The paper concerns with the existence, uniqueness and nonexistence of global solution to the Cauchy problem for a class of nonlinear wave equations with damping term. It proves that under suitable assumptions on nonli...The paper concerns with the existence, uniqueness and nonexistence of global solution to the Cauchy problem for a class of nonlinear wave equations with damping term. It proves that under suitable assumptions on nonlinear the function and initial data the abovementioned problem admits a unique global solution by Fourier transform method. The sufficient conditions of nonexistence of the global solution to the above-mentioned problem are given by the concavity method.展开更多
The Cauchy problem for the semilinear wave equation has been studied and results show that the problem is locally well-posed in Hs ( Rn ) for s > max [ 0, n/2 - 1]. We extend the results by Lindblad in R3 to R2 and...The Cauchy problem for the semilinear wave equation has been studied and results show that the problem is locally well-posed in Hs ( Rn ) for s > max [ 0, n/2 - 1]. We extend the results by Lindblad in R3 to R2 and R1. The methods used in this paper are different from those of Lindblad and also the methods are more simple.展开更多
In this article, we prove that the Cauchy problem for a N-dimensional system of nonlinear wave equations…… admits a unique global generalized solution in ……and a unique global classical solution in…… the suffici...In this article, we prove that the Cauchy problem for a N-dimensional system of nonlinear wave equations…… admits a unique global generalized solution in ……and a unique global classical solution in…… the sufficient conditions of the blow up of the solution in finite time are given, and also two examples are given.展开更多
For the nonlinear wave equation in R-N x R+ (N greater than or equal to 2): partial derivative(2)u(x,t)/partial derivative(t)(2) - a partial derivative/partial derivative(xi)(a/(x) partial derivative/partial derivativ...For the nonlinear wave equation in R-N x R+ (N greater than or equal to 2): partial derivative(2)u(x,t)/partial derivative(t)(2) - a partial derivative/partial derivative(xi)(a/(x) partial derivative/partial derivative(xi)u) = \u\(p-1 u,) in 1980 Kato proved the solution of Cauchy problem may blow rtp infinite time if 1 < p less than or equal to N + 1/N - 1. In the present work his result allowing 1 < p less than or equal to N + 3/N - 1 is improved by using different estimates.展开更多
In this paper, we investigate the effect of weight function in the nonlinear part on global solvability of the Cauchy problem for a class of semi-linear hyperbolic equations with damping.
This paper is devoted to studying the following initial-boundary value prob- lem for one-dimensional semilinear wave equations with variable coefficients and with subcritical exponent:We wili establish a blowup resul...This paper is devoted to studying the following initial-boundary value prob- lem for one-dimensional semilinear wave equations with variable coefficients and with subcritical exponent:We wili establish a blowup result for the above initial-boundary value problem, it is proved that there can be no global solutions no matter how small the initial data are, and also we give the lifespan estimate of solutions for above problem.展开更多
A simple method for solving Cauchy’s problem of wave equations in higher space dimensions with initial condition of separated variables, has been given by using D’Alembert’s formula and some examples have been shown.
In this paper, the author considers equations with critical exponent in n ≥4 space tions on the initial data, it is proved that there small the initial data are. the Cauchy problem for semilinear wave dimensions. Und...In this paper, the author considers equations with critical exponent in n ≥4 space tions on the initial data, it is proved that there small the initial data are. the Cauchy problem for semilinear wave dimensions. Under some positivity condican be no global solutions no matter how展开更多
We analyze the exponential decay property of solutions of the semilinear wave equation in bounded domain Ω of R^N with a damping term which is effective on the exterior of a ball and boundary conditions of the Cauchy...We analyze the exponential decay property of solutions of the semilinear wave equation in bounded domain Ω of R^N with a damping term which is effective on the exterior of a ball and boundary conditions of the Cauchy-Ventcel type. Under suitable and natural assumptions on the nonlinearity, we prove that the exponential decay holds locally uniformly for finite energy solutions provided the nonlinearity is subcritical at infinity. Subcriticality means, roughly speaking, that the nonlinearity grows at infinity at most as a power p 〈 5. The results obtained in R^3 and RN by B. Dehman, G. Lebeau and E. Zuazua on the inequalities of the classical energy (which estimate the total energy of solutions in terms of the energy localized in the exterior of a ball) and on Strichartz's estimates, allow us to give an application to the stabilization controllability of the semilinear wave equation in a bounded domain of R^N with a subcritical nonlinearity on the domain and its boundary, and conditions on the boundary of Cauchy-Ventcel type.展开更多
This paper concerns with the Cauchy problem for the nonlinear double dispersive wave equation. By the priori estimates and the method in [9], It proves that the Cauchy problem admits a unique global classical solution...This paper concerns with the Cauchy problem for the nonlinear double dispersive wave equation. By the priori estimates and the method in [9], It proves that the Cauchy problem admits a unique global classical solution. And by the concave method, we give sufficient conditions on the blowup of the global solution for the Cauchy problem.展开更多
基金Supported by the National Natural Science Foundation of China(10371073)
文摘The paper concerns with the existence, uniqueness and nonexistence of global solution to the Cauchy problem for a class of nonlinear wave equations with damping term. It proves that under suitable assumptions on nonlinear the function and initial data the abovementioned problem admits a unique global solution by Fourier transform method. The sufficient conditions of nonexistence of the global solution to the above-mentioned problem are given by the concavity method.
文摘The Cauchy problem for the semilinear wave equation has been studied and results show that the problem is locally well-posed in Hs ( Rn ) for s > max [ 0, n/2 - 1]. We extend the results by Lindblad in R3 to R2 and R1. The methods used in this paper are different from those of Lindblad and also the methods are more simple.
基金supported by Tianyuan Youth Foundation of Mathematics (11226177)the National Natural Science Foundation of China (11271336 and 11171311)Foundation of He’nan Educational Committee (2009C110006)
文摘In this article, we prove that the Cauchy problem for a N-dimensional system of nonlinear wave equations…… admits a unique global generalized solution in ……and a unique global classical solution in…… the sufficient conditions of the blow up of the solution in finite time are given, and also two examples are given.
基金the National Natural Science Foundation of China
文摘For the nonlinear wave equation in R-N x R+ (N greater than or equal to 2): partial derivative(2)u(x,t)/partial derivative(t)(2) - a partial derivative/partial derivative(xi)(a/(x) partial derivative/partial derivative(xi)u) = \u\(p-1 u,) in 1980 Kato proved the solution of Cauchy problem may blow rtp infinite time if 1 < p less than or equal to N + 1/N - 1. In the present work his result allowing 1 < p less than or equal to N + 3/N - 1 is improved by using different estimates.
文摘In this paper, we investigate the effect of weight function in the nonlinear part on global solvability of the Cauchy problem for a class of semi-linear hyperbolic equations with damping.
文摘This paper is devoted to studying the following initial-boundary value prob- lem for one-dimensional semilinear wave equations with variable coefficients and with subcritical exponent:We wili establish a blowup result for the above initial-boundary value problem, it is proved that there can be no global solutions no matter how small the initial data are, and also we give the lifespan estimate of solutions for above problem.
基金Supported by the Natural Science Foundation of Hubei Province!(992P0 30 7) the National Natural Science Foun-dation of Chi
文摘A simple method for solving Cauchy’s problem of wave equations in higher space dimensions with initial condition of separated variables, has been given by using D’Alembert’s formula and some examples have been shown.
基金Project supported by the National Natural Science Foundation of China (No. 10225102)the 973 Project of the Ministry of Science and Technology of China.
文摘In this paper, the author considers equations with critical exponent in n ≥4 space tions on the initial data, it is proved that there small the initial data are. the Cauchy problem for semilinear wave dimensions. Under some positivity condican be no global solutions no matter how
文摘We analyze the exponential decay property of solutions of the semilinear wave equation in bounded domain Ω of R^N with a damping term which is effective on the exterior of a ball and boundary conditions of the Cauchy-Ventcel type. Under suitable and natural assumptions on the nonlinearity, we prove that the exponential decay holds locally uniformly for finite energy solutions provided the nonlinearity is subcritical at infinity. Subcriticality means, roughly speaking, that the nonlinearity grows at infinity at most as a power p 〈 5. The results obtained in R^3 and RN by B. Dehman, G. Lebeau and E. Zuazua on the inequalities of the classical energy (which estimate the total energy of solutions in terms of the energy localized in the exterior of a ball) and on Strichartz's estimates, allow us to give an application to the stabilization controllability of the semilinear wave equation in a bounded domain of R^N with a subcritical nonlinearity on the domain and its boundary, and conditions on the boundary of Cauchy-Ventcel type.
基金the Natural Science Foundation of Henan Province(0611050500)
文摘This paper concerns with the Cauchy problem for the nonlinear double dispersive wave equation. By the priori estimates and the method in [9], It proves that the Cauchy problem admits a unique global classical solution. And by the concave method, we give sufficient conditions on the blowup of the global solution for the Cauchy problem.