期刊文献+
共找到8,140篇文章
< 1 2 250 >
每页显示 20 50 100
Prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum
1
作者 Fan Wang Xiuli Du Pengfei Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期192-212,共21页
This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of... This study focuses on the analytical prediction of subsurface settlement induced by shield tunnelling in sandy cobble stratum considering the volumetric deformation modes of the soil above the tunnel crown.A series of numerical analyses is performed to examine the effects of cover depth ratio(C/D),tunnel volume loss rate(h t)and volumetric block proportion(VBP)on the characteristics of subsurface settle-ment trough and soil volume loss.Considering the ground loss variation with depth,three modes are deduced from the volumetric deformation responses of the soil above the tunnel crown.Then,analytical solutions to predict subsurface settlement for each mode are presented using stochastic medium theory.The influences of C/D,h t and VBP on the key parameters(i.e.B and N)in the analytical expressions are discussed to determine the fitting formulae of B and N.Finally,the proposed analytical solutions are validated by the comparisons with the results of model test and numerical simulation.Results show that the fitting formulae provide a convenient and reliable way to evaluate the key parameters.Besides,the analytical solutions are reasonable and available in predicting the subsurface settlement induced by shield tunnelling in sandy cobble stratum. 展开更多
关键词 shield tunnelling Sandy cobble stratum Subsurface settlement Volumetric deformation mode Stochastic medium theory
下载PDF
On the critical particle size of soil with clogging potential in shield tunneling 被引量:3
2
作者 Shuying Wang Zihao Zhou +3 位作者 Pengfei Liu Zhao Yang Qiujing Pan Weizhong Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第2期477-485,共9页
Shield tunneling is easily obstructed by clogging in clayey strata with small soil particles.However,soil clogging rarely occurs in strata with coarse-grained soils.Theoretically,a critical particle size of soils shou... Shield tunneling is easily obstructed by clogging in clayey strata with small soil particles.However,soil clogging rarely occurs in strata with coarse-grained soils.Theoretically,a critical particle size of soils should exist,below which there is a high risk of soil clogging in shield tunneling.To determine the critical particle size,a series of laboratory tests was carried out with a large-scale rotary shear apparatus to measure the tangential adhesion strength of soils with different particle sizes and water contents.It was found that the tangential adhesion strength at the soilesteel interface gradually increased linearly with applied normal pressure.When the particle size of the soil specimen was less than 0.15 mm,the interfacial adhesion force first increased and then decreased as the water content gradually increased;otherwise,the soil specimens did not manifest any interfacial adhesion force.The amount of soil mass adhering to the steel disc was positively correlated with the interfacial adhesion force,thus the interfacial adhesion force was adopted to characterize the soil clogging risk in shield tunneling.The critical particle size of soils causing clogging was determined to be 0.15 mm.Finally,the generation mechanism of interfacial adhesion force was explored for soils with different particle sizes to explain the critical particle size of soil with clogging risk in shield tunneling. 展开更多
关键词 shield tunneling Soil clogging ADHESION Critical particle size
下载PDF
Determination of minimum overburden depth for underwater shield tunnel in sands:Comparison between circular and rectangular tunnels 被引量:2
3
作者 Weixin Sun Fucheng Han +4 位作者 Hanlong Liu Wengang Zhang Yanmei Zhang Weijia Su Songlin Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1671-1686,共16页
With the development of global urbanization,the utilization of underground space is more critical and attractive for civil purposes.Various shapes of shield tunnels have been gradually proposed to cope with different ... With the development of global urbanization,the utilization of underground space is more critical and attractive for civil purposes.Various shapes of shield tunnels have been gradually proposed to cope with different geological conditions and service purposes of underground structures.Generally,reducing the burial depth of shield tunnel is conducive to construction and cost saving.However,extremely small overburden depth cannot provide sufficient uplift resistance to maintain the stability and serviceability of the tunnel.To this end,this paper firstly reviewed the status of deriving the minimum sand over-burden depth of circular shield tunnel using mechanical equilibrium(ME)method.It revealed that the estimated depth is rather conservative.Then,the uplift resistance mechanism of both circular and rectangular tunnels was deduced theoretically and verified with the model tests.The theoretical uplift resistance is consistent with the experimental values,indicating the feasibility of the proposed equations.Furthermore,the determination of the minimum soil overburden depth of rectangular shield tunnel under various working conditions was presented through integrated ME method,which can provide more reasonable estimations of suggested tunnel burial depth for practical construction.Additionally,optimizations were made for calculating the uplift resistance,and the soil thickness providing uplift resistance is suggested to be adjusted according to the testing results.The results can provide reference for the design and construction of various shapes of shield tunnels in urban underground space exploitation. 展开更多
关键词 Minimum overburden depth Uplift resistance mechanism shield tunnel shape tunnel anti-floating
下载PDF
Analytical solution for longitudinal deformation of shield tunnel induced by overcrossing tunnelling considering circumferential joints
4
作者 Zhiwei Zhang Rongzhu Liang +4 位作者 Zhongchao Li Cheng Kang MHEl Naggar Mingzhao Xiao Wenbing Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第9期2355-2374,共20页
This paper presents a new analytical solution for assessing the longitudinal deformation of shield tunnel associated with overcrossing tunnelling in consideration of circumferential joints.A simplified longitudinal be... This paper presents a new analytical solution for assessing the longitudinal deformation of shield tunnel associated with overcrossing tunnelling in consideration of circumferential joints.A simplified longitudinal beam-spring model(SLBSM)is established to model the longitudinal behaviours of shield tunnel,which can consider the opening and dislocation between segmental rings simultaneously.Then,the existing tunnel is treated as the SLBSM resting on the elastic foundation.The state equations including tunnel displacements and internal forces are constructed to solve the discontinuous deformation of circumferential joint-segmental ring.The feasibility of the proposed solution is verified through three well-documented cases.The predictions from the proposed method are also compared with other analytical methods.It is found that the proposed method can well capture the deformation of tunnel segmental rings and joints,where the rigid displacement mainly occurs in the segmental rings while the rotation and dislocation occur in the circumferential joints.Some dominant parameters are also analysed to explore the effects on existing tunnel deformation,including the rotation stiffness and shearing stiffness of joints,the skew angle and the clearance between new and old tunnels. 展开更多
关键词 Overcrossing tunnelling shield tunnel Circumferential joints Longitudinal beam-spring model(LBSM) Opening DISLOCATION
下载PDF
Mechanical performances of shield tunnel segments under asymmetric unloading induced by pit excavation
5
作者 Gang Wei Feifan Feng +2 位作者 Chengbao Hu Jiaxuan Zhu Xiao Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第6期1547-1564,共18页
To explore the stress and deformation responses,as well as the failure characteristics of the shield tunnel segment of Hangzhou Metro under the influences of pit excavation and other surrounding projects,a self-develo... To explore the stress and deformation responses,as well as the failure characteristics of the shield tunnel segment of Hangzhou Metro under the influences of pit excavation and other surrounding projects,a self-developed“shield tunnel segment hydraulic loading system”was used to carry out full-scale loading tests on the three-ring staggered assembled segments.The structural performances and failure process of the tunnel segment under step-by-step asymmetric unloading were studied.A safety index was proposed to describe the bearing capacity of the segment.Next,a finite element model(FEM)was established to analyze the bearing capacity of segment using the test results.Finally,the effect of reinforcement with a steel plate on the deformation and bearing capacity of the segment was analyzed.The results showed that under asymmetric unloading,the peak value and amplitude of the bending moment on the near unloading side converged with a greater value than those on the far side.The concrete internal force exhibited a directional transformation at different load stages.Cracks first appeared at the 180inner arc surface of the bottom standard block and then expanded to both sides,while the rate of crack propagation of the outer arc surface was relatively lower.The bearing capacity of the segments can be evaluated by the combination of the factors,e.g.the residual bearing capacity coefficient,moment transfer coefficient,and characterization coefficient.The segments approaching failure can facilitate the increase in the residual bearing capacity coefficient by more than 50%.This can provide guidance for the service assessment of metro tunnel operations. 展开更多
关键词 shield tunnel segment Full-scale test Asymmetric unloading Stress and deformation Safety index
下载PDF
Prediction of Disc Cutter Life During Shield Tunneling with AI via the Incorporation of a Genetic Algorithm into a GMDH-Type Neural Network 被引量:10
6
作者 Khalid Elbaz Shui-Long Shen +2 位作者 Annan Zhou Zhen-Yu Yin Hai-Min Lyu 《Engineering》 SCIE EI 2021年第2期238-251,共14页
Disc cutter consumption is a critical problem that influences work performance during shield tunneling processes and directly affects the cutter change decision.This study proposes a new model to estimate the disc cut... Disc cutter consumption is a critical problem that influences work performance during shield tunneling processes and directly affects the cutter change decision.This study proposes a new model to estimate the disc cutter life(Hf)by integrating a group method of data handling(GMDH)-type neural network(NN)with a genetic algorithm(GA).The efficiency and effectiveness of the GMDH network structure are optimized by the GA,which enables each neuron to search for its optimum connections set from the previous layer.With the proposed model,monitoring data including the shield performance database,disc cutter consumption,geological conditions,and operational parameters can be analyzed.To verify the performance of the proposed model,a case study in China is presented and a database is adopted to illustrate the excellence of the hybrid model.The results indicate that the hybrid model predicts disc cutter life with high accuracy.The sensitivity analysis reveals that the penetration rate(PR)has a significant influence on disc cutter life.The results of this study can be beneficial in both the planning and construction stages of shield tunneling. 展开更多
关键词 Disc cutter life shield tunneling Operational parameters GMDH-GA
下载PDF
Risk identification and risk mitigation during metro station construction by enlarging shield tunnel combined with cut-and-cover method 被引量:3
7
作者 Zhang, Xinjin Liu, Weining Lu, Meili 《Journal of Southeast University(English Edition)》 EI CAS 2008年第S1期142-146,共5页
Constructing a metro station by enlarging shield tunnels combined with a mining/cut-and-cover method provides a new method to solve the contradictions of construction time limits of shield tunnels and stations. As a n... Constructing a metro station by enlarging shield tunnels combined with a mining/cut-and-cover method provides a new method to solve the contradictions of construction time limits of shield tunnels and stations. As a new-style construction method, there are several specific risks involved in the construction process. Based on the test section of Sanyuanqiao station on Beijing metro line 10, and combined with the existing methods of risk identification at present, including a review of world-wide operational experience of similar projects, the study of generic guidance on hazards associated with the type of work being undertaken, and discussions with qualified and experienced staff from the project team, etc., the specific risks during the construction process of the metro station constructed by enlarging shield tunnels combined with the cut-and-cover method are identified. The results show that the specific risks mainly come from three construction processes which include constructing upper enclosure structures, excavating the soil between shield tunnels and demolishing shield segments. Then relevant risk mitigation measures are put forward. The results can provide references for scheme improvement and a comprehensive risk assessment of the new-style construction method. 展开更多
关键词 shield tunnel cut-and-cover method metro station risk identification risk mitigation
下载PDF
Optimal Control of Slurry Pressure during Shield Tunnelling Based on Random Forest and Particle Swarm Optimization 被引量:3
8
作者 Weiping Luo Dajun Yuan +2 位作者 Dalong Jin Ping Lu Jian Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第7期109-127,共19页
The control of slurry pressure aiming to be consistent with the external water and earth pressure during shield tunnelling has great significance for face stability,especially in urban areas or underwater where the su... The control of slurry pressure aiming to be consistent with the external water and earth pressure during shield tunnelling has great significance for face stability,especially in urban areas or underwater where the surrounding environment is very sensitive to the fluctuation of slurry pressure.In this study,an optimal control method for slurry pressure during shield tunnelling is developed,which is composed of an identifier and a controller.The established identifier based on the random forest(RF)can describe the complex non-linear relationship between slurry pressure and its influencing factors.The proposed controller based on particle swarm optimization(PSO)can optimize the key factor to precisely control the slurry pressure at the normal state of advancement.A data set from Tsinghua Yuan Tunnel in China was used to train the RF model and several performance measures like R2,RMSE,etc.,were employed to evaluate.Then,the hybrid RF-PSO control method is adopted to optimize the control of slurry pressure.The good agreement between optimized slurry pressure and expected values demonstrates a high identifying and control precision. 展开更多
关键词 shield tunnelling slurry pressure optimal control random forest particle swarm optimization
下载PDF
Study on Ground Deformation during Shield Tunnel Construction
9
作者 Zhongkun Zhang 《Journal of Construction Research》 2021年第2期19-26,共8页
Through the systematic analysis of the ground settlement generated by the process of shield tunneling,the relationships between ground deformation and construction parameters are studied in this paper.Based on the ass... Through the systematic analysis of the ground settlement generated by the process of shield tunneling,the relationships between ground deformation and construction parameters are studied in this paper.Based on the assumption of linear small deformation,a mathematical model of the relationship between ground deformation and construction parameters is set up.The principle and method of optimization for estimating ground deformation is studied.The actual measured data are compared with the results of theoretical analysis in a case.Considering different ground formations in different construction sites with different adverse effects on surface and underground structures,the ground surface deformations caused by shield tunneling is an aimed topic in this paper.The contributions and research implications are the revealed relationships between the ground deformation and the shield tunneling parameters during construction. 展开更多
关键词 shield tunnel Ground settlement Construction parameters Mathematical model Maximum estimation shield tunnel Ground settlement Construction parameters Mathematical model Maximum estimation
下载PDF
Pressure Regulation for Earth Pressure Balance Control on Shield Tunneling Machine by Using Adaptive Robust Control 被引量:7
10
作者 XIE Haibo LIU Zhibin YANG Huayong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期598-606,共9页
Most current studies about shield tunneling machine focus on the construction safety and tunnel structure stability during the excavation. Behaviors of the machine itself are also studied, like some tracking control o... Most current studies about shield tunneling machine focus on the construction safety and tunnel structure stability during the excavation. Behaviors of the machine itself are also studied, like some tracking control of the machine. Yet, few works concern about the hydraulic components, especially the pressure and flow rate regulation components. This research focuses on pressure control strategies by using proportional pressure relief valve, which is widely applied on typical shield tunneling machines. Modeling of a commercial pressure relief valve is done. The modeling centers on the main valve, because the dynamic performance is determined by the main valve. To validate such modeling, a frequency-experiment result of the pressure relief valve, whose bandwidth is about 3 Hz, is presented as comparison. The modeling and the frequency experimental result show that it is reasonable to regard the pressure relief valve as a second-order system with two low corner frequencies. PID control, dead band compensation control and adaptive robust control(ARC) are proposed and simulation results are presented. For the ARC, implements by using first order approximation and second order approximation are presented. The simulation results show that the second order approximation implement with ARC can track 4 Hz sine signal very well, and the two ARC simulation errors are within 0.2 MPa. Finally, experiment results of dead band compensation control and adaptive robust control are given. The results show that dead band compensation had about 30° phase lag and about 20% off of the amplitude attenuation. ARC is tracking with little phase lag and almost no amplitude attenuation. In this research, ARC has been tested on a pressure relief valve. It is able to improve the valve's dynamic performances greatly, and it is capable of the pressure control of shield machine excavation. 展开更多
关键词 自适应鲁棒控制 压力调节 盾构机 平衡控制 土压力 压力安全阀 跟踪控制 二阶系统
下载PDF
Mechanical behavior of segment rebar of shield tunnel in construction stage 被引量:11
11
作者 Jun-sheng CHEN Hai-hong MO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第7期888-899,共12页
In this paper,a 3D finite element(FE) program ADINA was applied to analyzing a tunnel with 9 segment rings. The loads acting on these segment rings included the squeezing action of tail brush of shield machine under a... In this paper,a 3D finite element(FE) program ADINA was applied to analyzing a tunnel with 9 segment rings. The loads acting on these segment rings included the squeezing action of tail brush of shield machine under attitude deflection,the jacking forces,the grouting pressure and the soil pressure. The analyses focused on the rebar stress in two statuses:(1) normal construction status without shield machine squeezing;(2) squeezing action induced by shield machine under attitude deflection. The analyses indicated that the rebar stress was evidently affected by the construction loads. In different construction status,the rebar stress ranges from -80 MPa to 50 MPa,and the rebar is in elastic status. Even some cracks appear on segments,the stress of segment rebar is still at a low level. It is helpful to incorporate a certain quantity of steel fiber to improve the anti-crack and shock resistance performance. 展开更多
关键词 隧道 螺纹钢筋 有限元法 力学行为
下载PDF
Parameter identification and pressure control of dynamic system in shield tunneling using least squares method 被引量:10
12
作者 LI Shou-ju CAO Li-juan +1 位作者 SHANGGUAN Zi-chang LIU Bo 《Journal of Coal Science & Engineering(China)》 2010年第3期256-261,共6页
An estimation approach using least squares method was presented for identificationof model parameters of pressure control in shield tunneling.The state equation ofthe pressure control system for shield tunneling was a... An estimation approach using least squares method was presented for identificationof model parameters of pressure control in shield tunneling.The state equation ofthe pressure control system for shield tunneling was analytically derived based on themass equilibrium principle that the entry mass of the pressure chamber from cutting headwas equal to excluding mass from the screw conveyor.The randomly observed noise wasnumerically simulated and mixed to simulated observation values of system responses.The numerical simulation shows that the state equation of the pressure control system forshield tunneling is reasonable and the proposed estimation approach is effective even ifthe random observation noise exists.The robustness of the controlling procedure is validatedby numerical simulation results. 展开更多
关键词 压力控制系统 最小二乘法 动力系统 盾构掘进 参数辨识 质量平衡 数值模拟 估计方法
下载PDF
Study on effect of segments erection tolerance and wedge-shaped segment on segment ring in shield tunnel 被引量:6
13
作者 CHEN Jun-sheng MO Hai-hong 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第11期1864-1869,共6页
Deformation and dislocations of segments of shield tunnel in construction stage have apparent effect on tunnel structure stress and even cause local cracks and breakage in tunnel. 3D finite element method was used to ... Deformation and dislocations of segments of shield tunnel in construction stage have apparent effect on tunnel structure stress and even cause local cracks and breakage in tunnel. 3D finite element method was used to analyze two segment ring models under uniform injected pressure: (1) segment ring without wedge-shaped segment, which has 16 types of preinstall erection tolerance; (2) segment ring with wedge-shaped segment, which has no preinstall erection tolerance. The analysis results indicate that different erection tolerances can cause irregular deformation in segment ring under uniform injected pressure, and that the tolerance values are enlarged further. Wedge-shaped segment apparently affects the overall deformation of segment ring without erection tolerances. The uniform injected pressure can cause deformation of ring with wedge-shaped segment irregular, and dislocations also appear in this situation. The stress of segment with erection tolerances is much larger than that of segment without erection tolerances. Enlarging the central angle of wedge-shaped segment can make the irregular deformation and dis- locations of segments smaller. The analysis results also provide basis for erection tolerance control and improvement of segment constitution. 展开更多
关键词 隧道施工 分割 安装公差 有限元
下载PDF
Tunnel face stability and ground settlement in pressurized shield tunnelling 被引量:4
14
作者 苏艺 汪国锋 周庆宏 《Journal of Central South University》 SCIE EI CAS 2014年第4期1600-1606,共7页
An analysis of the stability of large-diameter circular tunnels and ground settlement during tunnelling by a pressurized shield was presented. An innovative three-dimensional translational multi-block failure mechanis... An analysis of the stability of large-diameter circular tunnels and ground settlement during tunnelling by a pressurized shield was presented. An innovative three-dimensional translational multi-block failure mechanism was proposed to determine the face support pressure of large-shield tunnelling. Compared with the currently available mechanisms, the proposed mechanism has two unique features:(1) the supporting pressure applied to the tunnel face is assumed to have a non-uniform rather than uniform distribution, and(2) the method takes into account the entire circular excavation face instead of merely an inscribed ellipse. Based on the discrete element method, a numerical simulation of the Shanghai Yangtze River Tunnel was carried out using the Particle Flow Code in two dimensions. The immediate ground movement during excavation, as well as the behaviour of the excavation face, the shield movement, and the excavated area, was considered before modelling the excavation process. 展开更多
关键词 盾构隧道 地面沉降 开挖面 稳定性 加压 圆形隧道 挖掘过程 离散元方法
下载PDF
Analysis of the Dynamic Response of a Shield Tunnel in Soft Soil Under a Metro-Train Vibrating Load 被引量:10
15
作者 DENG Fei-huang MO Hai-hong +1 位作者 ZENG Qing-jun YANG Xiao-jie 《Journal of China University of Mining and Technology》 EI 2006年第4期509-513,共5页
This paper concerns the impact of an operating metro train on the structure of a shield tunnel lining and its soft foundation. An elastoplastic 3D dynamic finite difference model was established by using the FLAC3D nu... This paper concerns the impact of an operating metro train on the structure of a shield tunnel lining and its soft foundation. An elastoplastic 3D dynamic finite difference model was established by using the FLAC3D numerical soft- ware. By fully considering the joints, the A-B-K segments and the soft stratum, the dynamic response of the shield tunnel buried in thick, soft soil under the vibrating load induced by a metro train was numerically simulated. The simulation result, for which the joint was considered, was compared with the result when the joint was not considered. The results show that an operating metro train induces a significant dynamic response in the structure of the lining of the shield tunnel and its soft foundation. The severe dynamic response zones of the lining structure are largely distributed in the range of the lower half of the segment-ring and the nearer to the bottom of the segment-ring, the more severe the response. Of two horizontally symmetric, corresponding places on the segment lining, the one near the joint is more severe in its dynamic response than that of the one far from the joint; the nearer the zone of the foundation soil to the lower half of the seg- ment-ring, the more severe the dynamic response. The maximum shear strain of the foundation soil takes place near the joint between two normal segments at the bottom. The dynamic response influenced by joints is more severe than the response not influenced by joints, showing that the non-joint assumption is somewhat impractical. 展开更多
关键词 隧道 衬里 有限元分析 列车 交通条件
下载PDF
Energy saving analysis of segment positioning in shield tunneling machine considering assembling path optimization 被引量:4
16
作者 施虎 龚国芳 +1 位作者 杨华勇 梅雪松 《Journal of Central South University》 SCIE EI CAS 2014年第12期4526-4536,共11页
A motion parameter optimization method based on the objective of minimizing the total energy consumption in segment positioning was proposed for segment erector of shield tunneling machine. The segment positioning pro... A motion parameter optimization method based on the objective of minimizing the total energy consumption in segment positioning was proposed for segment erector of shield tunneling machine. The segment positioning process was decomposed into rotation, lifting and sliding actions in deriving the energy calculation model of segment erection. The work of gravity was taken into account in the mathematical modeling of energy consumed by each actuator. In order to investigate the relationship between the work done by the actuator and the path moved along by the segment, the upward and downward directions as well as the operating quadrant of the segment erector were defined. Piecewise nonlinear function of energy was presented, of which the result is determined by closely coupled components as working parameters and some intermediate variables. Finally, the effectiveness of the optimization method was proved by conducting a case study with a segment erector for the tunnel with a diameter of 3 m and drawing comparisons between different assembling paths. The results show that the energy required by assembling a ring of segments along the optimized moving path can be reduced up to 5%. The method proposed in this work definitely provides an effective energy saving solution for shield tunneling machine. 展开更多
关键词 路径优化 高效节能 盾构机 定位 组装 移动路径 非线性函数 运动参数
下载PDF
Optimized Fuzzy Clustering Method for Health Monitoring of Shield Tunnels 被引量:3
17
作者 周发 张巍 +2 位作者 孙可 唐心煜 王小敏 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2015年第3期325-333,共9页
Since health monitoring of shield tunnels generally employs multiple sensors belonging to different types,a fine analysis on massive monitoring data,as well as further quantitative health grading,is really challenging... Since health monitoring of shield tunnels generally employs multiple sensors belonging to different types,a fine analysis on massive monitoring data,as well as further quantitative health grading,is really challenging.An optimized fuzzy clustering analysis method based on the fuzzy equivalence relation is proposed for health monitoring of shield tunnels.Clustering results are auto-generated by using fuzzy similarity-valued map.The results follow the idea of unsupervised classification.Moreover,a convenient new health index HI is proposed for a fast tunnel-health grading.A case study on Nanjing Yangtze River Tunnel is presented to validate this method.Three types of indicators,namely soil pressure,pore water pressure and steel strain,are used to develop the clustering model.The clustering results are verified by analyzing the engineering geological conditions;the validity and the efficacy of the proposed method are also demonstrated.Further,the fuzzy clustering analysis also represents a potential for identifying abnormal monitoring data.This investigation indicates the fuzzy clustering analysis method is capable of characterizing the fuzziness of tunnel health,and beneficial to clarify the tunnel health evaluation uncertainties. 展开更多
关键词 shield tunnel HEALTH MONITORING optimized FUZZY CL
下载PDF
Impact of shield tunneling on adjacent spread foundation on sandy cobble strata 被引量:6
18
作者 Yong Fang Jun Wang +1 位作者 Chuan He Xiongyu Hu 《Journal of Modern Transportation》 2014年第4期244-255,共12页
The section of shield tunnel of the Chengdu Metro line passes primarily through sandy cobble strata.There are many buildings with spread foundations along the lines. Shield tunnel construction will disturb the ground,... The section of shield tunnel of the Chengdu Metro line passes primarily through sandy cobble strata.There are many buildings with spread foundations along the lines. Shield tunnel construction will disturb the ground, causing displacement or stress to adjacent spread foundations. Based on the similarity theory, a laboratory model test of shield tunnel driving was carried out to study the influence of shield tunnel excavation on the displacement of adjacent spread foundation. The results show that foundation closer to the tunnel has greater displacement or settlement than that further away. The horizontal displacement is small and is influenced greatly by the cutting face. The displacement along the machine driving direction is bigger and is significantly affected by the thrust force.Settlement occurs primarily when shield machine passes close to the foundation and is the greatest at that time.Uneven settlement at the bottom of the spread foundation reaches a maximum after the excavation ends. In a numerical simulation, a particle flow model was constructed to study the impact of shield tunnel excavation on the stresses in the ground. The model showed stress concentration at the bottom of the spread foundation. With the increasing ground loss ratio, a loose area appears in the tunnel dome where the contact force dropped. Above the loose area, the contact force increases, forming an archshaped soil area which prevents the loose area from expanding to the ground surface. The excavation also changed the pressure distribution around spread foundation. 展开更多
关键词 扩展基础 盾构隧道 砂卵石地层 不均匀沉降 层相 压力分布 隧道开挖 地铁二号线
下载PDF
Failure mechanism of large-diameter shield tunnels and its effects on ground surface settlements 被引量:3
19
作者 杨宇友 李宏安 《Journal of Central South University》 SCIE EI CAS 2012年第10期2958-2965,共8页
A new technique for the analysis of the three-dimensional collapse failure mechanism and the ground surface settlements for the large-diameter shield tunnels were presented.The technique is based on a velocity field m... A new technique for the analysis of the three-dimensional collapse failure mechanism and the ground surface settlements for the large-diameter shield tunnels were presented.The technique is based on a velocity field model using more different truncated solid conical blocks to clarify the multiblock failure mechanism.Furthermore,the shape of blocks between the failure surface and the tunnel face was considered as an entire circle,and the supporting pressure was assumed as non-uniform distribution on the tunnel face and increased with the tunnel embedded depth.The ground surface settlements and failure mechanism above large-diameter shield tunnels were also investigated under different supporting pressures by the finite difference method. 展开更多
关键词 盾构隧道 失效机理 地面沉降 大直径 速度场模型 非均匀分布 有限差分法 嵌入深度
下载PDF
Prototype test study on mechanical characteristics of segmental lining structure of underwater railway shield tunnel 被引量:3
20
作者 He Chuan Feng Kun Yan Qixiang 《Engineering Sciences》 EI 2014年第2期65-74,共10页
Based on the first underwater railway shield tunnel,the Shiziyang shield tunnel of Guangzhou Zhujiang River,the prototype test was carried out against its segmental lining structure by using"multi-function shield... Based on the first underwater railway shield tunnel,the Shiziyang shield tunnel of Guangzhou Zhujiang River,the prototype test was carried out against its segmental lining structure by using"multi-function shield tunnel structure test system". And the mechanical characteristics of segmental lining structure using straight assembling and staggered assembling were studied deeply. The results showed that,the mechanical characteristics of segmental lining structure varied with the water pressures;especially after cracking,the high water pressure played a significant role in slowing down the growing inner force and deformation. It also testified that the failure characteristics varied with straight assembling structure and staggered assembling structure.Shear failure often occurred near longitudinal seam when using straight assembling. 展开更多
关键词 衬砌结构 隧道管片 盾构隧道 力学特性 原型试验 铁路 组装结构 水下
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部