Increase of sewage sludge(SS)has led to the construction of more incineration plants,exacerbating to the production of SS incineration residues.However,few studies have considered the mass balance of elements in large...Increase of sewage sludge(SS)has led to the construction of more incineration plants,exacerbating to the production of SS incineration residues.However,few studies have considered the mass balance of elements in large-scale SS incineration plants,affecting the residues treatment and utilization.In this study,flow analysis was conducted for major and trace elements in the SS,the fly ash(sewage sludge ash,SSA)and bottom ash from two large-scale SS incineration plants.The elemental characteristics were compared with those of coal fly ash(CFA),and air pollution control residues from municipal solid waste incineration(MSWIA),as well as related criteria.The results showed that the most abundant major element in SSA was Si,ranging from 120 to 240 g/kg,followed by Al(76–348 g/kg),Ca(26–113 g/kg),Fe(35–80 g/kg),and P(26–104 g/kg),and the trace elements were mainly Zn,Ba,Cu,and Mn.Not all the major elements were derived from SS.Most trace elements in the SS incineration residues accounted for 82.4%–127%of those from SS,indicating that SS was the main source of trace elements.The partitioning of heavy metals in the SS incineration residues showed that electrostatic precipitator ash or cyclone ash with high production rates were the major pollutant sinks.The differences in some major and trace elements could be indicators to differentiate SSA from CFA and MSWIA.Compared with related land criteria,the pollutants in SSA should not be ignored during disposal and utilization.展开更多
Management of incinerated sewage sludge ash(ISSA)and dredged contaminated marine sediments(CMSs)is a great challenge for Hong Kong and other coastal cities due to limited landfilling capacity.The present study investi...Management of incinerated sewage sludge ash(ISSA)and dredged contaminated marine sediments(CMSs)is a great challenge for Hong Kong and other coastal cities due to limited landfilling capacity.The present study investigates the use of high content(20%of sediment by mass)of ISSA in combination with cement/lime for solidification/stabilization(S/S)treatment of CMSs to provide a way to reuse the wastes as construction materials.The results showed that ISSA being a porous material was able to absorb a large amount of water rendering a more efficient solidification process of the marine sediment which normally had a very high water content(w80%).The S/S treatment improved the engineering properties of the sediment,but reduced the workability,especially for the lime-treated samples.Lime can be used to replace ordinary Portland cement(OPC)for better heavy metal immobilization and carbon emission reduction.The hardened sediment samples prepared with 10%of lime and 20%of ISSA could attain a strength of 1.6 MPa after 28 d of curing.In addition,leaching tests confirmed that there was no environmental risk induced by these stabilized materials.The formation of hydrated cementitious compounds including calcium silicate hydrate(CeSeH)/calcium aluminate silicate hydrate(C-A-S-H)/hydrocalumite/calcite was mainly responsible for the strength development in the ISSA/lime-treated sediments.展开更多
Phosphorus(P)recovery from incinerated sewage sludge ash(ISSA)has been extensively investigated,but insufficient research has been conducted to evaluate the effect of different kinds of recovered phosphate fertilizers...Phosphorus(P)recovery from incinerated sewage sludge ash(ISSA)has been extensively investigated,but insufficient research has been conducted to evaluate the effect of different kinds of recovered phosphate fertilizers(RPFs)on plant growth with respect to the P and heavy metal contents of RPFs.In this study,three kinds of RPFs,precipitated calcium phosphate fertilizer(CaP),struvite phosphate fertilizer(SP),and P-loaded biochar(BP),produced from ISSA were characterized,and their agronomic effectiveness was verified by hydroponic and soil cultivation.In addition to the three kinds of RPFs,a control group(mono-phosphate fertilizer in hydroponic group/compound fertilizer in soil cultivation group)and a blank control group(BC,with zero P)were tested on choy sum and ryegrass at the same time.SP has the highest P purity(76.0%of struvite)while the BP has the most complex P species(P was co-exist with Fe,Al,and Mg).Plant growth results showed that the RPFs greatly facilitated plant growth and demonstrated superior/comparable effects to those of control group.In hydroponics testing,SP showed the best effect(shoot length of 17.0 cm,chlorophyll content of 2.05 mg/g)due to the Mg involved and the high P purity of SP,while BP performed the best(shoot length of 13.7 cm,chlorophyll content of 2.42 mg/g)in the soil testing system among all of the groups because of the additional nutritional elements and the high P availability of BP.Additionally,the accumulation of heavy metals in the plants under all conditions did not exceed the limits stipulated in the regulations.These results indicate that recovering P from ISSA is an attractive technology to produce P fertilizers,which can alleviate both the scarcity of phosphate resources and the burden of ISSA management.展开更多
基金supported by the Major Science and Technology Program for Water Pollution Control and Treatment(No.2017ZX07202005)National Natural Science Foundation of China(No.21577102)。
文摘Increase of sewage sludge(SS)has led to the construction of more incineration plants,exacerbating to the production of SS incineration residues.However,few studies have considered the mass balance of elements in large-scale SS incineration plants,affecting the residues treatment and utilization.In this study,flow analysis was conducted for major and trace elements in the SS,the fly ash(sewage sludge ash,SSA)and bottom ash from two large-scale SS incineration plants.The elemental characteristics were compared with those of coal fly ash(CFA),and air pollution control residues from municipal solid waste incineration(MSWIA),as well as related criteria.The results showed that the most abundant major element in SSA was Si,ranging from 120 to 240 g/kg,followed by Al(76–348 g/kg),Ca(26–113 g/kg),Fe(35–80 g/kg),and P(26–104 g/kg),and the trace elements were mainly Zn,Ba,Cu,and Mn.Not all the major elements were derived from SS.Most trace elements in the SS incineration residues accounted for 82.4%–127%of those from SS,indicating that SS was the main source of trace elements.The partitioning of heavy metals in the SS incineration residues showed that electrostatic precipitator ash or cyclone ash with high production rates were the major pollutant sinks.The differences in some major and trace elements could be indicators to differentiate SSA from CFA and MSWIA.Compared with related land criteria,the pollutants in SSA should not be ignored during disposal and utilization.
基金The authors would like to thank the financial support of National Natural Science Foundation of China(Grant Nos.51861165104 and 51625903)National Key Research and Development Project(Grant No.2019YFC1804002).
文摘Management of incinerated sewage sludge ash(ISSA)and dredged contaminated marine sediments(CMSs)is a great challenge for Hong Kong and other coastal cities due to limited landfilling capacity.The present study investigates the use of high content(20%of sediment by mass)of ISSA in combination with cement/lime for solidification/stabilization(S/S)treatment of CMSs to provide a way to reuse the wastes as construction materials.The results showed that ISSA being a porous material was able to absorb a large amount of water rendering a more efficient solidification process of the marine sediment which normally had a very high water content(w80%).The S/S treatment improved the engineering properties of the sediment,but reduced the workability,especially for the lime-treated samples.Lime can be used to replace ordinary Portland cement(OPC)for better heavy metal immobilization and carbon emission reduction.The hardened sediment samples prepared with 10%of lime and 20%of ISSA could attain a strength of 1.6 MPa after 28 d of curing.In addition,leaching tests confirmed that there was no environmental risk induced by these stabilized materials.The formation of hydrated cementitious compounds including calcium silicate hydrate(CeSeH)/calcium aluminate silicate hydrate(C-A-S-H)/hydrocalumite/calcite was mainly responsible for the strength development in the ISSA/lime-treated sediments.
基金support from Major Scientific and Technological Innovation Projects of Shandong Province(No.2021CXGC011201)the start-up funding for the new introduced talents of the Beijing Normal University(No.28707-111032107)Hong Kong Research Grants Council(PolyU No.152132/14E)for financial support.
文摘Phosphorus(P)recovery from incinerated sewage sludge ash(ISSA)has been extensively investigated,but insufficient research has been conducted to evaluate the effect of different kinds of recovered phosphate fertilizers(RPFs)on plant growth with respect to the P and heavy metal contents of RPFs.In this study,three kinds of RPFs,precipitated calcium phosphate fertilizer(CaP),struvite phosphate fertilizer(SP),and P-loaded biochar(BP),produced from ISSA were characterized,and their agronomic effectiveness was verified by hydroponic and soil cultivation.In addition to the three kinds of RPFs,a control group(mono-phosphate fertilizer in hydroponic group/compound fertilizer in soil cultivation group)and a blank control group(BC,with zero P)were tested on choy sum and ryegrass at the same time.SP has the highest P purity(76.0%of struvite)while the BP has the most complex P species(P was co-exist with Fe,Al,and Mg).Plant growth results showed that the RPFs greatly facilitated plant growth and demonstrated superior/comparable effects to those of control group.In hydroponics testing,SP showed the best effect(shoot length of 17.0 cm,chlorophyll content of 2.05 mg/g)due to the Mg involved and the high P purity of SP,while BP performed the best(shoot length of 13.7 cm,chlorophyll content of 2.42 mg/g)in the soil testing system among all of the groups because of the additional nutritional elements and the high P availability of BP.Additionally,the accumulation of heavy metals in the plants under all conditions did not exceed the limits stipulated in the regulations.These results indicate that recovering P from ISSA is an attractive technology to produce P fertilizers,which can alleviate both the scarcity of phosphate resources and the burden of ISSA management.