期刊文献+
共找到123篇文章
< 1 2 7 >
每页显示 20 50 100
Waterlogging risk assessment based on self-organizing map(SOM)artificial neural networks:a case study of an urban storm in Beijing 被引量:2
1
作者 LAI Wen-li WANG Hong-rui +2 位作者 WANG Cheng ZHANG Jie ZHAO Yong 《Journal of Mountain Science》 SCIE CSCD 2017年第5期898-905,共8页
Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annu... Due to rapid urbanization, waterlogging induced by torrential rainfall has become a global concern and a potential risk affecting urban habitant's safety. Widespread waterlogging disasters haveoccurred almost annuallyinthe urban area of Beijing, the capital of China. Based on a selforganizing map(SOM) artificial neural network(ANN), a graded waterlogging risk assessment was conducted on 56 low-lying points in Beijing, China. Social risk factors, such as Gross domestic product(GDP), population density, and traffic congestion, were utilized as input datasets in this study. The results indicate that SOM-ANNis suitable for automatically and quantitatively assessing risks associated with waterlogging. The greatest advantage of SOM-ANN in the assessment of waterlogging risk is that a priori knowledge about classification categories and assessment indicator weights is not needed. As a result, SOM-ANN can effectively overcome interference from subjective factors,producing classification results that are more objective and accurate. In this paper, the risk level of waterlogging in Beijing was divided into five grades. The points that were assigned risk grades of IV or Vwere located mainly in the districts of Chaoyang, Haidian, Xicheng, and Dongcheng. 展开更多
关键词 Waterlogging risk assessment self-organizing map(SOM) neural network Urban storm
原文传递
Constructing processing map of Ti40 alloy using artificial neural network 被引量:4
2
作者 孙宇 曾卫东 +3 位作者 赵永庆 张学敏 马雄 韩远飞 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第1期159-165,共7页
Based on the experimental data of Ti40 alloy obtained from Gleeble-1500 thermal simulator,an artificial neural network model of high temperature flow stress as a function of strain,strain rate and temperature was esta... Based on the experimental data of Ti40 alloy obtained from Gleeble-1500 thermal simulator,an artificial neural network model of high temperature flow stress as a function of strain,strain rate and temperature was established.In the network model,the input parameters of the model are strain,logarithm strain rate and temperature while flow stress is the output parameter.Multilayer perceptron(MLP) architecture with back-propagation algorithm is utilized.The present study achieves a good performance of the artificial neural network(ANN) model,and the predicted results are in agreement with experimental values.A processing map of Ti40 alloy is obtained with the flow stress predicted by the trained neural network model.The processing map developed by ANN model can efficiently track dynamic recrystallization and flow localization regions of Ti40 alloy during deforming.Subsequently,the safe and instable domains of hot working of Ti40 alloy are identified and validated through microstructural investigations. 展开更多
关键词 Ti40 alloy processing map artificial neural network
下载PDF
Application of Self-Organizing Feature Map Neural Network Based on K-means Clustering in Network Intrusion Detection 被引量:5
3
作者 Ling Tan Chong Li +1 位作者 Jingming Xia Jun Cao 《Computers, Materials & Continua》 SCIE EI 2019年第7期275-288,共14页
Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one... Due to the widespread use of the Internet,customer information is vulnerable to computer systems attack,which brings urgent need for the intrusion detection technology.Recently,network intrusion detection has been one of the most important technologies in network security detection.The accuracy of network intrusion detection has reached higher accuracy so far.However,these methods have very low efficiency in network intrusion detection,even the most popular SOM neural network method.In this paper,an efficient and fast network intrusion detection method was proposed.Firstly,the fundamental of the two different methods are introduced respectively.Then,the selforganizing feature map neural network based on K-means clustering(KSOM)algorithms was presented to improve the efficiency of network intrusion detection.Finally,the NSLKDD is used as network intrusion data set to demonstrate that the KSOM method can significantly reduce the number of clustering iteration than SOM method without substantially affecting the clustering results and the accuracy is much higher than Kmeans method.The Experimental results show that our method can relatively improve the accuracy of network intrusion and significantly reduce the number of clustering iteration. 展开更多
关键词 K-means clustering self-organizing feature map neural network network security intrusion detection NSL-KDD data set
下载PDF
Enhanced Self-Organizing Map Neural Network for DNA Sequence Classification
4
作者 Marghny Mohamed Abeer A. Al-Mehdhar +1 位作者 Mohamed Bamatraf Moheb R. Girgis 《Intelligent Information Management》 2013年第1期25-33,共9页
The artificial neural networks (ANNs), among different soft computing methodologies are widely used to meet the challenges thrown by the main objectives of data mining classification techniques, due to their robust, p... The artificial neural networks (ANNs), among different soft computing methodologies are widely used to meet the challenges thrown by the main objectives of data mining classification techniques, due to their robust, powerful, distributed, fault tolerant computing and capability to learn in a data-rich environment. ANNs has been used in several fields, showing high performance as classifiers. The problem of dealing with non numerical data is one major obstacle prevents using them with various data sets and several domains. Another problem is their complex structure and how hands to interprets. Self-Organizing Map (SOM) is type of neural systems that can be easily interpreted, but still can’t be used with non numerical data directly. This paper presents an enhanced SOM structure to cope with non numerical data. It used DNA sequences as the training dataset. Results show very good performance compared to other classifiers. For better evaluation both micro-array structure and their sequential representation as proteins were targeted as dataset accuracy is measured accordingly. 展开更多
关键词 BIOINFORMATICS artificial neural networks self-organizing map CLASSIFICATION SEQUENCE ALIGNMENT
下载PDF
3D Ice Shape Description Method Based on BLSOM Neural Network
5
作者 ZHU Bailiu ZUO Chenglin 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第S01期70-80,共11页
When checking the ice shape calculation software,its accuracy is judged based on the proximity between the calculated ice shape and the typical test ice shape.Therefore,determining the typical test ice shape becomes t... When checking the ice shape calculation software,its accuracy is judged based on the proximity between the calculated ice shape and the typical test ice shape.Therefore,determining the typical test ice shape becomes the key task of the icing wind tunnel tests.In the icing wind tunnel test of the tail wing model of a large amphibious aircraft,in order to obtain accurate typical test ice shape,the Romer Absolute Scanner is used to obtain the 3D point cloud data of the ice shape on the tail wing model.Then,the batch-learning self-organizing map(BLSOM)neural network is used to obtain the 2D average ice shape along the model direction based on the 3D point cloud data of the ice shape,while its tolerance band is calculated using the probabilistic statistical method.The results show that the combination of 2D average ice shape and its tolerance band can represent the 3D characteristics of the test ice shape effectively,which can be used as the typical test ice shape for comparative analysis with the calculated ice shape. 展开更多
关键词 icing wind tunnel test ice shape batch-learning self-organizing map neural network 3D point cloud
下载PDF
Artificial Neural Network for Misuse Detection 被引量:1
6
作者 Laheeb Mohammad Ibrahim 《通讯和计算机(中英文版)》 2010年第6期38-48,共11页
关键词 人工神经网络 滥用检测 ELMAN神经网络 入侵检测系统 计算机网络 攻击者 智能方法 网络流量
下载PDF
Pulse coding off-chip learning algorithm for memristive artificial neural network
7
作者 Ming-Jian Guo Shu-Kai Duan Li-Dan Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第7期648-656,共9页
Memristive neural network has attracted tremendous attention since the memristor array can perform parallel multiplyaccumulate calculation(MAC)operations and memory-computation operations as compared with digital CMOS... Memristive neural network has attracted tremendous attention since the memristor array can perform parallel multiplyaccumulate calculation(MAC)operations and memory-computation operations as compared with digital CMOS hardware systems.However,owing to the variability of the memristor,the implementation of high-precision neural network in memristive computation units is still difficult.Existing learning algorithms for memristive artificial neural network(ANN)is unable to achieve the performance comparable to high-precision by using CMOS-based system.Here,we propose an algorithm based on off-chip learning for memristive ANN in low precision.Training the ANN in the high-precision in digital CPUs and then quantifying the weight of the network to low precision,the quantified weights are mapped to the memristor arrays based on VTEAM model through using the pulse coding weight-mapping rule.In this work,we execute the inference of trained 5-layers convolution neural network on the memristor arrays and achieve an accuracy close to the inference in the case of high precision(64-bit).Compared with other algorithms-based off-chip learning,the algorithm proposed in the present study can easily implement the mapping process and less influence of the device variability.Our result provides an effective approach to implementing the ANN on the memristive hardware platform. 展开更多
关键词 off-chip learning mapping memristor array artificial neural network
原文传递
English-Chinese Neural Machine Translation Based on Self-organizing Mapping Neural Network and Deep Feature Matching
8
作者 Shu Ma 《IJLAI Transactions on Science and Engineering》 2024年第3期1-8,共8页
The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on s... The traditional Chinese-English translation model tends to translate some source words repeatedly,while mistakenly ignoring some words.Therefore,we propose a novel English-Chinese neural machine translation based on self-organizing mapping neural network and deep feature matching.In this model,word vector,two-way LSTM,2D neural network and other deep learning models are used to extract the semantic matching features of question-answer pairs.Self-organizing mapping(SOM)is used to classify and identify the sentence feature.The attention mechanism-based neural machine translation model is taken as the baseline system.The experimental results show that this framework significantly improves the adequacy of English-Chinese machine translation and achieves better results than the traditional attention mechanism-based English-Chinese machine translation model. 展开更多
关键词 Chinese-English translation model self-organizing mapping neural network Deep feature matching Deep learning
下载PDF
Assessing the performance of decision tree and neural network models in mapping soil properties 被引量:6
9
作者 Fatemeh HATEFFARD Payam DOLATI +1 位作者 Ahmad HEIDARI Ali Asghar ZOLFAGHARI 《Journal of Mountain Science》 SCIE CSCD 2019年第8期1833-1847,共15页
To build any spatial soil database, a set of environmental data including digital elevation model(DEM) and satellite images beside geomorphic landscape description are essentials. Such a database, integrates field obs... To build any spatial soil database, a set of environmental data including digital elevation model(DEM) and satellite images beside geomorphic landscape description are essentials. Such a database, integrates field observations and laboratory analyses data with the results obtained from qualitative and quantitative models. So far, various techniques have been developed for soil data processing. The performance of Artificial Neural Network(ANN) and Decision Tree(DT) models was compared to map out some soil attributes in Alborz Province, Iran. Terrain attributes derived from a DEM along with Landsat 8 ETM+, geomorphology map, and the routine laboratory analyses of the studied area were used as input data. The relationships between soil properties(including sand, silt, clay, electrical conductivity, organic carbon, and carbonates) and the environmental variables were assessed using the Pearson Correlation Coefficient and Principle Components Analysis. Slope, elevation, geomforms, carbonate index, stream network, wetness index, and the band’s number 2, 3, 4, and 5 were the most significantly correlated variables. ANN and DT did not show the same accuracy in predicting all parameters. The DT model showed higher performances in estimating sand(R^2=0.73), silt(R^2=0.70), clay(R^2=0.72), organic carbon(R^2=0.71), and carbonates(R^2=0.70). While the ANN model only showed higher performance in predicting soil electrical conductivity(R^2=0.95). The results showed that determination the best model to use, is dependent upon the relation between the considered soil properties with the environmental variables. However, the DT model showed more reasonable results than the ANN model in this study. The results showed that before using a certain model to predict variability of all soil parameters, it would be better to evaluate the efficiency of all possible models for choosing the best fitted model for each property. In other words, most of the developed models are sitespecific and may not be applicable to use for predicting other soil properties or other area. 展开更多
关键词 Digital SOIL mapPING SOIL properties environmental VARIABLES artificial neural network DECISION Tree
原文传递
Exploring deep learning for landslide mapping:A comprehensive review 被引量:1
10
作者 Zhi-qiang Yang Wen-wen Qi +1 位作者 Chong Xu Xiao-yi Shao 《China Geology》 CAS CSCD 2024年第2期330-350,共21页
A detailed and accurate inventory map of landslides is crucial for quantitative hazard assessment and land planning.Traditional methods relying on change detection and object-oriented approaches have been criticized f... A detailed and accurate inventory map of landslides is crucial for quantitative hazard assessment and land planning.Traditional methods relying on change detection and object-oriented approaches have been criticized for their dependence on expert knowledge and subjective factors.Recent advancements in highresolution satellite imagery,coupled with the rapid development of artificial intelligence,particularly datadriven deep learning algorithms(DL)such as convolutional neural networks(CNN),have provided rich feature indicators for landslide mapping,overcoming previous limitations.In this review paper,77representative DL-based landslide detection methods applied in various environments over the past seven years were examined.This study analyzed the structures of different DL networks,discussed five main application scenarios,and assessed both the advancements and limitations of DL in geological hazard analysis.The results indicated that the increasing number of articles per year reflects growing interest in landslide mapping by artificial intelligence,with U-Net-based structures gaining prominence due to their flexibility in feature extraction and generalization.Finally,we explored the hindrances of DL in landslide hazard research based on the above research content.Challenges such as black-box operations and sample dependence persist,warranting further theoretical research and future application of DL in landslide detection. 展开更多
关键词 Landslide mapping Quantitative hazard assessment Deep learning artificial intelligence neural network Big data Geological hazard survery engineering
下载PDF
Comparison of Electric Load Forecasting between Using SOM and MLP Neural Network 被引量:1
11
作者 Sergio Valero Carolina Senabre +3 位作者 Miguel Lopez Juan Aparicio Antonio Gabaldon Mario Ortiz 《Journal of Energy and Power Engineering》 2012年第3期411-417,共7页
Electric load forecasting has been a major area of research in the last decade since the production of accurate short-term forecasts for electricity loads has proven to be a key to success for many of the decision mak... Electric load forecasting has been a major area of research in the last decade since the production of accurate short-term forecasts for electricity loads has proven to be a key to success for many of the decision makers in the energy sector, from power generation to operation of the system. The objective of this research is to analyze the capacity of the MLP (multilayer perceptron neural network) versus SOM (self-organizing map neural network) for short-term load forecasting. The MLP is one of the most commonly used networks. It can be used for classification problems, model construction, series forecasting and discrete control. On the other hand, the SOM is a type of artificial neural network that is trained using unsupervised data to produce a low-dimensional, discretized representation of an input space of training samples in a cell map. Historical data of real global load demand were used for the research. Both neural models provide good prediction results, but the results obtained with the SOM maps are markedly better Also the main advantage of SOM maps is that they reach good results as a network unsupervised. It is much easier to train and interpret the results. 展开更多
关键词 Short-term load forecasting SOM self-organizing map multilayer perceptron neural network electricity markets.
下载PDF
Self-organizing feature map neural network classification of the ASTER data based on wavelet fusion 被引量:7
12
作者 HASI Bagan MA Jianwen LI Qiqing HAN Xiuzhen LIU Zhili 《Science China Earth Sciences》 SCIE EI CAS 2004年第7期651-658,共8页
Most methods for classification of remote sensing data are based on the statistical parameter evaluation with the assumption that the samples obey the normal distribution. How-ever, more accurate classification result... Most methods for classification of remote sensing data are based on the statistical parameter evaluation with the assumption that the samples obey the normal distribution. How-ever, more accurate classification results can be obtained with the neural network method through getting knowledge from environments and adjusting the parameter (or weight) step by step by a specific measurement. This paper focuses on the double-layer structured Kohonen self-organizing feature map (SOFM), for which all neurons within the two layers are linked one another and those of the competition layers are linked as well along the sides. Therefore, the self-adapting learning ability is improved due to the effective competition and suppression in this method. The SOFM has become a hot topic in the research area of remote sensing data classi-fication. The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) is a new satellite-borne remote sensing instrument with three 15-m resolution bands and three 30-m resolution bands at the near infrared. The ASTER data of Dagang district, Tianjin Munici-pality is used as the test data in this study. At first, the wavelet fusion is carried out to make the spatial resolutions of the ASTER data identical; then, the SOFM method is applied to classifying the land cover types. The classification results are compared with those of the maximum likeli-hood method (MLH). As a consequence, the classification accuracy of SOFM increases about by 7% in general and, in particular, it is almost as twice as that of the MLH method in the town. 展开更多
关键词 classification WAVELET fusion self-organizing neural network FEATURE map (SOFM) ASTER data.
原文传递
Hot deformation behavior and processing maps of Mg-Zn-Cu-Zr magnesium alloy 被引量:7
13
作者 余晖 于化顺 +2 位作者 Young-min KIM Bong-sun YOU 闵光辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期756-764,共9页
The deformation behaviors of a new quaternary Mg-6Zn-1.5Cu-0.5Zr alloy at temperatures of 523-673 K and strain rates of 0.001-1 s-1 were studied by compressive tests using a Gleeble 3800 thermal-simulator.The results ... The deformation behaviors of a new quaternary Mg-6Zn-1.5Cu-0.5Zr alloy at temperatures of 523-673 K and strain rates of 0.001-1 s-1 were studied by compressive tests using a Gleeble 3800 thermal-simulator.The results show that the flow stress increases as the deformation temperature decreases or as the strain rate increases.A strain-dependent constitutive equation and a feed-forward back-propagation artificial neural network were used to predict flow stress,which showed good agreement with experimental data.The processing map suggests that the domains of 643-673 K and 0.001-0.01 s-1 are corresponded to optimum conditions for hot working of the T4-treated Mg-6Zn-1.5Cu-0.5Zr alloy. 展开更多
关键词 Mg alloy Cu addition flow stress deformation behavior constitutive equation artificial neural network processing map
下载PDF
Modified artificial neural network model with an explicit expression to describe flow behavior and processing maps of Ti2AlNb-based superalloy
14
作者 Yan-qi Fu Qing Zhao +1 位作者 Man-qian Lv Zhen-shan Cui 《Journal of Iron and Steel Research International》 SCIE EI CSCD 2021年第11期1451-1462,共12页
The elevated-temperature deformation behavior of Ti2AlNb superalloy was observed by isothermal compression experiments in a wide range of temperatures(950–1200°C)and strain rates(0.001–10 s^(-1)).The flow behav... The elevated-temperature deformation behavior of Ti2AlNb superalloy was observed by isothermal compression experiments in a wide range of temperatures(950–1200°C)and strain rates(0.001–10 s^(-1)).The flow behavior is nonlinear,strongly coupled,and multivariable.The constitutive models,namely the double multivariate nonlinear regression model,artificial neural network model,and modified artificial neural network model with an explicit expression,were applied to describe the Ti2AlNb superalloy plastic deformation behavior.The comparative predictability of those constitutive models was further evaluated by considering the correlation coefficient and average absolute relative error.The comparative results show that the modified artificial network model can describe the flow stress of Ti2AlNb superalloy more accurately than the other developed constitutive models.The explicit expression obtained from the modified artificial neural network model can be directly used for finite element simulation.The modified artificial neural network model solves the problems that the double multivariate nonlinear regression model cannot describe the nonlinear,strongly coupled,and multivariable flow behavior of Ti2AlNb superalloy accurately,and the artificial neural network model cannot be embedded into the finite element software directly.However,the modified artificial neural network model is mainly dependent on the quantity of high-quality experimental data and characteristic variables,and the modified artificial neural network model has not physical meanings.Besides,the processing maps were applied to obtain the optimum processing parameters. 展开更多
关键词 Modified artificial neural network model Ti2AlNb superalloy Double multivariate nonlinear regression model Explicit expression Processing map
原文传递
Multiple input self-organizing-map ResNet model for optimization of petroleum refinery conversion units
15
作者 Jiannan Zhu Vladimir Mahalec +2 位作者 Chen Fan Minglei Yang Feng Qian 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2023年第6期759-771,共13页
This work introduces a deep-learning network,i.e.,multi-input self-organizing-map ResNet(MISR),for modeling refining units comprised of two reactors and a separation train.The model is comprised of self-organizing-map... This work introduces a deep-learning network,i.e.,multi-input self-organizing-map ResNet(MISR),for modeling refining units comprised of two reactors and a separation train.The model is comprised of self-organizing-map and the neural network parts.The self-organizing-map part maps the input data into multiple two-dimensional planes and sends them to the neural network part.In the neural network part,residual blocks enhance the convergence and accuracy,ensuring that the structure will not be overfitted easily.Development of the MISR model of hydrocracking unit also benefits from the utilization of prior knowledge of the importance of the input variables for predicting properties of the products.The results show that the proposed MISR structure predicts more accurately the product yields and properties than the previously introduced self-organizing-map convolutional neural network model,thus leading to more accurate optimization of the hydrocracker operation.Moreover,the MISR model has smoother error convergence than the previous model.Optimal operating conditions have been determined via multi-round-particle-swarm and differential evolution algorithms.Numerical experiments show that the MISR model is suitable for modeling nonlinear conversion units which are often encountered in refining and petrochemical plants. 展开更多
关键词 HYDROCRACKING convolutional neural networks self-organizing map deep learning data-driven optimization
原文传递
GIS and ANN model for landslide susceptibility mapping 被引量:2
16
作者 XU Zeng-wang (State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China) 《Journal of Geographical Sciences》 SCIE CSCD 2001年第3期374-381,共8页
Landslide hazard is as the probability of occurrence of a potentially damaging landslide phenomenon within specified period of time and within a given area. The susceptibility map provides the relative spatial probabi... Landslide hazard is as the probability of occurrence of a potentially damaging landslide phenomenon within specified period of time and within a given area. The susceptibility map provides the relative spatial probability of landslides occurrence. A study is presented of the application of GIS and artificial neural network model to landslide susceptibility mapping, with particular reference to landslides on natural terrain in this paper. The method has been applied to Lantau Island, the largest outlying island within the territory of Hong Kong. A three-level neural network model was constructed and trained by the back-propagate algorithm in the geographical database of the study area. The data in the database includes digital elevation modal and its derivatives, landslides distribution and their attributes, superficial geological maps, vegetation cover, the raingauges distribution and their 14 years 5-minute observation. Based on field inspection and analysis of correlation between terrain variables and landslides frequency, lithology, vegetation cover, slope gradient, slope aspect, slope curvature, elevation, the characteristic value, the rainstorms corresponding to the landslide, and distance to drainage Une are considered to be related to landslide susceptibility in this study. The artificial neural network is then coupled with the ArcView3.2 GIS software to produce the landslide susceptibility map, which classifies the susceptibility into three levels: low, moderate, and high. The results from this study indicate that GIS coupled with artificial neural network model is a flexible and powerful approach to identify the spatial probability of hazards. 展开更多
关键词 GIS artificial neural network model landslide susceptibility mapping
下载PDF
SELF-ORGANIZING MAP OF COMPLEX NETWORKS FOR COMMUNITY DETECTION 被引量:1
17
作者 Zhenping LI Ruisheng WANG +1 位作者 Xiang-Sun ZHANG Luonan CHEN 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2010年第5期931-941,共11页
Detecting communities from complex networks is an important issue and has attracted attention of researchers in many fields. It is relevant to social tasks, biological inquiries, and technological problems since vario... Detecting communities from complex networks is an important issue and has attracted attention of researchers in many fields. It is relevant to social tasks, biological inquiries, and technological problems since various networks exist in these systems. This paper proposes a new self-organizing map (SOM) based approach to community detection. By adopting a new operation and a new weightupdating scheme, a complex network can be organized into dense subgraphs according to the topological connection of each node by the SOM algorithm. Extensive numerical experiments show that the performance of the SOM algorithm is good. It can identify communities more accurately than existing methods. This method can be used to detect communities not only in undirected networks, but also in directed networks and bipartite networks. 展开更多
关键词 Community detection complex network neural networks self-organizing map.
原文传递
Evaluation of Landsat 8 image pansharpening in estimating soil organic matter using multiple linear regression and artificial neural networks 被引量:1
18
作者 Abdelkrim Bouasria Khalid Ibno Namr +2 位作者 Abdelmejid Rahimi El Mostafa Ettachfini Badr Rerhou 《Geo-Spatial Information Science》 SCIE EI CSCD 2022年第3期353-364,共12页
In agricultural systems,the regular monitoring of Soil Organic Matter(SOM)dynamics is essential.This task is costly and time-consuming when using the conventional method,especially in a very fragmented area and with i... In agricultural systems,the regular monitoring of Soil Organic Matter(SOM)dynamics is essential.This task is costly and time-consuming when using the conventional method,especially in a very fragmented area and with intensive agricultural activity,such as the area of Sidi Bennour.The study area is located in the Doukkala irrigated perimeter in Morocco.Satellite data can provide an alternative and fill this gap at a low cost.Models to predict SOM from a satellite image,whether linear or nonlinear,have shown considerable interest.This study aims to compare SOM prediction using Multiple Linear Regression(MLR)and Artificial Neural Networks(ANN).A total of 368 points were collected at a depth of 0-30 cm and analyzed in the laboratory.An image at 15 m resolution(MSPAN)was produced from a 30 m resolution(MS)Landsat-8 image using image pansharpening processing and panchromatic band(15 m).The results obtained show that the MLR models predicted the SOM with(training/validation)R^(2)values of 0.62/0.63 and 0.64/0.65 and RMSE values of 0.23/0.22 and 0.22/0.21 for the MS and MSPAN images,respectively.In contrast,the ANN models predicted SOM with R2 values of 0.65/0.66 and 0.69/0.71 and RMSE values of 0.22/0.10 and 0.21/0.18 for the MS and MSPAN images,respectively.Image pansharpening improved the prediction accuracy by 2.60%and 4.30%and reduced the estimation error by 0.80%and 1.30%for the MLR and ANN models,respectively. 展开更多
关键词 Digital soil mapping soil organic matter remote sensing multiple linear regression artificial neural networks irrigated area Doukkala Morocco
原文传递
HYPERSTATIC STRUCTURE MAPPING MODEL BUILDING AND OPTIMIZING DESIGN 被引量:2
19
作者 XU Gening GAO Youshan +1 位作者 ZHANG Xueliang YANG Ruigang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第1期55-59,共5页
Hyperstatic structure plane model being built by structural mechanics is studied. Space model precisely reflected in real stress of the structure is built by finite element method (FEM) analysis commerce software. M... Hyperstatic structure plane model being built by structural mechanics is studied. Space model precisely reflected in real stress of the structure is built by finite element method (FEM) analysis commerce software. Mapping model of complex structure system is set up, with convenient calculation just as in plane model and comprehensive information as in space model. Plane model and space model are calculated under the same working condition. Plane model modular construction inner force is considered as input data; Space model modular construction inner force is considered as output data. Thus specimen is built on input data and output dam. Character and affiliation are extracted through training specimen, with the employment of nonlinear mapping capability of the artificial neural network. Mapping model with interpolation and extrpolation is gained, laying the foundation for optimum design. The steel structure of high-layer parking system (SSHLPS) is calculated as an instance. A three-layer back-propagation (BP) net including one hidden layer is constructed with nine input nodes and eight output nodes for a five-layer SSHLPS. The three-layer structure optimization result through the mapping model interpolation contrasts with integrity re-analysis, and seven layers structure through the mapping model extrpulation contrasts with integrity re-analysis. Any layer SSHLPS among 1-8 can be calculated with much accuracy. Amount of calculation can also be reduced if it is appfied into the same topological structure, with reduced distortion and assured precision. 展开更多
关键词 Plane model - Space model artificial neural networks mapping model Optimum design
下载PDF
Application of self-organizing neural networks to classification of plant communities in Pangquangou Nature Reserve, North China
20
作者 Jintun ZHANG Hongxiao YANG 《Frontiers in Biology》 CSCD 2008年第4期512-517,共6页
Vegetation classification is an important topic in plant ecology and many quantitative techniques for classification have been developed in the field.The artificial neural network is a comparatively new tool for data ... Vegetation classification is an important topic in plant ecology and many quantitative techniques for classification have been developed in the field.The artificial neural network is a comparatively new tool for data analysis.The self-organizing feature map(SOFM)is powerful tool for clustering analysis.SOFM has been applied to many research fields and it was applied to the classification of plant communities in the Pangquangou Nature Reserve in the present work.Pangquangou Nature Reserve,located at 37°20′–38°20′ N,110°18′–111°18′ E,is a part of the Luliang Mountain range.Eighty-nine samples(quadrats)of 10 m×10 m for forest,4 m×4 m for shrubland and 1 m×1 m for grassland along an elevation gradient,were set up and species data was recorded in each sample.After discussion of the mathematical algorism,clustering technique and the procedure of SOFM,the classification was carried out by using NNTool box in MATLAB(6.5).As a result,the 89 samples were clustered into 13 groups representing 13 types of plant communities.The characteristics of each community were described.The result of SOFM classification was identical to the result of fuzzy c-mean clustering and consistent with the distribution patterns of vegetation in the study area and shows significant ecological meanings.This suggests that SOFM may clearly describe the ecological relationships between plant communities and it is a very effective quantitative technique in plant ecology research. 展开更多
关键词 neural network self-organizing feature map VEGETATION quantitative classification
原文传递
上一页 1 2 7 下一页 到第
使用帮助 返回顶部