期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
Remaining Useful Life Prediction of Rail Based on Improved Pulse Separable Convolution Enhanced Transformer Encoder
1
作者 Zhongmei Wang Min Li +2 位作者 Jing He Jianhua Liu Lin Jia 《Journal of Transportation Technologies》 2024年第2期137-160,共24页
In order to prevent possible casualties and economic loss, it is critical to accurate prediction of the Remaining Useful Life (RUL) in rail prognostics health management. However, the traditional neural networks is di... In order to prevent possible casualties and economic loss, it is critical to accurate prediction of the Remaining Useful Life (RUL) in rail prognostics health management. However, the traditional neural networks is difficult to capture the long-term dependency relationship of the time series in the modeling of the long time series of rail damage, due to the coupling relationship of multi-channel data from multiple sensors. Here, in this paper, a novel RUL prediction model with an enhanced pulse separable convolution is used to solve this issue. Firstly, a coding module based on the improved pulse separable convolutional network is established to effectively model the relationship between the data. To enhance the network, an alternate gradient back propagation method is implemented. And an efficient channel attention (ECA) mechanism is developed for better emphasizing the useful pulse characteristics. Secondly, an optimized Transformer encoder was designed to serve as the backbone of the model. It has the ability to efficiently understand relationship between the data itself and each other at each time step of long time series with a full life cycle. More importantly, the Transformer encoder is improved by integrating pulse maximum pooling to retain more pulse timing characteristics. Finally, based on the characteristics of the front layer, the final predicted RUL value was provided and served as the end-to-end solution. The empirical findings validate the efficacy of the suggested approach in forecasting the rail RUL, surpassing various existing data-driven prognostication techniques. Meanwhile, the proposed method also shows good generalization performance on PHM2012 bearing data set. 展开更多
关键词 Equipment Health Prognostics Remaining Useful Life Prediction Pulse Separable convolution Attention Mechanism Transformer Encoder
下载PDF
A Lightweight Convolutional Neural Network with Hierarchical Multi-Scale Feature Fusion for Image Classification
2
作者 Adama Dembele Ronald Waweru Mwangi Ananda Omutokoh Kube 《Journal of Computer and Communications》 2024年第2期173-200,共28页
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso... Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline. 展开更多
关键词 MobileNet Image Classification Lightweight convolutional Neural Network Depthwise Dilated Separable convolution Hierarchical Multi-Scale Feature Fusion
下载PDF
MSSTNet:Multi-scale facial videos pulse extraction network based on separable spatiotemporal convolution and dimension separable attention
3
作者 Changchen ZHAO Hongsheng WANG Yuanjing FENG 《Virtual Reality & Intelligent Hardware》 2023年第2期124-141,共18页
Background The use of remote photoplethysmography(rPPG)to estimate blood volume pulse in a noncontact manner has been an active research topic in recent years.Existing methods are primarily based on a singlescale regi... Background The use of remote photoplethysmography(rPPG)to estimate blood volume pulse in a noncontact manner has been an active research topic in recent years.Existing methods are primarily based on a singlescale region of interest(ROI).However,some noise signals that are not easily separated in a single-scale space can be easily separated in a multi-scale space.Also,existing spatiotemporal networks mainly focus on local spatiotemporal information and do not emphasize temporal information,which is crucial in pulse extraction problems,resulting in insufficient spatiotemporal feature modelling.Methods Here,we propose a multi-scale facial video pulse extraction network based on separable spatiotemporal convolution(SSTC)and dimension separable attention(DSAT).First,to solve the problem of a single-scale ROI,we constructed a multi-scale feature space for initial signal separation.Second,SSTC and DSAT were designed for efficient spatiotemporal correlation modeling,which increased the information interaction between the long-span time and space dimensions;this placed more emphasis on temporal features.Results The signal-to-noise ratio(SNR)of the proposed network reached 9.58dB on the PURE dataset and 6.77dB on the UBFC-rPPG dataset,outperforming state-of-the-art algorithms.Conclusions The results showed that fusing multi-scale signals yielded better results than methods based on only single-scale signals.The proposed SSTC and dimension-separable attention mechanism will contribute to more accurate pulse signal extraction. 展开更多
关键词 Remote photoplethysmography Heart rate Separable spatiotemporal convolution Dimension separable attention MULTI-SCALE Neural network
下载PDF
A Novel Fall Detection Framework Using Skip-DSCGAN Based on Inertial Sensor Data
4
作者 Kun Fang Julong Pan +1 位作者 Lingyi Li Ruihan Xiang 《Computers, Materials & Continua》 SCIE EI 2024年第1期493-514,共22页
With the widespread use of Internet of Things(IoT)technology in daily life and the considerable safety risks of falls for elderly individuals,research on IoT-based fall detection systems has gainedmuch attention.This ... With the widespread use of Internet of Things(IoT)technology in daily life and the considerable safety risks of falls for elderly individuals,research on IoT-based fall detection systems has gainedmuch attention.This paper proposes an IoT-based spatiotemporal data processing framework based on a depthwise separable convolution generative adversarial network using skip-connection(Skip-DSCGAN)for fall detection.The method uses spatiotemporal data from accelerometers and gyroscopes in inertial sensors as input data.A semisupervised learning approach is adopted to train the model using only activities of daily living(ADL)data,which can avoid data imbalance problems.Furthermore,a quantile-based approach is employed to determine the fall threshold,which makes the fall detection frameworkmore robust.This proposed fall detection framework is evaluated against four other generative adversarial network(GAN)models with superior anomaly detection performance using two fall public datasets(SisFall&MobiAct).The test results show that the proposed method achieves better results,reaching 96.93% and 92.75% accuracy on the above two test datasets,respectively.At the same time,the proposed method also achieves satisfactory results in terms ofmodel size and inference delay time,making it suitable for deployment on wearable devices with limited resources.In addition,this paper also compares GAN-based semisupervised learning methods with supervised learning methods commonly used in fall detection.It clarifies the advantages of GAN-based semisupervised learning methods in fall detection. 展开更多
关键词 Fall detection skip-connection depthwise separable convolution generative adversarial networks inertial sensor
下载PDF
Lightweight Malicious Code Classification Method Based on Improved Squeeze Net
5
作者 Li Li Youran Kong Qing Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第1期551-567,共17页
With the growth of the Internet,more and more business is being done online,for example,online offices,online education and so on.While this makes people’s lives more convenient,it also increases the risk of the netw... With the growth of the Internet,more and more business is being done online,for example,online offices,online education and so on.While this makes people’s lives more convenient,it also increases the risk of the network being attacked by malicious code.Therefore,it is important to identify malicious codes on computer systems efficiently.However,most of the existing malicious code detection methods have two problems:(1)The ability of the model to extract features is weak,resulting in poor model performance.(2)The large scale of model data leads to difficulties deploying on devices with limited resources.Therefore,this paper proposes a lightweight malicious code identification model Lightweight Malicious Code Classification Method Based on Improved SqueezeNet(LCMISNet).In this paper,the MFire lightweight feature extraction module is constructed by proposing a feature slicing module and a multi-size depthwise separable convolution module.The feature slicing module reduces the number of parameters by grouping features.The multi-size depthwise separable convolution module reduces the number of parameters and enhances the feature extraction capability by replacing the standard convolution with depthwise separable convolution with different convolution kernel sizes.In addition,this paper also proposes a feature splicing module to connect the MFire lightweight feature extraction module based on the feature reuse and constructs the lightweight model LCMISNet.The malicious code recognition accuracy of LCMISNet on the BIG 2015 dataset and the Malimg dataset reaches 98.90% and 99.58%,respectively.It proves that LCMISNet has a powerful malicious code recognition performance.In addition,compared with other network models,LCMISNet has better performance,and a lower number of parameters and computations. 展开更多
关键词 Lightweight neural network malicious code classification feature slicing feature splicing multi-size depthwise separable convolution
下载PDF
Vehicle Head and Tail Recognition Algorithm for Lightweight DCDSNet
6
作者 Chao Wang Kaijie Zhang +3 位作者 Xiaoyong Yu Dejun Li Wei Xie Xinqiao Wang 《Computers, Materials & Continua》 SCIE EI 2024年第9期4451-4473,共23页
In the model of the vehicle recognition algorithm implemented by the convolutional neural network,the model needs to compute and store a lot of parameters.Too many parameters occupy a lot of computational resources ma... In the model of the vehicle recognition algorithm implemented by the convolutional neural network,the model needs to compute and store a lot of parameters.Too many parameters occupy a lot of computational resources making it difficult to run on computers with poor performance.Therefore,obtaining more efficient feature information of target image or video with better accuracy on computers with limited arithmetic power becomes the main goal of this research.In this paper,a lightweight densely connected,and deeply separable convolutional network(DCDSNet)algorithmis proposed to achieve this goal.Visual Geometry Group(VGG)model is improved by utilizing the convolution instead of the fully connected module,the deeply separable convolution module,and the densely connected network module,with the first two modules reducing the parameters and the third module allowing the algorithm to have more features in a limited number of parameters.The algorithm achieves better results in the mine vehicle recognition dataset.Experiments show that the recognition accuracy is improved by 4.41% compared to VGG19 and the amount of parameters is reduced by 71% compared to VGG19. 展开更多
关键词 VGGNet vehicle head and tail recognition densely connected depthwise separable convolutional
下载PDF
Lightweight Cross-Modal Multispectral Pedestrian Detection Based on Spatial Reweighted Attention Mechanism
7
作者 Lujuan Deng Ruochong Fu +3 位作者 Zuhe Li Boyi Liu Mengze Xue Yuhao Cui 《Computers, Materials & Continua》 SCIE EI 2024年第3期4071-4089,共19页
Multispectral pedestrian detection technology leverages infrared images to provide reliable information for visible light images, demonstrating significant advantages in low-light conditions and background occlusion s... Multispectral pedestrian detection technology leverages infrared images to provide reliable information for visible light images, demonstrating significant advantages in low-light conditions and background occlusion scenarios. However, while continuously improving cross-modal feature extraction and fusion, ensuring the model’s detection speed is also a challenging issue. We have devised a deep learning network model for cross-modal pedestrian detection based on Resnet50, aiming to focus on more reliable features and enhance the model’s detection efficiency. This model employs a spatial attention mechanism to reweight the input visible light and infrared image data, enhancing the model’s focus on different spatial positions and sharing the weighted feature data across different modalities, thereby reducing the interference of multi-modal features. Subsequently, lightweight modules with depthwise separable convolution are incorporated to reduce the model’s parameter count and computational load through channel-wise and point-wise convolutions. The network model algorithm proposed in this paper was experimentally validated on the publicly available KAIST dataset and compared with other existing methods. The experimental results demonstrate that our approach achieves favorable performance in various complex environments, affirming the effectiveness of the multispectral pedestrian detection technology proposed in this paper. 展开更多
关键词 Multispectral pedestrian detection convolutional neural networks depth separable convolution spatially reweighted attention mechanism
下载PDF
A Framework of Lightweight Deep Cross-Connected Convolution Kernel Mapping Support Vector Machines
8
作者 Qi Wang Zhaoying Liu +3 位作者 Ting Zhang Shanshan Tu Yujian Li Muhammad Waqas 《Journal on Artificial Intelligence》 2022年第1期37-48,共12页
Deep kernel mapping support vector machines have achieved good results in numerous tasks by mapping features from a low-dimensional space to a high-dimensional space and then using support vector machines for classifi... Deep kernel mapping support vector machines have achieved good results in numerous tasks by mapping features from a low-dimensional space to a high-dimensional space and then using support vector machines for classification.However,the depth kernel mapping support vector machine does not take into account the connection of different dimensional spaces and increases the model parameters.To further improve the recognition capability of deep kernel mapping support vector machines while reducing the number of model parameters,this paper proposes a framework of Lightweight Deep Convolutional Cross-Connected Kernel Mapping Support Vector Machines(LC-CKMSVM).The framework consists of a feature extraction module and a classification module.The feature extraction module first maps the data from low-dimensional to high-dimensional space by fusing the representations of different dimensional spaces through cross-connections;then,it uses depthwise separable convolution to replace part of the original convolution to reduce the number of parameters in the module;The classification module uses a soft margin support vector machine for classification.The results on 6 different visual datasets show that LC-CKMSVM obtains better classification accuracies on most cases than the other five models. 展开更多
关键词 convolutional neural network cross-connected lightweight framework depthwise separable convolution
下载PDF
Validation Research on the Application of Depthwise Separable Convolutional Al Facial Expression Recognition in Non-pharmacological Treatment of BPSD
9
作者 Xiangyu Liu 《Journal of Clinical and Nursing Research》 2021年第4期31-37,共7页
One of the most obvious clinical reasons of dementia or The Behavioral and Psychological Symptoms of Dementia(BPSD)are the lack of emotional expression,the increased frequency of negative emotions,and the impermanence... One of the most obvious clinical reasons of dementia or The Behavioral and Psychological Symptoms of Dementia(BPSD)are the lack of emotional expression,the increased frequency of negative emotions,and the impermanence of emotions.Observing the reduction of BPSD in dementia through emotions can be considered effective and widely used in the field of non-pharmacological therapy.At present,this article will verify whether the image recognition artificial intelligence(AI)system can correctly reflect the emotional performance of the elderly with dementia through a questionnaire survey of three professional elderly nursing staff.The ANOVA(sig.=0.50)is used to determine that the judgment given by the nursing staff has no obvious deviation,and then Kendall's test(0.722**)and spearman's test(0.863**)are used to verify the judgment severity of the emotion recognition system and the nursing staff unanimously.This implies the usability of the tool.Additionally,it can be expected to be further applied in the research related to BPSD elderly emotion detection. 展开更多
关键词 Depth-wise separable convolution EMOTION BPSD DEMENTIA Nursing
下载PDF
SepFE:Separable Fusion Enhanced Network for Retinal Vessel Segmentation 被引量:2
10
作者 Yun Wu Ge Jiao Jiahao Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2465-2485,共21页
The accurate and automatic segmentation of retinal vessels fromfundus images is critical for the early diagnosis and prevention ofmany eye diseases,such as diabetic retinopathy(DR).Existing retinal vessel segmentation... The accurate and automatic segmentation of retinal vessels fromfundus images is critical for the early diagnosis and prevention ofmany eye diseases,such as diabetic retinopathy(DR).Existing retinal vessel segmentation approaches based on convolutional neural networks(CNNs)have achieved remarkable effectiveness.Here,we extend a retinal vessel segmentation model with low complexity and high performance based on U-Net,which is one of the most popular architectures.In view of the excellent work of depth-wise separable convolution,we introduce it to replace the standard convolutional layer.The complexity of the proposed model is reduced by decreasing the number of parameters and calculations required for themodel.To ensure performance while lowering redundant parameters,we integrate the pre-trained MobileNet V2 into the encoder.Then,a feature fusion residual module(FFRM)is designed to facilitate complementary strengths by enhancing the effective fusion between adjacent levels,which alleviates extraneous clutter introduced by direct fusion.Finally,we provide detailed comparisons between the proposed SepFE and U-Net in three retinal image mainstream datasets(DRIVE,STARE,and CHASEDB1).The results show that the number of SepFE parameters is only 3%of U-Net,the Flops are only 8%of U-Net,and better segmentation performance is obtained.The superiority of SepFE is further demonstrated through comparisons with other advanced methods. 展开更多
关键词 Retinal vessel segmentation U-Net depth-wise separable convolution feature fusion
下载PDF
Lightweight Surface Litter Detection Algorithm Based on Improved YOLOv5s 被引量:1
11
作者 Zunliang Chen Chengxu Huang +1 位作者 Lucheng Duan Baohua Tan 《Computers, Materials & Continua》 SCIE EI 2023年第7期1085-1102,共18页
In response to the problem of the high cost and low efficiency of traditional water surface litter cleanup through manpower,a lightweight water surface litter detection algorithm based on improved YOLOv5s is proposed ... In response to the problem of the high cost and low efficiency of traditional water surface litter cleanup through manpower,a lightweight water surface litter detection algorithm based on improved YOLOv5s is proposed to provide core technical support for real-time water surface litter detection by water surface litter cleanup vessels.The method reduces network parameters by introducing the deep separable convolution GhostConv in the lightweight network GhostNet to substitute the ordinary convolution in the original YOLOv5s feature extraction and fusion network;introducing the C3Ghost module to substitute the C3 module in the original backbone and neck networks to further reduce computational effort.Using a Convolutional Block Attention Mechanism(CBAM)module in the backbone network to strengthen the network’s ability to extract significant target features from images.Finally,the loss function is optimized using the Focal-EIoU loss func-tion to improve the convergence speed and model accuracy.The experimental results illustrate that the improved algorithm outperforms the original Yolov5s in all aspects of the homemade water surface litter dataset and has certain advantages over some current mainstream algorithms in terms of model size,detection accuracy,and speed,which can deal with the problems of real-time detection of water surface litter in real life. 展开更多
关键词 Surface litter detection LIGHTWEIGHT YOLOv5s GhostNet deep separable convolution convolutional block attention mechanism(CBAM)
下载PDF
Lightweight and highly robust memristor-based hybrid neural networks for electroencephalogram signal processing
12
作者 童霈文 徐晖 +5 位作者 孙毅 汪泳州 彭杰 廖岑 王伟 李清江 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期582-590,共9页
Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor ... Memristor-based neuromorphic computing shows great potential for high-speed and high-throughput signal processing applications,such as electroencephalogram(EEG)signal processing.Nonetheless,the size of one-transistor one-resistor(1T1R)memristor arrays is limited by the non-ideality of the devices,which prevents the hardware implementation of large and complex networks.In this work,we propose the depthwise separable convolution and bidirectional gate recurrent unit(DSC-BiGRU)network,a lightweight and highly robust hybrid neural network based on 1T1R arrays that enables efficient processing of EEG signals in the temporal,frequency and spatial domains by hybridizing DSC and BiGRU blocks.The network size is reduced and the network robustness is improved while ensuring the network classification accuracy.In the simulation,the measured non-idealities of the 1T1R array are brought into the network through statistical analysis.Compared with traditional convolutional networks,the network parameters are reduced by 95%and the network classification accuracy is improved by 21%at a 95%array yield rate and 5%tolerable error.This work demonstrates that lightweight and highly robust networks based on memristor arrays hold great promise for applications that rely on low consumption and high efficiency. 展开更多
关键词 MEMRISTOR LIGHTWEIGHT ROBUST hybrid neural networks depthwise separable convolution bidirectional gate recurrent unit(BiGRU) one-transistor one-resistor(1T1R)arrays
原文传递
Image Semantic Segmentation for Autonomous Driving Based on Improved U-Net
13
作者 Chuanlong Sun Hong Zhao +2 位作者 Liang Mu Fuliang Xu Laiwei Lu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第7期787-801,共15页
Image semantic segmentation has become an essential part of autonomous driving.To further improve the generalization ability and the robustness of semantic segmentation algorithms,a lightweight algorithm network based... Image semantic segmentation has become an essential part of autonomous driving.To further improve the generalization ability and the robustness of semantic segmentation algorithms,a lightweight algorithm network based on Squeeze-and-Excitation Attention Mechanism(SE)and Depthwise Separable Convolution(DSC)is designed.Meanwhile,Adam-GC,an Adam optimization algorithm based on Gradient Compression(GC),is proposed to improve the training speed,segmentation accuracy,generalization ability and stability of the algorithm network.To verify and compare the effectiveness of the algorithm network proposed in this paper,the trained networkmodel is used for experimental verification and comparative test on the Cityscapes semantic segmentation dataset.The validation and comparison results show that the overall segmentation results of the algorithmnetwork can achieve 78.02%MIoU on Cityscapes validation set,which is better than the basic algorithm network and the other latest semantic segmentation algorithms network.Besides meeting the stability and accuracy requirements,it has a particular significance for the development of image semantic segmentation. 展开更多
关键词 Deep learning semantic segmentation attention mechanism depthwise separable convolution gradient compression
下载PDF
PF-YOLOv4-Tiny: Towards Infrared Target Detection on Embedded Platform
14
作者 Wenbo Li Qi Wang Shang Gao 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期921-938,共18页
Infrared target detection models are more required than ever before to be deployed on embedded platforms,which requires models with less memory consumption and better real-time performance while considering accuracy.T... Infrared target detection models are more required than ever before to be deployed on embedded platforms,which requires models with less memory consumption and better real-time performance while considering accuracy.To address the above challenges,we propose a modified You Only Look Once(YOLO)algorithm PF-YOLOv4-Tiny.The algorithm incorpo-rates spatial pyramidal pooling(SPP)and squeeze-and-excitation(SE)visual attention modules to enhance the target localization capability.The PANet-based-feature pyramid networks(P-FPN)are proposed to transfer semantic information and location information simultaneously to ameliorate detection accuracy.To lighten the network,the standard convolutions other than the backbone network are replaced with depthwise separable convolutions.In post-processing the images,the soft-non-maximum suppression(soft-NMS)algorithm is employed to subside the missed and false detection problems caused by the occlusion between targets.The accuracy of our model can finally reach 61.75%,while the total Params is only 9.3 M and GFLOPs is 11.At the same time,the inference speed reaches 87 FPS on NVIDIA GeForce GTX 1650 Ti,which can meet the requirements of the infrared target detection algorithm for the embedded deployments. 展开更多
关键词 Infrared target detection visual attention module spatial pyramid pooling dual-path feature fusion depthwise separable convolution soft-NMS
下载PDF
Sea-Land Segmentation of Remote Sensing Images Based on SDW-UNet
15
作者 Tianyu Liu Pengyu Liu +3 位作者 Xiaowei Jia Shanji Chen Ying Ma Qian Gao 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期1033-1045,共13页
Image segmentation of sea-land remote sensing images is of great importance for downstream applications including shoreline extraction,the monitoring of near-shore marine environment,and near-shore target recognition.... Image segmentation of sea-land remote sensing images is of great importance for downstream applications including shoreline extraction,the monitoring of near-shore marine environment,and near-shore target recognition.To mitigate large number of parameters and improve the segmentation accuracy,we propose a new Squeeze-Depth-Wise UNet(SDW-UNet)deep learning model for sea-land remote sensing image segmentation.The proposed SDW-UNet model leverages the squeeze-excitation and depth-wise separable convolution to construct new convolution modules,which enhance the model capacity in combining multiple channels and reduces the model parameters.We further explore the effect of position-encoded information in NLP(Natural Language Processing)domain on sea-land segmentation task.We have conducted extensive experiments to compare the proposed network with the mainstream segmentation network in terms of accuracy,the number of parameters and the time cost for prediction.The test results on remote sensing data sets of Guam,Okinawa,Taiwan China,San Diego,and Diego Garcia demonstrate the effectiveness of SDW-UNet in recognizing different types of sea-land areas with a smaller number of parameters,reduces prediction time cost and improves performance over other mainstream segmentation models.We also show that the position encoding can further improve the accuracy of model segmentation. 展开更多
关键词 Sea-land segmentation UNet depth-wise separable convolution squeeze-excitation position encoding
下载PDF
A Light-weight Deep Neural Network for Vehicle Detection in Complex Tunnel Environments
16
作者 ZHENG Lie REN Dandan 《Instrumentation》 2023年第1期32-44,共13页
With the rapid development of social economy,transportation has become faster and more efficient.As an important part of goods transportation,the safe maintenance of tunnel highways has become particularly important.T... With the rapid development of social economy,transportation has become faster and more efficient.As an important part of goods transportation,the safe maintenance of tunnel highways has become particularly important.The maintenance of tunnel roads has become more difficult due to problems such as sealing,narrowness and lack of light.Currently,target detection methods are advantageous in detecting tunnel vehicles in a timely manner through monitoring.Therefore,in order to prevent vehicle misdetection and missed detection in this complex environment,we propose aYOLOv5-Vehicle model based on the YOLOv5 network.This model is improved in three ways.Firstly,The backbone network of YOLOv5 is replaced by the lightweight MobileNetV3 network to extract features,which reduces the number of model parameters;Next,all convolutions in the neck module are improved to the depth-wise separable convolutions to further reduce the number of model parameters and computation,and improve the detection speed of the model;Finally,to ensure the accuracy of the model,the CBAM attention mechanism is introduced to improve the detection accuracy and precision of the model.Experiments results demonstrate that the YOLOv5-Vehicle model can improve the accuracy. 展开更多
关键词 CBAM Depth-wise Separable convolution MobileNetV3 Vehicle Detection YOLOV5
原文传递
BEVGGC:Biogeography-Based Optimization Expert-VGG for Diagnosis COVID-19 via Chest X-ray Images 被引量:2
17
作者 Junding Sun Xiang Li +1 位作者 Chaosheng Tang Shixin Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第11期729-753,共25页
Purpose:As to January 11,2021,coronavirus disease(COVID-19)has caused more than 2 million deaths worldwide.Mainly diagnostic methods of COVID-19 are:(i)nucleic acid testing.This method requires high requirements on th... Purpose:As to January 11,2021,coronavirus disease(COVID-19)has caused more than 2 million deaths worldwide.Mainly diagnostic methods of COVID-19 are:(i)nucleic acid testing.This method requires high requirements on the sample testing environment.When collecting samples,staff are in a susceptible environment,which increases the risk of infection.(ii)chest computed tomography.The cost of it is high and some radiation in the scan process.(iii)chest X-ray images.It has the advantages of fast imaging,higher spatial recognition than chest computed tomography.Therefore,our team chose the chest X-ray images as the experimental dataset in this paper.Methods:We proposed a novel framework—BEVGG and three methods(BEVGGC-I,BEVGGC-II,and BEVGGC-III)to diagnose COVID-19 via chest X-ray images.Besides,we used biogeography-based optimization to optimize the values of hyperparameters of the convolutional neural network.Results:The experimental results show that the OA of our proposed three methods are 97.65%±0.65%,94.49%±0.22%and 94.81%±0.52%.BEVGGC-I has the best performance of all methods.Conclusions:The OA of BEVGGC-I is 9.59%±1.04%higher than that of state-of-the-art methods. 展开更多
关键词 Biogeography-based optimization convolutional neural networks depthwise separable convolution DILATED
下载PDF
A WEIGHTED GENERAL DISCRETE FOURIER TRANSFORM FOR THE FREQUENCY-DOMAIN BLIND SOURCE SEPARATION OF CONVOLUTIVE MIXTURES 被引量:1
18
作者 Wang Chao Fang Yong Feng Jiuchao 《Journal of Electronics(China)》 2008年第6期830-833,共4页
This letter deals with the frequency domain Blind Source Separation of Convolutive Mixtures (CMBSS). From the frequency representation of the "overlap and save", a Weighted General Discrete Fourier Transform... This letter deals with the frequency domain Blind Source Separation of Convolutive Mixtures (CMBSS). From the frequency representation of the "overlap and save", a Weighted General Discrete Fourier Transform (WGDFT) is derived to replace the traditional Discrete Fourier Transform (DFT). The mixing matrix on each frequency bin could be estimated more precisely from WGDFT coefficients than from DFT coefficients, which improves separation performance. Simulation results verify the validity of WGDFT for frequency domain blind source separation of convolutive mixtures. 展开更多
关键词 Blind Source Separation of Convolutive Mixtures (CMBSS) Frequency representation of overlap and save Weighted General Discrete Fourier Transform (WGDFT)
下载PDF
Research on Fall Detection Based on Improved Human Posture Estimation Algorithm 被引量:1
19
作者 ZHENG Yangjiaozi ZHANG Shang 《Instrumentation》 2021年第4期18-33,共16页
According to recent research statistics,approximately 30%of people who experienced falls are over the age of 65.Therefore,it is meaningful research to detect it in time and take appropriate measures when falling behav... According to recent research statistics,approximately 30%of people who experienced falls are over the age of 65.Therefore,it is meaningful research to detect it in time and take appropriate measures when falling behavior occurs.In this paper,a fall detection model based on improved human posture estimation algorithm is proposed.The improved human posture estimation algorithm is implemented on the basis of Openpose.An im-proved strategy based on depthwise separable convolution combined with HDC structure is proposed.The depthwise separable convolution is used to replace the convolution neural network structure,which makes the network lightweight and reduces the redundant layer in the network.At the same time,in order to ensure that the image features are not lost and ensure the accuracy of detecting human joint points,HDC structure is introduced.Experiments show that the improved algorithm with HDC structure has higher accuracy in joint point detection.Then,human posture estimation is applied to fall detection research,and fall event modeling is carried out through fall feature extraction.The designed convolution neural network model is used to classify and distinguish falls.The experimental results show that our method achieves 98.53%,97.71%and 97.20%accuracy on three public fall detection data sets.Compared with the experimental results of other methods on the same data set,the model designed in this paper has a certain improvement in system accuracy.The sensitivity is also improved,which will reduce the error detection probability of the system.In addition,this paper also verifies the real-time performance of the model.Even if researchers are experimenting with low-level hardware,it can ensure a certain detection speed without too much delay. 展开更多
关键词 Fall Detection Human Posture Estimation Depthwise Separable convolution convolutional Neural Networks Feature Extraction
原文传递
An Enhanced Deep Learning Method for Skin Cancer Detection and Classification
20
作者 Mohamed W.Abo El-Soud Tarek Gaber +1 位作者 Mohamed Tahoun Abdullah Alourani 《Computers, Materials & Continua》 SCIE EI 2022年第10期1109-1123,共15页
The prevalence of melanoma skin cancer has increased in recent decades.The greatest risk from melanoma is its ability to broadly spread throughout the body by means of lymphatic vessels and veins.Thus,the early diagno... The prevalence of melanoma skin cancer has increased in recent decades.The greatest risk from melanoma is its ability to broadly spread throughout the body by means of lymphatic vessels and veins.Thus,the early diagnosis of melanoma is a key factor in improving the prognosis of the disease.Deep learning makes it possible to design and develop intelligent systems that can be used in detecting and classifying skin lesions from visible-light images.Such systems can provide early and accurate diagnoses of melanoma and other types of skin diseases.This paper proposes a new method which can be used for both skin lesion segmentation and classification problems.This solution makes use of Convolutional neural networks(CNN)with the architecture two-dimensional(Conv2D)using three phases:feature extraction,classification and detection.The proposed method is mainly designed for skin cancer detection and diagnosis.Using the public dataset International Skin Imaging Collaboration(ISIC),the impact of the proposed segmentation method on the performance of the classification accuracy was investigated.The obtained results showed that the proposed skin cancer detection and classification method had a good performance with an accuracy of 94%,sensitivity of 92%and specificity of 96%.Also comparing with the related work using the same dataset,i.e.,ISIC,showed a better performance of the proposed method. 展开更多
关键词 convolution neural networks activation function separable convolution 2D batch normalization max pooling classification
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部