advancements of computer-navigated and robotic-assisted surgery have augmented the precision in implant positioning and objective measurements of soft tissue balance. Despite ongoing debates on balancing implant longevity and functional outcomes, there is an increasing advocacy for personalized alignment strategies that are tailored to individual anatomical variations. This review evaluates the spectrum of various alignment techniques in TKA, including mechanical alignment, patient-specific kinematic approaches, and emerging hybrid methods. Each technique is scrutinized based on its fundamental principles, procedural techniques, inherent advantages, and potential limitations, while identifying significant clinical gaps that underscore the need for further investigation.展开更多
In wireless communication networks,mobile users in overlapping areas may experience severe interference,therefore,designing effective Interference Management(IM)methods is crucial to improving network performance.Howe...In wireless communication networks,mobile users in overlapping areas may experience severe interference,therefore,designing effective Interference Management(IM)methods is crucial to improving network performance.However,when managing multiple disturbances from the same source,it may not be feasible to use existing IM methods such as Interference Alignment(IA)and Interference Steering(IS)exclusively.It is because with IA,the aligned interference becomes indistinguishable at its desired Receiver(Rx)under the cost constraint of Degrees-of-Freedom(DoF),while with IS,more transmit power will be consumed in the direct and repeated application of IS to each interference.To remedy these deficiencies,Interference Alignment Steering(IAS)is proposed by incorporating IA and IS and exploiting their advantages in IM.With IAS,the interfering Transmitter(Tx)first aligns one interference incurred by the transmission of one data stream to a one-dimensional subspace orthogonal to the desired transmission at the interfered Rx,and then the remaining interferences are treated as a whole and steered to the same subspace as the aligned interference.Moreover,two improved versions of IAS,i.e.,IAS with Full Adjustment at the Interfering Tx(IAS-FAIT)and Interference Steering and Alignment(ISA),are presented.The former considers the influence of IA on the interfering user-pair's performance.The orthogonality between the desired signals at the interfered Rx can be maintained by adjusting the spatial characteristics of all interferences and the aligned interference components,thus ensuring the Spectral Efficiency(SE)of the interfering communication pairs.Under ISA,the power cost for IS at the interfered Tx is minimized,hence improving SE performance of the interfered communication-pairs.Since the proposed methods are realized at the interfering and interfered Txs cooperatively,the expenses of IM are shared by both communication-pairs.Our in-depth simulation results show that joint use of IA and IS can effectively manage multiple disturbances from the same source and improve the system's SE.展开更多
In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Lar...In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Large misalignment angle and time delay often occur simultaneously and bring great challenges to the accurate measurement of hull deformation in space and time.The proposed method utilizes coarse alignment with large misalignment angle and time delay estimation of inertial measurement unit modeling to establish a brand-new spatiotemporal aligned hull deformation measurement model.In addition,two-step loop control is designed to ensure the accurate description of dynamic deformation angle and static deformation angle by the time-space alignment method of hull deformation.The experiments illustrate that the proposed method can effectively measure the hull deformation angle when time delay and large misalignment angle coexist.展开更多
Beams typically do not travel through the magnet centers because of errors in storage rings.The beam deviating from the quadrupole centers is affected by additional dipole fields due to magnetic field feed-down.Beam-b...Beams typically do not travel through the magnet centers because of errors in storage rings.The beam deviating from the quadrupole centers is affected by additional dipole fields due to magnetic field feed-down.Beam-based alignment(BBA)is often performed to determine a golden orbit where the beam circulates around the quadrupole center axes.For storage rings with many quadrupoles,the conventional BBA procedure is time-consuming,particularly in the commissioning phase,because of the necessary iterative process.In addition,the conventional BBA method can be affected by strong coupling and the nonlinearity of the storage ring optics.In this study,a novel method based on a neural network was proposed to determine the golden orbit in a much shorter time with reasonable accuracy.This golden orbit can be used directly for operation or adopted as a starting point for conventional BBA.The method was demonstrated in the HLS-II storage ring for the first time through simulations and online experiments.The results of the experiments showed that the golden orbit obtained using this new method was consistent with that obtained using the conventional BBA.The development of this new method and the corresponding experiments are reported in this paper.展开更多
Amid the growing interest in triboelectric nanogenerators(TENGs)as novel energy-harvesting devices,several studies have focused on direct current(DC)TENGs to generate a stable DC output for operating electronic device...Amid the growing interest in triboelectric nanogenerators(TENGs)as novel energy-harvesting devices,several studies have focused on direct current(DC)TENGs to generate a stable DC output for operating electronic devices.However,owing to the working mechanisms of conventional DC TENGs,generating a stable DC output from reciprocating motion remains a challenge.Accordingly,we propose a bidirectional rotating DC TENG(BiR-TENG),which can generate DC outputs,regardless of the direction of rotation,from reciprocating motions.The distinct design of the BiR-TENG enables the mechanical rectification of the alternating current output into a rotational-direction-dependent DC output.Furthermore,it allows the conversion of the rotational-direction-dependent DC output into a unidirectional DC output by adapting the configurations depending on the rotational direction.Owing to these tailored design strategies and subsequent optimizations,the BiR-TENG could generate an effective unidirectional DC output.Applications of the BiR-TENG for the reciprocating motions of swinging doors and waves were demonstrated by harnessing this output.This study demonstrates the potential of the BiR-TENG design strategy as an effective and versatile solution for energy harvesting from reciprocating motions,highlighting the suitability of DC outputs as an energy source for electronic devices.展开更多
Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same g...Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same granularity,segmenting them into different granularity events can effectively mitigate the impact of varying time scales on prediction accuracy.However,these events of varying granularity frequently intersect with each other,which may possess unequal durations.Even minor differences can result in significant errors when matching time series with future trends.Besides,directly using matched events but unaligned events as state vectors in machine learning-based prediction models can lead to insufficient prediction accuracy.Therefore,this paper proposes a short-term forecasting method for time series based on a multi-granularity event,MGE-SP(multi-granularity event-based short-termprediction).First,amethodological framework for MGE-SP established guides the implementation steps.The framework consists of three key steps,including multi-granularity event matching based on the LTF(latest time first)strategy,multi-granularity event alignment using a piecewise aggregate approximation based on the compression ratio,and a short-term prediction model based on XGBoost.The data from a nationwide online car-hailing service in China ensures the method’s reliability.The average RMSE(root mean square error)and MAE(mean absolute error)of the proposed method are 3.204 and 2.360,lower than the respective values of 4.056 and 3.101 obtained using theARIMA(autoregressive integratedmoving average)method,as well as the values of 4.278 and 2.994 obtained using k-means-SVR(support vector regression)method.The other experiment is conducted on stock data froma public data set.The proposed method achieved an average RMSE and MAE of 0.836 and 0.696,lower than the respective values of 1.019 and 0.844 obtained using the ARIMA method,as well as the values of 1.350 and 1.172 obtained using the k-means-SVR method.展开更多
Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which aredifficult to adapt to the uncertainty of source and load, and there are problems such as the inability to...Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which aredifficult to adapt to the uncertainty of source and load, and there are problems such as the inability to make dynamicdecisions continuously. This paper proposed a dynamic economic scheduling method for distribution networksbased on deep reinforcement learning. Firstly, the economic scheduling model of the new energy distributionnetwork is established considering the action characteristics of micro-gas turbines, and the dynamic schedulingmodel based on deep reinforcement learning is constructed for the new energy distribution network system with ahigh proportion of new energy, and the Markov decision process of the model is defined. Secondly, Second, for thechanging characteristics of source-load uncertainty, agents are trained interactively with the distributed networkin a data-driven manner. Then, through the proximal policy optimization algorithm, agents adaptively learn thescheduling strategy and realize the dynamic scheduling decision of the new energy distribution network system.Finally, the feasibility and superiority of the proposed method are verified by an improved IEEE 33-node simulationsystem.展开更多
In this paper, we investigate a 1D pressureless Euler-alignment system with a non-local alignment term, describing a kind of self-organizing problem for flocking. As a result, by the transport equation theory and Lagr...In this paper, we investigate a 1D pressureless Euler-alignment system with a non-local alignment term, describing a kind of self-organizing problem for flocking. As a result, by the transport equation theory and Lagrange coordinate transformation, the local well-posedness of the solutions for the 1D pressureless Euler-alignment in Besov spaces with 1≤p∞ is established. Next, the ill-posedness of the solutions for this model in Besov spaces with 1≤p and is also deduced. Finally, the precise blow-up criteria of the solutions for this system is presented in Besov spaces with 1≤p .展开更多
Observation of unexpectedly large global spin alignment of φ vector mesons in non-central heavy-ion collisions by STAR experiment may reveal the non-perturbative nature of quark interaction in hot matter through fluc...Observation of unexpectedly large global spin alignment of φ vector mesons in non-central heavy-ion collisions by STAR experiment may reveal the non-perturbative nature of quark interaction in hot matter through fluctuating strong force field with short correlation length.展开更多
Bioprinting has been widely investigated for tissue engineering and regenerative medicine applications.However,it is still difficult to reconstruct the complex native cell arrangement due to the limited printing resol...Bioprinting has been widely investigated for tissue engineering and regenerative medicine applications.However,it is still difficult to reconstruct the complex native cell arrangement due to the limited printing resolution of conventional bioprinting techniques such as extrusion-and inkjet-based printing.Recently,an electrohydrodynamic(EHD)bioprinting strategy was reported for the precise deposition of well-organized cell-laden constructs with microscale filament size,whereas few studies have been devoted to developing bioinks that can be applied for EHD bioprinting and simultaneously support cell spreading.This study describes functionalized alginate-based bioinks for microscale EHD bioprinting using peptide grafting and fibrin incorporation,which leads to high cell viability(>90%)and cell spreading.The printed filaments can be further refined to as small as 30μm by incorporating polyoxyethylene and remained stable over one week when exposed to an aqueous environment.By utilizing the presented alginate-based bioinks,layer-specific cell alignment along the printing struts could be observed inside the EHD-printed microscale filaments,which allows fabricating living constructs with cell-scale filament resolution for guided cellular orientation.展开更多
The anisotropic absorption and emission from semiconductor CdSe/CdS quantum rods(QRs)provide extra benefits among other photoluminescence nanocrystals.Using photo-induced alignment technique,the QRs can be oriented in...The anisotropic absorption and emission from semiconductor CdSe/CdS quantum rods(QRs)provide extra benefits among other photoluminescence nanocrystals.Using photo-induced alignment technique,the QRs can be oriented in liquid crystal polymer matrix at a large scale.In this article,a 2D Dammann grating pattern,within“SKL”characters domains aligned QRs in composite film,was fabricated by multi-step photo exposure using several photo masks,and a continuous geometric lens profile pattern aligned QRs was realized by the single step polarization converting holographic irradiation method.Both polarized optical microscope and fluorescence microscope are employed to determine the liquid crystal director profiles and QRs anisotropic excitation properties.We have been able to orient the QRs in fine binary and continuous patterns that confirms the strong quantum rod aligning ability of the proposed method.Thus,the proposed approach paves a way for photoinduced flexible QRs alignments to provide a highly specific and difficult-to-replicate security application at a large scale.展开更多
A deep learning-based automated Kirkpatrick-Baez mirror alignment method is proposed for synchrotron radiation.We trained a convolutional neural network(CNN)on simulated and experimental imaging data of a focusing sys...A deep learning-based automated Kirkpatrick-Baez mirror alignment method is proposed for synchrotron radiation.We trained a convolutional neural network(CNN)on simulated and experimental imaging data of a focusing system.Instead of learning directly from bypass images,we use a scatterer for X-ray modulation and speckle generation for image feature enhancement.The smallest normalized root-mean-square error on the validation set was 4%.Compared with conventional alignment methods based on motor scanning and analyzer setups,the present method simplified the optical layout and estimated alignment errors using a single-exposure experiment.Single-shot misalignment error estimation only took 0.13 s,significantly outperforming conventional methods.We also demonstrated the effects of the beam quality and pretraining using experimental data.The proposed method exhibited strong robustness,can handle high-precision focusing systems with complex or dynamic wavefront errors,and provides an important basis for intelligent control of future synchrotron radiation beamlines.展开更多
Low-noise high-stability current sources have essential applications such as neutron electric dipole moment measurement and high-stability magnetometers. Previous studies mainly focused on frequency noise above 0.1 Hz...Low-noise high-stability current sources have essential applications such as neutron electric dipole moment measurement and high-stability magnetometers. Previous studies mainly focused on frequency noise above 0.1 Hz while less on the low-frequency noise/drift. We use double resonance alignment magnetometers(DRAMs) to measure and suppress the low-frequency noise of a homemade current source(CS) board. The CS board noise level is suppressed by about 10 times in the range of 0.001-0.1 Hz and is reduced to 100 n A/√Hz at 0.001 Hz. The relative stability of CS board can reach2.2 × 10^(-8). In addition, the DRAM shows a better resolution and accuracy than a commercial 7.5-digit multimeter when measuring our homemade CS board. Further, by combining the DRAM with a double resonance orientation magnetometer,we may realize a low-noise CS in the 0.001-1000 Hz range.展开更多
Stemming from the unique in-plane honeycomb lattice structure and the sp^(2)hybridized carbon atoms bonded by exceptionally strong carbon–carbon bonds,graphene exhibits remarkable anisotropic electrical,mechanical,an...Stemming from the unique in-plane honeycomb lattice structure and the sp^(2)hybridized carbon atoms bonded by exceptionally strong carbon–carbon bonds,graphene exhibits remarkable anisotropic electrical,mechanical,and thermal properties.To maximize the utilization of graphene’s in-plane properties,pre-constructed and aligned structures,such as oriented aerogels,films,and fibers,have been designed.The unique combination of aligned structure,high surface area,excellent electrical conductivity,mechanical stability,thermal conductivity,and porous nature of highly aligned graphene aerogels allows for tailored and enhanced performance in specific directions,enabling advancements in diverse fields.This review provides a comprehensive overview of recent advances in highly aligned graphene aerogels and their composites.It highlights the fabrication methods of aligned graphene aerogels and the optimization of alignment which can be estimated both qualitatively and quantitatively.The oriented scaffolds endow graphene aerogels and their composites with anisotropic properties,showing enhanced electrical,mechanical,and thermal properties along the alignment at the sacrifice of the perpendicular direction.This review showcases remarkable properties and applications of aligned graphene aerogels and their composites,such as their suitability for electronics,environmental applications,thermal management,and energy storage.Challenges and potential opportunities are proposed to offer new insights into prospects of this material.展开更多
A self-adaptive resource provisioning on demand is a critical factor in cloud computing.The selection of accurate amount of resources at run time is not easy due to dynamic nature of requests.Therefore,a self-adaptive...A self-adaptive resource provisioning on demand is a critical factor in cloud computing.The selection of accurate amount of resources at run time is not easy due to dynamic nature of requests.Therefore,a self-adaptive strategy of resources is required to deal with dynamic nature of requests based on run time change in workload.In this paper we proposed a Cloud-based Adaptive Resource Scheduling Strategy(CARSS)Framework that formally addresses these issues and is more expressive than traditional approaches.The decision making in CARSS is based on more than one factors.TheMAPE-K based framework determines the state of the resources based on their current utilization.Timed-Arc Petri Net(TAPN)is used to model system formally and behaviour is expressed in TCTL,while TAPAAL model checker verifies the underline properties of the system.展开更多
The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ...The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.展开更多
The bulk/surface states of semiconductor photocatalysts are imperative parameters to maneuver their performance by significantly affecting the key processes of photocatalysis including light absorption,separation of c...The bulk/surface states of semiconductor photocatalysts are imperative parameters to maneuver their performance by significantly affecting the key processes of photocatalysis including light absorption,separation of charge carrier,and surface site reaction.Recent years have witnessed the encouraging progress of self-adaptive bulk/surface engineered Bi_(x)O_(y)Br_(z) for photocatalytic applications spanning various fields.However,despite the maturity of current research,the interaction between the bulk/surface state and the performance of Bi_(x)O_(y)Br_(z) has not yet been fully understood and highlighted.In this regard,a timely tutorial overview is quite urgent to summarize the most recent key progress and outline developing obstacles in this exciting area.Herein,the structural characteristics and fundamental principles of Bi_(x)O_(y)Br_(z)for driving photocatalytic reaction as well as related key issues are firstly reviewed.Then,we for the first time summarized different self-adaptive engineering processes over Bi_(x)O_(y)Br_(z)followed by a classification of the generation approaches towards diverse Bi_(x)O_(y)Br_(z)materials.The features of different strategies,the up-to-date characterization techniques to detect bulk/surface states,and the effect of bulk/surface states on improving the photoactivity of Bi_(x)O_(y)Br_(z)in expanded applications are further discussed.Finally,the present research status,challenges,and future research opportunities of self-adaptive bulk/surface engineered Bi_(x)O_(y)Br_(z)are prospected.It is anticipated that this critical review can trigger deeper investigations and attract upcoming innovative ideas on the rational design of Bi_(x)O_(y)Br_(z)-based photocatalysts.展开更多
Wireless sensor networks (WSNs) operate in complex and harshenvironments;thus, node faults are inevitable. Therefore, fault diagnosis ofthe WSNs node is essential. Affected by the harsh working environment ofWSNs and ...Wireless sensor networks (WSNs) operate in complex and harshenvironments;thus, node faults are inevitable. Therefore, fault diagnosis ofthe WSNs node is essential. Affected by the harsh working environment ofWSNs and wireless data transmission, the data collected by WSNs containnoisy data, leading to unreliable data among the data features extracted duringfault diagnosis. To reduce the influence of unreliable data features on faultdiagnosis accuracy, this paper proposes a belief rule base (BRB) with a selfadaptivequality factor (BRB-SAQF) fault diagnosis model. First, the datafeatures required for WSN node fault diagnosis are extracted. Second, thequality factors of input attributes are introduced and calculated. Third, themodel inference process with an attribute quality factor is designed. Fourth,the projection covariance matrix adaptation evolution strategy (P-CMA-ES)algorithm is used to optimize the model’s initial parameters. Finally, the effectivenessof the proposed model is verified by comparing the commonly usedfault diagnosis methods for WSN nodes with the BRB method consideringstatic attribute reliability (BRB-Sr). The experimental results show that BRBSAQFcan reduce the influence of unreliable data features. The self-adaptivequality factor calculation method is more reasonable and accurate than thestatic attribute reliability method.展开更多
With the rapid development of emerging 5G and beyond(B5G),Unmanned Aerial Vehicles(UAVs)are increasingly important to improve the performance of dense cellular networks.As a conventional metric,coverage probability ha...With the rapid development of emerging 5G and beyond(B5G),Unmanned Aerial Vehicles(UAVs)are increasingly important to improve the performance of dense cellular networks.As a conventional metric,coverage probability has been widely studied in communication systems due to the increasing density of users and complexity of the heterogeneous environment.In recent years,stochastic geometry has attracted more attention as a mathematical tool for modeling mobile network systems.In this paper,an analytical approach to the coverage probability analysis of UAV-assisted cellular networks with imperfect beam alignment has been proposed.An assumption was considered that all users are distributed according to Poisson Cluster Process(PCP)around base stations,in particular,Thomas Cluster Process(TCP).Using thismodel,the impact of beam alignment errors on the coverage probabilitywas investigated.Initially,the ProbabilityDensity Function(PDF)of directional antenna gain between the user and its serving base station was obtained.Then,association probability with each tier was achieved.A tractable expression was derived for coverage probability in both Line-of-Sight(LoS)andNon-Line-of-Sight(NLoS)condition links.Numerical results demonstrated that at low UAVs altitude,beam alignment errors significantly degrade coverage performance.Moreover,for a small cluster size,alignment errors do not necessarily affect the coverage performance.展开更多
Unmanned Aerial Vehicles(UAVs)are widely used and meet many demands in military and civilian fields.With the continuous enrichment and extensive expansion of application scenarios,the safety of UAVs is constantly bein...Unmanned Aerial Vehicles(UAVs)are widely used and meet many demands in military and civilian fields.With the continuous enrichment and extensive expansion of application scenarios,the safety of UAVs is constantly being challenged.To address this challenge,we propose algorithms to detect anomalous data collected from drones to improve drone safety.We deployed a one-class kernel extreme learning machine(OCKELM)to detect anomalies in drone data.By default,OCKELM uses the radial basis(RBF)kernel function as the kernel function of themodel.To improve the performance ofOCKELM,we choose a TriangularGlobalAlignmentKernel(TGAK)instead of anRBF Kernel and introduce the Fast Independent Component Analysis(FastICA)algorithm to reconstruct UAV data.Based on the above improvements,we create a novel anomaly detection strategy FastICA-TGAK-OCELM.The method is finally validated on the UCI dataset and detected on the Aeronautical Laboratory Failures and Anomalies(ALFA)dataset.The experimental results show that compared with other methods,the accuracy of this method is improved by more than 30%,and point anomalies are effectively detected.展开更多
文摘Achieving optimal alignment in total knee arthroplasty(TKA) is a critical factor in ensuring optimal outcomes and long-term implant survival. Traditionally, mechanical alignment has been favored to achieve neutral postoperative joint alignment. However, contemporary approaches, such as kinematic alignments and hybrid techniques including adjusted mechanical, restricted kinematic, inverse kinematic, and functional alignments, are gaining attention for their ability to restore native joint kinematics and anatomical alignment, potentially leading to enhanced functional outcomes and greater patient satisfaction. The ongoing debate on optimal alignment strategies considers the following factors: long-term implant durability, functional improvement, and resolution of individual anatomical variations. Furthermore, advancements of computer-navigated and robotic-assisted surgery have augmented the precision in implant positioning and objective measurements of soft tissue balance. Despite ongoing debates on balancing implant longevity and functional outcomes, there is an increasing advocacy for personalized alignment strategies that are tailored to individual anatomical variations. This review evaluates the spectrum of various alignment techniques in TKA, including mechanical alignment, patient-specific kinematic approaches, and emerging hybrid methods. Each technique is scrutinized based on its fundamental principles, procedural techniques, inherent advantages, and potential limitations, while identifying significant clinical gaps that underscore the need for further investigation.
基金supported in part by NSF of Shaanxi Province under Grant 2021JM-143the Fundamental Research Funds for the Central Universities under Grant JB211502+5 种基金the Project of Key Laboratory of Science&Technology on Communication Network under Grant 6142104200412the National Natural Science Foundation of China under Grant 62072351the Academy of Finland under Grant 308087,Grant 335262 and Grant 345072the Shaanxi Innovation Team Project under Grant 2018TD-007the 111 Project under Grant B16037,JSPS KAKENHI Grant Number JP20K14742the Project of Cyber Security Establishment with Inter University Cooperation.
文摘In wireless communication networks,mobile users in overlapping areas may experience severe interference,therefore,designing effective Interference Management(IM)methods is crucial to improving network performance.However,when managing multiple disturbances from the same source,it may not be feasible to use existing IM methods such as Interference Alignment(IA)and Interference Steering(IS)exclusively.It is because with IA,the aligned interference becomes indistinguishable at its desired Receiver(Rx)under the cost constraint of Degrees-of-Freedom(DoF),while with IS,more transmit power will be consumed in the direct and repeated application of IS to each interference.To remedy these deficiencies,Interference Alignment Steering(IAS)is proposed by incorporating IA and IS and exploiting their advantages in IM.With IAS,the interfering Transmitter(Tx)first aligns one interference incurred by the transmission of one data stream to a one-dimensional subspace orthogonal to the desired transmission at the interfered Rx,and then the remaining interferences are treated as a whole and steered to the same subspace as the aligned interference.Moreover,two improved versions of IAS,i.e.,IAS with Full Adjustment at the Interfering Tx(IAS-FAIT)and Interference Steering and Alignment(ISA),are presented.The former considers the influence of IA on the interfering user-pair's performance.The orthogonality between the desired signals at the interfered Rx can be maintained by adjusting the spatial characteristics of all interferences and the aligned interference components,thus ensuring the Spectral Efficiency(SE)of the interfering communication pairs.Under ISA,the power cost for IS at the interfered Tx is minimized,hence improving SE performance of the interfered communication-pairs.Since the proposed methods are realized at the interfering and interfered Txs cooperatively,the expenses of IM are shared by both communication-pairs.Our in-depth simulation results show that joint use of IA and IS can effectively manage multiple disturbances from the same source and improve the system's SE.
基金supported by Beijing Insititute of Technology Research Fund Program for Young Scholars(2020X04104)。
文摘In this paper,an improved spatio-temporal alignment measurement method is presented to address the inertial matching measurement of hull deformation under the coexistence of time delay and large misalignment angle.Large misalignment angle and time delay often occur simultaneously and bring great challenges to the accurate measurement of hull deformation in space and time.The proposed method utilizes coarse alignment with large misalignment angle and time delay estimation of inertial measurement unit modeling to establish a brand-new spatiotemporal aligned hull deformation measurement model.In addition,two-step loop control is designed to ensure the accurate description of dynamic deformation angle and static deformation angle by the time-space alignment method of hull deformation.The experiments illustrate that the proposed method can effectively measure the hull deformation angle when time delay and large misalignment angle coexist.
基金supported by the National Natural Science Foundation of China(No.11975227)。
文摘Beams typically do not travel through the magnet centers because of errors in storage rings.The beam deviating from the quadrupole centers is affected by additional dipole fields due to magnetic field feed-down.Beam-based alignment(BBA)is often performed to determine a golden orbit where the beam circulates around the quadrupole center axes.For storage rings with many quadrupoles,the conventional BBA procedure is time-consuming,particularly in the commissioning phase,because of the necessary iterative process.In addition,the conventional BBA method can be affected by strong coupling and the nonlinearity of the storage ring optics.In this study,a novel method based on a neural network was proposed to determine the golden orbit in a much shorter time with reasonable accuracy.This golden orbit can be used directly for operation or adopted as a starting point for conventional BBA.The method was demonstrated in the HLS-II storage ring for the first time through simulations and online experiments.The results of the experiments showed that the golden orbit obtained using this new method was consistent with that obtained using the conventional BBA.The development of this new method and the corresponding experiments are reported in this paper.
基金This work was supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2022R1C1C1008831).This work was also supported by the Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Ministry of Trade,Industry and Energy of Korea(No.RS-2023-00244330).S J P was supported by Basic Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2018R1A6A1A03025526).
文摘Amid the growing interest in triboelectric nanogenerators(TENGs)as novel energy-harvesting devices,several studies have focused on direct current(DC)TENGs to generate a stable DC output for operating electronic devices.However,owing to the working mechanisms of conventional DC TENGs,generating a stable DC output from reciprocating motion remains a challenge.Accordingly,we propose a bidirectional rotating DC TENG(BiR-TENG),which can generate DC outputs,regardless of the direction of rotation,from reciprocating motions.The distinct design of the BiR-TENG enables the mechanical rectification of the alternating current output into a rotational-direction-dependent DC output.Furthermore,it allows the conversion of the rotational-direction-dependent DC output into a unidirectional DC output by adapting the configurations depending on the rotational direction.Owing to these tailored design strategies and subsequent optimizations,the BiR-TENG could generate an effective unidirectional DC output.Applications of the BiR-TENG for the reciprocating motions of swinging doors and waves were demonstrated by harnessing this output.This study demonstrates the potential of the BiR-TENG design strategy as an effective and versatile solution for energy harvesting from reciprocating motions,highlighting the suitability of DC outputs as an energy source for electronic devices.
基金funded by the Fujian Province Science and Technology Plan,China(Grant Number 2019H0017).
文摘Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same granularity,segmenting them into different granularity events can effectively mitigate the impact of varying time scales on prediction accuracy.However,these events of varying granularity frequently intersect with each other,which may possess unequal durations.Even minor differences can result in significant errors when matching time series with future trends.Besides,directly using matched events but unaligned events as state vectors in machine learning-based prediction models can lead to insufficient prediction accuracy.Therefore,this paper proposes a short-term forecasting method for time series based on a multi-granularity event,MGE-SP(multi-granularity event-based short-termprediction).First,amethodological framework for MGE-SP established guides the implementation steps.The framework consists of three key steps,including multi-granularity event matching based on the LTF(latest time first)strategy,multi-granularity event alignment using a piecewise aggregate approximation based on the compression ratio,and a short-term prediction model based on XGBoost.The data from a nationwide online car-hailing service in China ensures the method’s reliability.The average RMSE(root mean square error)and MAE(mean absolute error)of the proposed method are 3.204 and 2.360,lower than the respective values of 4.056 and 3.101 obtained using theARIMA(autoregressive integratedmoving average)method,as well as the values of 4.278 and 2.994 obtained using k-means-SVR(support vector regression)method.The other experiment is conducted on stock data froma public data set.The proposed method achieved an average RMSE and MAE of 0.836 and 0.696,lower than the respective values of 1.019 and 0.844 obtained using the ARIMA method,as well as the values of 1.350 and 1.172 obtained using the k-means-SVR method.
基金the State Grid Liaoning Electric Power Supply Co.,Ltd.(Research on Scheduling Decision Technology Based on Interactive Reinforcement Learning for Adapting High Proportion of New Energy,No.2023YF-49).
文摘Traditional optimal scheduling methods are limited to accurate physical models and parameter settings, which aredifficult to adapt to the uncertainty of source and load, and there are problems such as the inability to make dynamicdecisions continuously. This paper proposed a dynamic economic scheduling method for distribution networksbased on deep reinforcement learning. Firstly, the economic scheduling model of the new energy distributionnetwork is established considering the action characteristics of micro-gas turbines, and the dynamic schedulingmodel based on deep reinforcement learning is constructed for the new energy distribution network system with ahigh proportion of new energy, and the Markov decision process of the model is defined. Secondly, Second, for thechanging characteristics of source-load uncertainty, agents are trained interactively with the distributed networkin a data-driven manner. Then, through the proximal policy optimization algorithm, agents adaptively learn thescheduling strategy and realize the dynamic scheduling decision of the new energy distribution network system.Finally, the feasibility and superiority of the proposed method are verified by an improved IEEE 33-node simulationsystem.
文摘In this paper, we investigate a 1D pressureless Euler-alignment system with a non-local alignment term, describing a kind of self-organizing problem for flocking. As a result, by the transport equation theory and Lagrange coordinate transformation, the local well-posedness of the solutions for the 1D pressureless Euler-alignment in Besov spaces with 1≤p∞ is established. Next, the ill-posedness of the solutions for this model in Besov spaces with 1≤p and is also deduced. Finally, the precise blow-up criteria of the solutions for this system is presented in Besov spaces with 1≤p .
文摘Observation of unexpectedly large global spin alignment of φ vector mesons in non-central heavy-ion collisions by STAR experiment may reveal the non-perturbative nature of quark interaction in hot matter through fluctuating strong force field with short correlation length.
基金This work was financially supported by the National Key Research and Development Program of China(No.2018YFA0703003)the National Natural Science Foundation of China(No.52125501)+1 种基金the Key Research Project of Shaanxi Province(Nos.2021LLRH-08,2020GXLH-Y-021,and 2021GXLH-Z-028)the Youth InnovationTeam of Shaanxi Universities and the Fundamental Research Funds for the Central Universities.
文摘Bioprinting has been widely investigated for tissue engineering and regenerative medicine applications.However,it is still difficult to reconstruct the complex native cell arrangement due to the limited printing resolution of conventional bioprinting techniques such as extrusion-and inkjet-based printing.Recently,an electrohydrodynamic(EHD)bioprinting strategy was reported for the precise deposition of well-organized cell-laden constructs with microscale filament size,whereas few studies have been devoted to developing bioinks that can be applied for EHD bioprinting and simultaneously support cell spreading.This study describes functionalized alginate-based bioinks for microscale EHD bioprinting using peptide grafting and fibrin incorporation,which leads to high cell viability(>90%)and cell spreading.The printed filaments can be further refined to as small as 30μm by incorporating polyoxyethylene and remained stable over one week when exposed to an aqueous environment.By utilizing the presented alginate-based bioinks,layer-specific cell alignment along the printing struts could be observed inside the EHD-printed microscale filaments,which allows fabricating living constructs with cell-scale filament resolution for guided cellular orientation.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030009)the National Natural Science Foundation of China(Nos.62005180,61935013)+2 种基金the Zhejiang Lab Open Research Project(No.K2022MG0AB01)RGC of Hong Kong S.A.R.(No.26202019)the State Key Laboratory of Advanced Displays and Optoelectronics Technologies(HKUST)(No.ITC-PSKL12EG02)。
文摘The anisotropic absorption and emission from semiconductor CdSe/CdS quantum rods(QRs)provide extra benefits among other photoluminescence nanocrystals.Using photo-induced alignment technique,the QRs can be oriented in liquid crystal polymer matrix at a large scale.In this article,a 2D Dammann grating pattern,within“SKL”characters domains aligned QRs in composite film,was fabricated by multi-step photo exposure using several photo masks,and a continuous geometric lens profile pattern aligned QRs was realized by the single step polarization converting holographic irradiation method.Both polarized optical microscope and fluorescence microscope are employed to determine the liquid crystal director profiles and QRs anisotropic excitation properties.We have been able to orient the QRs in fine binary and continuous patterns that confirms the strong quantum rod aligning ability of the proposed method.Thus,the proposed approach paves a way for photoinduced flexible QRs alignments to provide a highly specific and difficult-to-replicate security application at a large scale.
基金supported by the National Key Research and Development Program(No.2021YFA1601000)National Natural Science Foundation of China(No.12175294)Natural Science Foundation of Shanghai,China(No.21ZR1471500).
文摘A deep learning-based automated Kirkpatrick-Baez mirror alignment method is proposed for synchrotron radiation.We trained a convolutional neural network(CNN)on simulated and experimental imaging data of a focusing system.Instead of learning directly from bypass images,we use a scatterer for X-ray modulation and speckle generation for image feature enhancement.The smallest normalized root-mean-square error on the validation set was 4%.Compared with conventional alignment methods based on motor scanning and analyzer setups,the present method simplified the optical layout and estimated alignment errors using a single-exposure experiment.Single-shot misalignment error estimation only took 0.13 s,significantly outperforming conventional methods.We also demonstrated the effects of the beam quality and pretraining using experimental data.The proposed method exhibited strong robustness,can handle high-precision focusing systems with complex or dynamic wavefront errors,and provides an important basis for intelligent control of future synchrotron radiation beamlines.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12174446 and 61671458)。
文摘Low-noise high-stability current sources have essential applications such as neutron electric dipole moment measurement and high-stability magnetometers. Previous studies mainly focused on frequency noise above 0.1 Hz while less on the low-frequency noise/drift. We use double resonance alignment magnetometers(DRAMs) to measure and suppress the low-frequency noise of a homemade current source(CS) board. The CS board noise level is suppressed by about 10 times in the range of 0.001-0.1 Hz and is reduced to 100 n A/√Hz at 0.001 Hz. The relative stability of CS board can reach2.2 × 10^(-8). In addition, the DRAM shows a better resolution and accuracy than a commercial 7.5-digit multimeter when measuring our homemade CS board. Further, by combining the DRAM with a double resonance orientation magnetometer,we may realize a low-noise CS in the 0.001-1000 Hz range.
基金The financial support by the National Natural Science Foundation of China(No.52002020)is acknowledged.
文摘Stemming from the unique in-plane honeycomb lattice structure and the sp^(2)hybridized carbon atoms bonded by exceptionally strong carbon–carbon bonds,graphene exhibits remarkable anisotropic electrical,mechanical,and thermal properties.To maximize the utilization of graphene’s in-plane properties,pre-constructed and aligned structures,such as oriented aerogels,films,and fibers,have been designed.The unique combination of aligned structure,high surface area,excellent electrical conductivity,mechanical stability,thermal conductivity,and porous nature of highly aligned graphene aerogels allows for tailored and enhanced performance in specific directions,enabling advancements in diverse fields.This review provides a comprehensive overview of recent advances in highly aligned graphene aerogels and their composites.It highlights the fabrication methods of aligned graphene aerogels and the optimization of alignment which can be estimated both qualitatively and quantitatively.The oriented scaffolds endow graphene aerogels and their composites with anisotropic properties,showing enhanced electrical,mechanical,and thermal properties along the alignment at the sacrifice of the perpendicular direction.This review showcases remarkable properties and applications of aligned graphene aerogels and their composites,such as their suitability for electronics,environmental applications,thermal management,and energy storage.Challenges and potential opportunities are proposed to offer new insights into prospects of this material.
文摘A self-adaptive resource provisioning on demand is a critical factor in cloud computing.The selection of accurate amount of resources at run time is not easy due to dynamic nature of requests.Therefore,a self-adaptive strategy of resources is required to deal with dynamic nature of requests based on run time change in workload.In this paper we proposed a Cloud-based Adaptive Resource Scheduling Strategy(CARSS)Framework that formally addresses these issues and is more expressive than traditional approaches.The decision making in CARSS is based on more than one factors.TheMAPE-K based framework determines the state of the resources based on their current utilization.Timed-Arc Petri Net(TAPN)is used to model system formally and behaviour is expressed in TCTL,while TAPAAL model checker verifies the underline properties of the system.
基金financially supported by the National Natural Science Foundation of China (51971080)the Shenzhen Bureau of Science,Technology and Innovation Commission (GXWD20201230155427003-20200730151200003 and JSGG20200914113601003)。
文摘The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.
基金the National Natural Science Foundation of China(22102126)the Natural Science Foundation of Hubei Province(2020CFB124)+2 种基金the Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials(Wuhan University of Science and Technology)the Hubei Provincial Department of Education for the"Chutian Scholar"programthe support of the"CUG Scholar"Scientific Research Funds at China University of Geosciences(Wuhan)(Project No.2022187)。
文摘The bulk/surface states of semiconductor photocatalysts are imperative parameters to maneuver their performance by significantly affecting the key processes of photocatalysis including light absorption,separation of charge carrier,and surface site reaction.Recent years have witnessed the encouraging progress of self-adaptive bulk/surface engineered Bi_(x)O_(y)Br_(z) for photocatalytic applications spanning various fields.However,despite the maturity of current research,the interaction between the bulk/surface state and the performance of Bi_(x)O_(y)Br_(z) has not yet been fully understood and highlighted.In this regard,a timely tutorial overview is quite urgent to summarize the most recent key progress and outline developing obstacles in this exciting area.Herein,the structural characteristics and fundamental principles of Bi_(x)O_(y)Br_(z)for driving photocatalytic reaction as well as related key issues are firstly reviewed.Then,we for the first time summarized different self-adaptive engineering processes over Bi_(x)O_(y)Br_(z)followed by a classification of the generation approaches towards diverse Bi_(x)O_(y)Br_(z)materials.The features of different strategies,the up-to-date characterization techniques to detect bulk/surface states,and the effect of bulk/surface states on improving the photoactivity of Bi_(x)O_(y)Br_(z)in expanded applications are further discussed.Finally,the present research status,challenges,and future research opportunities of self-adaptive bulk/surface engineered Bi_(x)O_(y)Br_(z)are prospected.It is anticipated that this critical review can trigger deeper investigations and attract upcoming innovative ideas on the rational design of Bi_(x)O_(y)Br_(z)-based photocatalysts.
基金supported by the Postdoctoral Science Foundation of China under Grant No.2020M683736partly by the Teaching reform project of higher education in Heilongjiang Province under Grant No.SJGY20210456+2 种基金partly by the Natural Science Foundation of Heilongjiang Province of China under Grant No.LH2021F038partly by the Haiyan foundation of Harbin Medical University Cancer Hospital under Grant No.JJMS2021-28partly by the graduate academic innovation project of Harbin Normal University under Grant Nos.HSDSSCX2022-17,HSDSSCX2022-18 and HSDSSCX2022-19.
文摘Wireless sensor networks (WSNs) operate in complex and harshenvironments;thus, node faults are inevitable. Therefore, fault diagnosis ofthe WSNs node is essential. Affected by the harsh working environment ofWSNs and wireless data transmission, the data collected by WSNs containnoisy data, leading to unreliable data among the data features extracted duringfault diagnosis. To reduce the influence of unreliable data features on faultdiagnosis accuracy, this paper proposes a belief rule base (BRB) with a selfadaptivequality factor (BRB-SAQF) fault diagnosis model. First, the datafeatures required for WSN node fault diagnosis are extracted. Second, thequality factors of input attributes are introduced and calculated. Third, themodel inference process with an attribute quality factor is designed. Fourth,the projection covariance matrix adaptation evolution strategy (P-CMA-ES)algorithm is used to optimize the model’s initial parameters. Finally, the effectivenessof the proposed model is verified by comparing the commonly usedfault diagnosis methods for WSN nodes with the BRB method consideringstatic attribute reliability (BRB-Sr). The experimental results show that BRBSAQFcan reduce the influence of unreliable data features. The self-adaptivequality factor calculation method is more reasonable and accurate than thestatic attribute reliability method.
基金supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number(PNURSP2022R323)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia,and Taif University Researchers Supporting Project Number TURSP-2020/34,Taif,Saudi Arabia.
文摘With the rapid development of emerging 5G and beyond(B5G),Unmanned Aerial Vehicles(UAVs)are increasingly important to improve the performance of dense cellular networks.As a conventional metric,coverage probability has been widely studied in communication systems due to the increasing density of users and complexity of the heterogeneous environment.In recent years,stochastic geometry has attracted more attention as a mathematical tool for modeling mobile network systems.In this paper,an analytical approach to the coverage probability analysis of UAV-assisted cellular networks with imperfect beam alignment has been proposed.An assumption was considered that all users are distributed according to Poisson Cluster Process(PCP)around base stations,in particular,Thomas Cluster Process(TCP).Using thismodel,the impact of beam alignment errors on the coverage probabilitywas investigated.Initially,the ProbabilityDensity Function(PDF)of directional antenna gain between the user and its serving base station was obtained.Then,association probability with each tier was achieved.A tractable expression was derived for coverage probability in both Line-of-Sight(LoS)andNon-Line-of-Sight(NLoS)condition links.Numerical results demonstrated that at low UAVs altitude,beam alignment errors significantly degrade coverage performance.Moreover,for a small cluster size,alignment errors do not necessarily affect the coverage performance.
基金supported by the Natural Science Foundation of The Jiangsu Higher Education Institutions of China(Grant No.19JKB520031).
文摘Unmanned Aerial Vehicles(UAVs)are widely used and meet many demands in military and civilian fields.With the continuous enrichment and extensive expansion of application scenarios,the safety of UAVs is constantly being challenged.To address this challenge,we propose algorithms to detect anomalous data collected from drones to improve drone safety.We deployed a one-class kernel extreme learning machine(OCKELM)to detect anomalies in drone data.By default,OCKELM uses the radial basis(RBF)kernel function as the kernel function of themodel.To improve the performance ofOCKELM,we choose a TriangularGlobalAlignmentKernel(TGAK)instead of anRBF Kernel and introduce the Fast Independent Component Analysis(FastICA)algorithm to reconstruct UAV data.Based on the above improvements,we create a novel anomaly detection strategy FastICA-TGAK-OCELM.The method is finally validated on the UCI dataset and detected on the Aeronautical Laboratory Failures and Anomalies(ALFA)dataset.The experimental results show that compared with other methods,the accuracy of this method is improved by more than 30%,and point anomalies are effectively detected.