无刷直流电机(Brushless DC Motor,BLDCM)换相时刻关断相电流续流会引起电机端电压波形畸变。当采用无位置传感器反电动势过零检测法时,端电压波形畸变会使位置检测信号相位超前,偏离最佳换相时刻,电机负载转矩和转速较大时增加了转矩脉...无刷直流电机(Brushless DC Motor,BLDCM)换相时刻关断相电流续流会引起电机端电压波形畸变。当采用无位置传感器反电动势过零检测法时,端电压波形畸变会使位置检测信号相位超前,偏离最佳换相时刻,电机负载转矩和转速较大时增加了转矩脉动,甚至会造成换相失败,限制了反电动势检测法的无刷直流电机功率应用范围。因此,本文针对电流续流引起的位置信号相位超前的机理加以分析,推导出了超前角度与负载转矩和转速的关系,并给出了位置检测信号相位超前的补偿算法,并对电机在不同负载转矩和转速下位置信号进行相位补偿,拓宽了无位置无刷直流电机的运行范围。仿真和实验结果表明,在不同负载转矩和转速下经过补偿后的位置信号与最佳换相信号一致,电机负载转矩和转速较大情况下运行平稳。展开更多
为实现无刷直流电机(brushless DC motor,BLDCM)无位置传感器控制,该文提出一种改进型的线反电势滑模观测器,为减少系统的抖振,该观测器引入了一种光滑的双曲正切函数,使得控制系统不必外加低通滤波器和相位补偿模块就可以获得平滑的线...为实现无刷直流电机(brushless DC motor,BLDCM)无位置传感器控制,该文提出一种改进型的线反电势滑模观测器,为减少系统的抖振,该观测器引入了一种光滑的双曲正切函数,使得控制系统不必外加低通滤波器和相位补偿模块就可以获得平滑的线反电动势估计值,进而避免了反电势估计值的相位滞后。文中将估计得到的线反电势信号对应为3个虚拟霍尔信号,直接获得6个离散的换相信号,从而无需固定相移电路和相移角的计算。仿真和实验表明,该文所提出的方法能够准确估计BLDCM的线反电动势,实现了BLDCM无位置传感器控制。展开更多
文摘无刷直流电机(Brushless DC Motor,BLDCM)换相时刻关断相电流续流会引起电机端电压波形畸变。当采用无位置传感器反电动势过零检测法时,端电压波形畸变会使位置检测信号相位超前,偏离最佳换相时刻,电机负载转矩和转速较大时增加了转矩脉动,甚至会造成换相失败,限制了反电动势检测法的无刷直流电机功率应用范围。因此,本文针对电流续流引起的位置信号相位超前的机理加以分析,推导出了超前角度与负载转矩和转速的关系,并给出了位置检测信号相位超前的补偿算法,并对电机在不同负载转矩和转速下位置信号进行相位补偿,拓宽了无位置无刷直流电机的运行范围。仿真和实验结果表明,在不同负载转矩和转速下经过补偿后的位置信号与最佳换相信号一致,电机负载转矩和转速较大情况下运行平稳。
文摘为实现无刷直流电机(brushless DC motor,BLDCM)无位置传感器控制,该文提出一种改进型的线反电势滑模观测器,为减少系统的抖振,该观测器引入了一种光滑的双曲正切函数,使得控制系统不必外加低通滤波器和相位补偿模块就可以获得平滑的线反电动势估计值,进而避免了反电势估计值的相位滞后。文中将估计得到的线反电势信号对应为3个虚拟霍尔信号,直接获得6个离散的换相信号,从而无需固定相移电路和相移角的计算。仿真和实验表明,该文所提出的方法能够准确估计BLDCM的线反电动势,实现了BLDCM无位置传感器控制。