期刊文献+
共找到282篇文章
< 1 2 15 >
每页显示 20 50 100
Multi-Modal Domain Adaptation Variational Autoencoder for EEG-Based Emotion Recognition 被引量:5
1
作者 Yixin Wang Shuang Qiu +3 位作者 Dan Li Changde Du Bao-Liang Lu Huiguang He 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第9期1612-1626,共15页
Traditional electroencephalograph(EEG)-based emotion recognition requires a large number of calibration samples to build a model for a specific subject,which restricts the application of the affective brain computer i... Traditional electroencephalograph(EEG)-based emotion recognition requires a large number of calibration samples to build a model for a specific subject,which restricts the application of the affective brain computer interface(BCI)in practice.We attempt to use the multi-modal data from the past session to realize emotion recognition in the case of a small amount of calibration samples.To solve this problem,we propose a multimodal domain adaptive variational autoencoder(MMDA-VAE)method,which learns shared cross-domain latent representations of the multi-modal data.Our method builds a multi-modal variational autoencoder(MVAE)to project the data of multiple modalities into a common space.Through adversarial learning and cycle-consistency regularization,our method can reduce the distribution difference of each domain on the shared latent representation layer and realize the transfer of knowledge.Extensive experiments are conducted on two public datasets,SEED and SEED-IV,and the results show the superiority of our proposed method.Our work can effectively improve the performance of emotion recognition with a small amount of labelled multi-modal data. 展开更多
关键词 Cycle-consistency domain adaptation electroencephalograph(EEG) multi modality variational autoencoder
下载PDF
An efficient stock market prediction model using hybrid feature reduction method based on variational autoencoders and recursive feature elimination 被引量:4
2
作者 Hakan Gunduz 《Financial Innovation》 2021年第1期585-608,共24页
In this study,the hourly directions of eight banking stocks in Borsa Istanbul were predicted using linear-based,deep-learning(LSTM)and ensemble learning(Light-GBM)models.These models were trained with four different f... In this study,the hourly directions of eight banking stocks in Borsa Istanbul were predicted using linear-based,deep-learning(LSTM)and ensemble learning(Light-GBM)models.These models were trained with four different feature sets and their performances were evaluated in terms of accuracy and F-measure metrics.While the first experiments directly used the own stock features as the model inputs,the second experiments utilized reduced stock features through Variational AutoEncoders(VAE).In the last experiments,in order to grasp the effects of the other banking stocks on individual stock performance,the features belonging to other stocks were also given as inputs to our models.While combining other stock features was done for both own(named as allstock_own)and VAE-reduced(named as allstock_VAE)stock features,the expanded dimensions of the feature sets were reduced by Recursive Feature Elimination.As the highest success rate increased up to 0.685 with allstock_own and LSTM with attention model,the combination of allstock_VAE and LSTM with the attention model obtained an accuracy rate of 0.675.Although the classification results achieved with both feature types was close,allstock_VAE achieved these results using nearly 16.67%less features compared to allstock_own.When all experimental results were examined,it was found out that the models trained with allstock_own and allstock_VAE achieved higher accuracy rates than those using individual stock features.It was also concluded that the results obtained with the VAE-reduced stock features were similar to those obtained by own stock features. 展开更多
关键词 Stock market prediction variational autoencoder Recursive feature elimination Long-short term memory Borsa Istanbul LightGBM
下载PDF
Generate Faces Using Ladder Variational Autoencoder with Maximum Mean Discrepancy (MMD) 被引量:1
3
作者 Haoji Xu 《Intelligent Information Management》 2018年第4期108-113,共6页
Generative Models have been shown to be extremely useful in learning features from unlabeled data. In particular, variational autoencoders are capable of modeling highly complex natural distributions such as images, w... Generative Models have been shown to be extremely useful in learning features from unlabeled data. In particular, variational autoencoders are capable of modeling highly complex natural distributions such as images, while extracting natural and human-understandable features without labels. In this paper we combine two highly useful classes of models, variational ladder autoencoders, and MMD variational autoencoders, to model face images. In particular, we show that we can disentangle highly meaningful and interpretable features. Furthermore, we are able to perform arithmetic operations on faces and modify faces to add or remove high level features. 展开更多
关键词 GENERATIVE Models LADDER variational autoencoders FACIAL Recognition
下载PDF
Enhancing the Effectiveness of Trimethylchlorosilane Purification Process Monitoring with Variational Autoencoder 被引量:1
4
作者 Jinfu Wang Shunyi Zhao +1 位作者 Fei Liu Zhenyi Ma 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第8期531-552,共22页
In modern industry,process monitoring plays a significant role in improving the quality of process conduct.With the higher dimensional of the industrial data,the monitoring methods based on the latent variables have b... In modern industry,process monitoring plays a significant role in improving the quality of process conduct.With the higher dimensional of the industrial data,the monitoring methods based on the latent variables have been widely applied in order to decrease the wasting of the industrial database.Nevertheless,these latent variables do not usually follow the Gaussian distribution and thus perform unsuitable when applying some statistics indices,especially the T^(2) on them.Variational AutoEncoders(VAE),an unsupervised deep learning algorithm using the hierarchy study method,has the ability to make the latent variables follow the Gaussian distribution.The partial least squares(PLS)are used to obtain the information between the dependent variables and independent variables.In this paper,we will integrate these two methods and make a comparison with other methods.The superiority of this proposed method will be verified by the simulation and the Trimethylchlorosilane purification process in terms of the multivariate control charts. 展开更多
关键词 Process monitoring variational autoencoders partial least square multivariate control chart
下载PDF
Seismic labeled data expansion using variational autoencoders 被引量:2
5
作者 Kunhong Li Song Chen +1 位作者 Guangmin Hu Ph.D 《Artificial Intelligence in Geosciences》 2020年第1期24-30,共7页
Supervised machine learning algorithms have been widely used in seismic exploration processing,but the lack of labeled examples complicates its application.Therefore,we propose a seismic labeled data expansion method ... Supervised machine learning algorithms have been widely used in seismic exploration processing,but the lack of labeled examples complicates its application.Therefore,we propose a seismic labeled data expansion method based on deep variational Autoencoders(VAE),which are made of neural networks and contains two partsEncoder and Decoder.Lack of training samples leads to overfitting of the network.We training the VAE with whole seismic data,which is a data-driven process and greatly alleviates the risk of overfitting.The Encoder captures the ability to map the seismic waveform Y to latent deep features z,and the Decoder captures the ability to reconstruct high-dimensional waveform Yb from latent deep features z.Later,we put the labeled seismic data into Encoders and get the latent deep features.We can easily use gaussian mixture model to fit the deep feature distribution of each class labeled data.We resample a mass of expansion deep features z* according to the Gaussian mixture model,and put the expansion deep features into the decoder to generate expansion seismic data.The experiments in synthetic and real data show that our method alleviates the problem of lacking labeled seismic data for supervised seismic facies analysis. 展开更多
关键词 Deep learning variational autoencoders Data expansion
下载PDF
Facial landmark disentangled network with variational autoencoder
6
作者 LIANG Sen ZHOU Zhi-ze +3 位作者 GUO Yu-dong GAO Xuan ZHANG Ju-yong BAO Hu-jun 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2022年第2期290-305,共16页
Learning disentangled representation of data is a key problem in deep learning.Specifically,disentangling 2D facial landmarks into different factors(e.g.,identity and expression)is widely used in the applications of f... Learning disentangled representation of data is a key problem in deep learning.Specifically,disentangling 2D facial landmarks into different factors(e.g.,identity and expression)is widely used in the applications of face reconstruction,face reenactment and talking head et al..However,due to the sparsity of landmarks and the lack of accurate labels for the factors,it is hard to learn the disentangled representation of landmarks.To address these problem,we propose a simple and effective model named FLD-VAE to disentangle arbitrary facial landmarks into identity and expression latent representations,which is based on a Variational Autoencoder framework.Besides,we propose three invariant loss functions in both latent and data levels to constrain the invariance of representations during training stage.Moreover,we implement an identity preservation loss to further enhance the representation ability of identity factor.To the best of our knowledge,this is the first work to end-to-end disentangle identity and expression factors simultaneously from one single facial landmark. 展开更多
关键词 disentanglement representation deep learning facial landmarks variational autoencoder
下载PDF
Variational quantum semi-supervised classifier based on label propagation
7
作者 侯艳艳 李剑 +1 位作者 陈秀波 叶崇强 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期279-289,共11页
Label propagation is an essential semi-supervised learning method based on graphs,which has a broad spectrum of applications in pattern recognition and data mining.This paper proposes a quantum semi-supervised classif... Label propagation is an essential semi-supervised learning method based on graphs,which has a broad spectrum of applications in pattern recognition and data mining.This paper proposes a quantum semi-supervised classifier based on label propagation.Considering the difficulty of graph construction,we develop a variational quantum label propagation(VQLP)method.In this method,a locally parameterized quantum circuit is created to reduce the parameters required in the optimization.Furthermore,we design a quantum semi-supervised binary classifier based on hybrid Bell and Z bases measurement,which has a shallower circuit depth and is more suitable for implementation on near-term quantum devices.We demonstrate the performance of the quantum semi-supervised classifier on the Iris data set,and the simulation results show that the quantum semi-supervised classifier has higher classification accuracy than the swap test classifier.This work opens a new path to quantum machine learning based on graphs. 展开更多
关键词 semi-supervised learning variational quantum algorithm parameterized quantum circuit
原文传递
Network Intrusion Detection in Internet of Blended Environment Using Ensemble of Heterogeneous Autoencoders(E-HAE)
8
作者 Lelisa Adeba Jilcha Deuk-Hun Kim +1 位作者 Julian Jang-Jaccard Jin Kwak 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期3261-3284,共24页
Contemporary attackers,mainly motivated by financial gain,consistently devise sophisticated penetration techniques to access important information or data.The growing use of Internet of Things(IoT)technology in the co... Contemporary attackers,mainly motivated by financial gain,consistently devise sophisticated penetration techniques to access important information or data.The growing use of Internet of Things(IoT)technology in the contemporary convergence environment to connect to corporate networks and cloud-based applications only worsens this situation,as it facilitates multiple new attack vectors to emerge effortlessly.As such,existing intrusion detection systems suffer from performance degradation mainly because of insufficient considerations and poorly modeled detection systems.To address this problem,we designed a blended threat detection approach,considering the possible impact and dimensionality of new attack surfaces due to the aforementioned convergence.We collectively refer to the convergence of different technology sectors as the internet of blended environment.The proposed approach encompasses an ensemble of heterogeneous probabilistic autoencoders that leverage the corresponding advantages of a convolutional variational autoencoder and long short-term memory variational autoencoder.An extensive experimental analysis conducted on the TON_IoT dataset demonstrated 96.02%detection accuracy.Furthermore,performance of the proposed approach was compared with various single model(autoencoder)-based network intrusion detection approaches:autoencoder,variational autoencoder,convolutional variational autoencoder,and long short-term memory variational autoencoder.The proposed model outperformed all compared models,demonstrating F1-score improvements of 4.99%,2.25%,1.92%,and 3.69%,respectively. 展开更多
关键词 Network intrusion detection anomaly detection TON_IoT dataset smart grid smart city smart factory digital healthcare autoencoder variational autoencoder LSTM convolutional variational autoencoder ensemble learning
下载PDF
Autism Spectrum Disorder Classification with Interpretability in Children Based on Structural MRI Features Extracted Using Contrastive Variational Autoencoder
9
作者 Ruimin Ma Ruitao Xie +5 位作者 Yanlin Wang Jintao Meng Yanjie Wei Yunpeng Cai Wenhui Xi Yi Pan 《Big Data Mining and Analytics》 EI CSCD 2024年第3期781-793,共13页
Autism Spectrum Disorder(ASD)is a highly disabling mental disease that brings significant impairments of social interaction ability to the patients,making early screening and intervention of ASD critical.With the deve... Autism Spectrum Disorder(ASD)is a highly disabling mental disease that brings significant impairments of social interaction ability to the patients,making early screening and intervention of ASD critical.With the development of the machine learning and neuroimaging technology,extensive research has been conducted on machine classification of ASD based on structural Magnetic Resonance Imaging(s-MRI).However,most studies involve with datasets where participants'age are above 5 and lack interpretability.In this paper,we propose a machine learning method for ASD classification in children with age range from 0.92 to 4.83 years,based on s-MRI features extracted using Contrastive Variational AutoEncoder(CVAE).78 s-MRIs,collected from Shenzhen Children's Hospital,are used for training CVAE,which consists of both ASD-specific feature channel and common-shared feature channel.The ASD participants represented by ASD-specific features can be easily discriminated from Typical Control(TC)participants represented by the common-shared features.In case of degraded predictive accuracy when data size is extremely small,a transfer learning strategy is proposed here as a potential solution.Finally,we conduct neuroanatomical interpretation based on the correlation between s-MRI features extracted from CVAE and surface area of different cortical regions,which discloses potential biomarkers that could help target treatments of ASD in the future. 展开更多
关键词 Autism Spectrum Disorder(ASD)classification Contrastive variational autoencoder(CVAE) transfer learning neuroanatomical interpretation
原文传递
An Evaluation of Variational Autoencoder in Credit Card Anomaly Detection
10
作者 Faleh Alshameri Ran Xia 《Big Data Mining and Analytics》 EI CSCD 2024年第3期718-729,共12页
Anomaly detection is one of the many challenging areas in cybersecurity.The anomaly can occur in many forms,such as fraudulent credit card transactions,network intrusions,and anomalous imageries or documents.One of th... Anomaly detection is one of the many challenging areas in cybersecurity.The anomaly can occur in many forms,such as fraudulent credit card transactions,network intrusions,and anomalous imageries or documents.One of the most common challenges in anomaly detection is the obscurity of the normal state and the lack of anomalous samples.Traditionally,this problem is tackled by using resampling techniques or choosing models that approximate the distribution of the normal states.Variational AutoEncoder(VAE)has been studied in anomaly detections despite being more suitable in generative tasks.This study aims to explore the usage of VAE in credit card anomaly detection and evaluate latent space sampling techniques.In this study,we evaluate the usage of the convolutional network-based VAE model on a credit card transaction dataset.We train two VAE models,one with a large number of normal data and one with a small number of anomalous data.We compare the performance of both VAE models and evaluate the latent space of both VAE models by rescaling them with reconstruction error vectors.We also compare the effectiveness of the VAE model with other anomaly detection models when they are trained on imbalanced dataset. 展开更多
关键词 anomaly detection optimization imbalanced dataset generative modeling Convolutional Neural Network(CNN) variational autoencoder(VAE) latent space scaling reconstruction error
原文传递
Variational autoencoder-based techniques for a streamlined cross-topology modeling and optimization workflow in electrical drives
11
作者 Marius Benkert Michael Heroth +2 位作者 Rainer Herrler Magda Gregorová Helmut C.Schmid 《Autonomous Intelligent Systems》 2024年第1期297-306,共10页
The generation and optimization of simulation data for electrical machines remain challenging,largely due to the complexities of magneto-staticfinite element analysis.Traditional methodologies are not only resource-in... The generation and optimization of simulation data for electrical machines remain challenging,largely due to the complexities of magneto-staticfinite element analysis.Traditional methodologies are not only resource-intensive,but also time-consuming.Deep learning models can be used to shortcut these calculations.However,challenges arise when considering the unique parameter sets specific to each machine topology.Building on two recent studies(Parekh et al.in IEEE Trans.Magn.58(9):1-4,2022;Parekh et al.,Deep learning based meta-modeling for multi-objective technology optimization of electrical machines,2023,arXiv:2306.09087),that utilized a variational autoencoder to cohesively map diverse topologies into a singular latent space for subsequent optimization,this paper proposes a refined architecture and optimization workflow.Our modifications aim to streamline and enhance the robustness of both the training and optimization processes,and compare the results with the variational autoencoder architecture proposed recently. 展开更多
关键词 Deep learning Design optimization Electrical machines variational autoencoder
原文传递
VAEFL: Integrating variational autoencoders for privacy preservation and performance retention in federated learning
12
作者 Zhixin Li Yicun Liu +4 位作者 Jiale Li Guangnan Ye Hongfeng Chai Zhihui Lu Jie Wu 《Security and Safety》 2024年第4期44-60,共17页
Federated Learning(FL) heralds a paradigm shift in the training of artificial intelligence(AI) models by fostering collaborative model training while safeguarding client data privacy. In sectors where data sensitivity... Federated Learning(FL) heralds a paradigm shift in the training of artificial intelligence(AI) models by fostering collaborative model training while safeguarding client data privacy. In sectors where data sensitivity and AI model security are of paramount importance, such as fintech and biomedicine, maintaining the utility of models without compromising privacy is crucial with the growing application of AI technologies. Therefore, the adoption of FL is attracting significant attention. However, traditional FL methods are susceptible to Deep Leakage from Gradients(DLG) attacks, and typical defensive strategies in current research, such as secure multi-party computation and diferential privacy, often lead to excessive computational costs or significant decreases in model accuracy. To address DLG attacks in FL, this study introduces VAEFL, an innovative FL framework that incorporates Variational Autoencoders(VAEs) to enhance privacy protection without undermining the predictive prowess of the models. VAEFL strategically partitions the model into a private encoder and a public decoder. The private encoder, remaining local, transmutes sensitive data into a latent space fortified for privacy, while the public decoder and classifier, through collaborative training across clients, learn to derive precise predictions from the encoded data. This bifurcation ensures that sensitive data attributes are not disclosed, circumventing gradient leakage attacks and simultaneously allowing the global model to benefit from the diverse knowledge of client datasets. Comprehensive experiments demonstrate that VAEFL not only surpasses standard FL benchmarks in privacy preservation but also maintains competitive performance in predictive tasks. VAEFL thus establishes a novel equilibrium between data privacy and model utility, ofering a secure and efficient FL approach for the sensitive application of FL in the financial domain. 展开更多
关键词 Federated learning variational autoencoders deep leakage from gradients AI model security privacy preservation
原文传递
基于改进GAN的人机交互手势行为识别方法
13
作者 张富强 白筠妍 穆慧 《郑州大学学报(工学版)》 北大核心 2025年第2期43-50,共8页
为改善现有手势识别算法需要大量训练数据的现状,针对识别准确率不高、识别过程复杂等问题,基于生成式对抗网络(GAN)和变分自编码器,引入标签信息,提出一种基于改进GAN模型的人机交互手势行为识别方法。首先,在编码器和解码器中分别添... 为改善现有手势识别算法需要大量训练数据的现状,针对识别准确率不高、识别过程复杂等问题,基于生成式对抗网络(GAN)和变分自编码器,引入标签信息,提出一种基于改进GAN模型的人机交互手势行为识别方法。首先,在编码器和解码器中分别添加改进InceptionV2和InceptionV2-trans结构增强模型的特征还原能力;其次,在各组成网络中进行条件批量归一化(CBN)处理改善过拟合,以Mish激活函数代替ReLU函数提升网络性能;最后,通过实验证明该方法能够以较少的样本获得100%的分类准确率,且收敛时间短,验证了该方法的可靠性。 展开更多
关键词 人机交互 生成对抗网络 变分自编码器 手势识别 条件批量归一化
下载PDF
面向有向图的特征提取与表征学习研究
14
作者 谭郁松 张钰森 蹇松雷 《计算机工程与应用》 北大核心 2025年第3期234-241,共8页
图数据是一种用于描述不同实体之间关联关系的重要数据形式。有向图作为一种特殊形式,不仅能描述实体关联,还能明确关系的方向,提供了更精细和详实的描述。因此,有向图的特征提取和表征学习对于深入理解复杂系统具有至关重要的意义。然... 图数据是一种用于描述不同实体之间关联关系的重要数据形式。有向图作为一种特殊形式,不仅能描述实体关联,还能明确关系的方向,提供了更精细和详实的描述。因此,有向图的特征提取和表征学习对于深入理解复杂系统具有至关重要的意义。然而,现有方法在有效提取有向图的方向信息方面仍然存在挑战,主要依赖于节点的局部信息进行特征提取,难以充分利用有向边蕴含的方向信息。为解决这一问题,提出了一种名为变分有向图自编码器(variational directed graph autoencoder,VDGAE)的无监督表示学习方法。VDGAE通过关联矩阵来建模节点与边之间的关联关系,通过计算节点与边之间的亲和力,来重构输入有向图,从而实现无监督表征学习。基于此,VDGAE能够同时为输入有向图学习节点与边的表征,充分捕获有向图的结构信息和方向信息并嵌入至节点与边的表征向量中,使得有向图能够被更准确地表征。实验结果表明,相较于11个基准方法,VDGAE在5个数据集上节点分类任务均优于基准方法,提升了11.96%的预测精度,充分验证了其有效性。 展开更多
关键词 有向图 表征学习 关联矩阵 图神经网络 变分自编码器
下载PDF
基于自注意力机制与高斯混合变分自编码器的飞行轨迹聚类方法研究
15
作者 张召悦 李莎 鲍水达 《河南科技大学学报(自然科学版)》 北大核心 2025年第1期25-33,M0003,M0004,共11页
为精确识别飞行轨迹的运行模式,提出了一种基于自注意力机制(SA)与高斯混合变分自编码器(GMVAE)的飞行轨迹聚类方法。SA-GMVAE是一种端到端的深度聚类方法,GMVAE利用变分推断估计每条轨迹的潜在分布,将输入的飞行轨迹数据映射到由多个... 为精确识别飞行轨迹的运行模式,提出了一种基于自注意力机制(SA)与高斯混合变分自编码器(GMVAE)的飞行轨迹聚类方法。SA-GMVAE是一种端到端的深度聚类方法,GMVAE利用变分推断估计每条轨迹的潜在分布,将输入的飞行轨迹数据映射到由多个高斯分布组成的潜在空间,同时依据轨迹分布特征进行聚类。考虑到GMVAE无法兼顾潜在特征的全局关键信息,将自注意力机制嵌入到编码器中,以便于在特征提取时能够捕获全局依赖关系并自动分配权重,突出关键特征,提升轨迹聚类效果。最后,以天津滨海国际机场的进场飞行轨迹数据集为例验证了模型的有效性,实验结果表明:SA-GMVAE相较于K-means、DBSCAN、DTW+HDBSCAN、AE+DP与AE+GMM 5种聚类方法,轮廓系数分别提高了27.6%、20.2%、18.2%、18.6%、15.7%;与未引入自注意力机制的GMVAE聚类模型相比,轮廓系数提高了9.5%,能够更准确地对飞行轨迹进行聚类。 展开更多
关键词 飞行轨迹 模式识别 变分自编码器 自注意力机制
下载PDF
计及小概率场景能源管线风险的综合能源系统多目标扩展规划
16
作者 黄南天 赵暄远 +1 位作者 蔡国伟 郭玉 《电气工程学报》 北大核心 2025年第1期197-207,共11页
随着能源系统不断转型及新型负荷的快速发展,在极端高温及极端低温等小概率用能场景下,需求侧用能行为日渐复杂,综合能源系统安全稳定运行风险逐渐提升。因此,提出计及小概率高用能场景下能源管线超负荷运行风险的综合能源系统多目标扩... 随着能源系统不断转型及新型负荷的快速发展,在极端高温及极端低温等小概率用能场景下,需求侧用能行为日渐复杂,综合能源系统安全稳定运行风险逐渐提升。因此,提出计及小概率高用能场景下能源管线超负荷运行风险的综合能源系统多目标扩展规划方法。建立基于耦合对抗变分自编码器的场景生成模型,生成冷-热-电-气负荷场景,获取典型场景与小概率高用能场景;在此基础上,以系统扩展规划成本最低及小概率高用能场景能源管线风险最低为目标,建立计及小概率高用能场景的冷-热-电-气综合能源系统扩展规划模型;采用改进麻雀搜索优化算法进行算例求解,实现冷-热-电-气综合能源系统扩展规划,提升综合能源系统扩展规划经济性与运行可靠性。 展开更多
关键词 综合能源系统 扩展规划 小概率高用能场景 耦合对抗变分自编码器 改进麻雀搜索优化算法
下载PDF
基于生成式人工智能的眼动样本生成及识别
17
作者 谭雪青 宋军 +1 位作者 张慢慢 臧传丽 《河南理工大学学报(自然科学版)》 CAS 北大核心 2025年第1期145-153,共9页
目的生成式和传统人工智能模型是信息时代的关键工具。在这些技术的助力下,眼动过程的样本生成与识别显得尤为关键,它已成为深入研究认知机制的重要手段。为了推动生成式人工智能在眼动技术领域的应用发展,解决眼动样本生成及因网络深... 目的生成式和传统人工智能模型是信息时代的关键工具。在这些技术的助力下,眼动过程的样本生成与识别显得尤为关键,它已成为深入研究认知机制的重要手段。为了推动生成式人工智能在眼动技术领域的应用发展,解决眼动样本生成及因网络深度增加而导致的不透明性和不可解释性问题,并深入挖掘与幼儿语言发展相关的眼动数据,方法采集4~6岁幼儿理解不同焦点结构的眼动数据,采用生成式人工智能模型-变分自编码器(variational autoencoder,VAE)和传统模型-多层感知器(multi-layer perceptron,MLP)识别眼动模式的发展差异并尝试生成新样本,基于灰色关联分析和混淆矩阵对生成式数据集进行解释。结果结果表明:(1)VAE生成的4岁组、5岁组和6岁组幼儿眼动数据集精度高于MINIST数据集(mixed National Institute of Standards and Technology database),且与MLP分析结果一致,具有准确性、多样性和一定的可解释性;(2)生成式眼动数据及混淆矩阵结果表明,在无焦点结构句式中,幼儿在4~5岁、5~6岁两个阶段理解水平均有提升,而宾语焦点结构和主语焦点结构的眼动特征在4~5岁变化较小,5~6岁变化较大,说明幼儿对焦点结构的理解在5岁是一个关键期,这符合幼儿焦点结构理解发展规律。结论提出的人工智能耦合分析方法,具备有效识别眼动特征发展模式的能力,并能据此生成可靠的新样本。这一方法不仅为生成式人工智能与眼动技术的融合开辟了新的途径,而且为复杂语言理解问题提供了全新的思考方向。 展开更多
关键词 生成式人工智能 变分自编码器 多层感知器 眼动
下载PDF
基于变分自编码器的伽马单中子出射反应截面实验数据离群点研究
18
作者 谢金辰 陶曦 +4 位作者 续瑞瑞 田源 邢康 葛智刚 牛一斐 《物理学报》 北大核心 2025年第8期126-135,共10页
伽马单中子出射反应截面是核工程输运计算中的重要参数,部分核素(g,n)的反应测量因来自不同实验室而分歧明显.本文基于变分自编码器方法,针对原子核质量数在29—207区域的伽马单中子出射反应截面实验测量数据进行分析,有效识别多家测量... 伽马单中子出射反应截面是核工程输运计算中的重要参数,部分核素(g,n)的反应测量因来自不同实验室而分歧明显.本文基于变分自编码器方法,针对原子核质量数在29—207区域的伽马单中子出射反应截面实验测量数据进行分析,有效识别多家测量之间的离群点.首先,研究变分自编码器方法,建立伽马单中子光核测量数据离群点识别网络;其次,对^(29)Si,^(54)Fe,^(63)Cu,^(141)Pr,^(181)Ta,^(206)Pb和^(207)Pb的29家多能点测量数据进行离群点识别;最后,计算离群点识别前后的实验数据与国际原子能机构光核评价数据库(IAEA-2019-PD)评价值之间的偏差,检测变分自编码器的分析效果.研究表明,变分自编码器方法可以有效识别(γ,n)反应实验测量离群点,其中^(54)Fe,^(63)Cu,^(181)Ta,^(206)Pb和^(207)Pb的伽马单中子出射反应截面与IAEA-2019-PD评价结果一致性更高,验证了该方法在核数据研究中的应用潜力. 展开更多
关键词 变分自编码器 伽马单中子出射反应 截面 离群点
下载PDF
基于标签感知变分自编码器的多标签分类
19
作者 孙宏健 徐鹏宇 +2 位作者 刘冰 景丽萍 于剑 《计算机科学与探索》 北大核心 2025年第3期714-723,共10页
随着互联网的兴起,各式各样的数据急速增长,如何高效地利用这些样本数据成为数据挖掘领域的重要问题。多标签分类任务作为机器学习与数据挖掘领域的重要任务,旨在为样本标注多个标签类别。目前的方法大多仅对特征分支进行嵌入表示学习,... 随着互联网的兴起,各式各样的数据急速增长,如何高效地利用这些样本数据成为数据挖掘领域的重要问题。多标签分类任务作为机器学习与数据挖掘领域的重要任务,旨在为样本标注多个标签类别。目前的方法大多仅对特征分支进行嵌入表示学习,并未考虑到特征和标签之间的语义关联性,缺乏对特征嵌入空间的有效约束,从而导致学习到的特征嵌入针对性不足。在标签相关性学习方面,现有的大多数方法主要关注低阶标签相关性,在面对复杂的实际标签场景时,多个标签之间的高阶相关性学习不足的问题变得更为突出。为解决上述问题,从嵌入表示学习和标签相关性学习出发,提出了一种基于标签感知变分自编码器的多标签分类方法。针对嵌入表示学习,提出使用特征和标签双流变分自编码器同时学习和对齐特征和标签的嵌入空间,对特征嵌入空间添加标签引导来增强特征嵌入。采用基于标签语义的交叉注意力机制,将特定标签信息加入到特征嵌入中,最终获得标签感知后的判别性特征嵌入。针对标签相关性学习,采用共享解码器中的多层自注意力机制,充分融合多个标签的相似性信息,通过不同标签间的共现交互,学习到标签高阶相关性表示并用于交叉感知特征嵌入。在四个不同领域的数据集上得到的实验结果表明,提出的方法能够有效增强特征和标签嵌入,并充分捕获标签之间高阶相关性信息用于多标签分类任务,通过与多个最先进算法在多个评价指标上进行比较分析,验证了提出的方法在性能上的显著优越性。 展开更多
关键词 多标签分类 嵌入空间学习 变分自动编码器 TRANSFORMER 标签相关性
下载PDF
基于转录组学和变分自编码器的癌症分期诊断研究
20
作者 李佳芮 钱力 +3 位作者 沈俊杰 郭泓麟 秦茂洋 伍亚舟 《陆军军医大学学报》 北大核心 2025年第6期613-622,共10页
目的旨在对10种癌症转录组学数据开展深度分析与特征提取,进而实现对癌症样本的分期诊断。方法在UCSC Xena网站收集发病率最高的10种癌症转录组学数据(包含4938个样本和59428个基因),以变分自编码器为基础,利用特征重要性排序思想,通过... 目的旨在对10种癌症转录组学数据开展深度分析与特征提取,进而实现对癌症样本的分期诊断。方法在UCSC Xena网站收集发病率最高的10种癌症转录组学数据(包含4938个样本和59428个基因),以变分自编码器为基础,利用特征重要性排序思想,通过引入掩码算法和增量特征选择方法(incremental feature selection,IFS),构建了增量特征排序选优变分自编码器(incremental feature ranking and selection variational autoencoder,IFRSVAE);与随机森林(random forest,RF)、支持向量机(support vector machine,SVM)和极限梯度提升树(eXtreme gradient boosting,XGboost)结合测试了该方法的性能,并同其他方法进行比较。结果提取了21个特征用于后续分类,较于传统变分自编码器、递归特征消除和Lasso回归模型,IFRSVAE模型在3种分类器上均取得了较好性能(AUC值最高,其余指标也表现良好);其中IFRSVAE-RF表现最好,AUC达到了85.49%(95%CI:83.24%~87.74%)。此外,还应用了沙普利加性解释(Shapley additive explanations,SHAP)模型对特征贡献进行展示。结论本研究探索并验证了IFRSVAE在特征提取方面具备一定成效。基于此构建的IFRSVAE-RF模型,在癌症分期诊断任务中展现出较好的表现,为深度学习在癌症分期诊断方法的研究方向上,提供了一种可供参考的新思路。 展开更多
关键词 癌症分期 转录组学 变分自编码器 机器学习
原文传递
上一页 1 2 15 下一页 到第
使用帮助 返回顶部