Different heating treatments with the variation of heating rates,holding temperatures and holding time were used to simulate the LTPS procedure.The experimental results show that the reheating shrinkage rates of glass...Different heating treatments with the variation of heating rates,holding temperatures and holding time were used to simulate the LTPS procedure.The experimental results show that the reheating shrinkage rates of glass substrates are rarely changed with increasing the heating rate,but strongly enhanced by raising the holding temperature and time,which shows that the reheating shrinkage of glass is closely related to heat treatment and structural relaxation.The production process of glass is critical to the reheating shrinkage of glass.展开更多
BeO gelcast green bodies were dried by liquid drying method with liquid desiccant ethanol.Effects of ethanol concentration,solids loading and aspect ratio of green body on the moisture and shrinkage of green bodies we...BeO gelcast green bodies were dried by liquid drying method with liquid desiccant ethanol.Effects of ethanol concentration,solids loading and aspect ratio of green body on the moisture and shrinkage of green bodies were studied through measuring mass and dimension.Additionally,liquid drying stress was analyzed and a model of the initial stage drying stress was established.The results show that higher ethanol concentration,lower solids loading and higher aspect ratio of gelcast green bodies increase the drying rate.Increasing the ethanol concentration decreases the shrinkage rate.Liquid drying stress is generated due to a non-uniform drying rate.During the process of liquid drying,the inner drying stress of the green body changes from compressive stress to tensile stress,while the outer drying stress changes from tensile stress to compressive stress.展开更多
To improve the crack-resistance of the mould for silica sol bonded quartz based ceramic mould casting,aluminum silicate fibers with the diameter ranging from 5 μm to 25 μm and the length about 1 mm were dispersed in...To improve the crack-resistance of the mould for silica sol bonded quartz based ceramic mould casting,aluminum silicate fibers with the diameter ranging from 5 μm to 25 μm and the length about 1 mm were dispersed in the ceramic mould.The effect of the aluminum silicate fibers on the tensile strength,shrinkage rate and the cracking trend of the ceramic mould were investigated.In the ceramic slurry,quartz sand was applied as ceramic aggregate,silica sol containing 30% silicon dioxide as bonder,and the weight ratio of quartz sand to silica sol was 2.69;the dispersed fibers changed from 0 to 0.24vol.%.The mould samples were formed after the slurry was poured and gelled at room temperature,and then sintered at different temperatures ranging from 100 to 800 ℃ to measure the tensile strength and shrinkage rate.The results show that,with the aluminum silicate fiber addition increasing from 0 to 0.24vol.%,the tensile strength increases linearly from 0.175 MPa to 0.236 MPa,and the shrinkage rate decreases linearly from 1.75% to 1.68% for the ceramic mould sintered at 400 ℃,from 1.37% to 1.31% for the ceramic mould at room temperature.As the sintering temperature was raised from 100 ℃ to 800 ℃,the tensile strength increases,and the shrinkage rate decreases at all temperatures,compared with those without fiber dispersion,but their variation patterns remain the same.Furthermore,the cracking trend of the mould and its decreasing proportion were defined and analyzed quantitatively considering both effects of the fiber dispersion on the strength and shrinkage.The cracking trend appears to decrease linearly with increasing fiber content and to reach the maximum reduction of 28.8% when 0.24vol.% fiber was dispersed.Therefore,the investigation proposes a new method to improve the crack-resistance of the ceramic mould,i.e.,inorganic fiber dispersion into the ceramic mould.展开更多
Dry stock of silica sol ceramic mould was prepared by using of colloidal moulding technique with an optimized vacuum drying process. Effect of roasting process on the shrinkage rate and compressive strength of zircon-...Dry stock of silica sol ceramic mould was prepared by using of colloidal moulding technique with an optimized vacuum drying process. Effect of roasting process on the shrinkage rate and compressive strength of zircon-silica sol ceramic mould, and the relationship between the roasting temperature and microstructure of zirconsilica sol ceramic mould were studied. The optimum roasting temperature of zircon-silica sol ceramic mould gained by the experiments is 900~C and the holding time is 2 h. The scanning electron microscope (SEM) observation showed the growth of refractory particles during the roasting process. The occurrence of sintering was observed in the zircon-silica sol ceramic mould when roasting temperature was above 1,000℃.展开更多
The specimens were prepared with high alumina fiber accounting for 0. 5% , 10% or 15% by mass of the total amount of amorphous silica and high alumina fiber, using phenolic resin as binder, and extra-adding 0 or 0. 5%...The specimens were prepared with high alumina fiber accounting for 0. 5% , 10% or 15% by mass of the total amount of amorphous silica and high alumina fiber, using phenolic resin as binder, and extra-adding 0 or 0. 5% ZnO as sunscreen to cut the cost of SiO2 nanoporous insulation board. The hot volume stability and thermal conductivity (flat plate method ) of the specimens were tested and multi-Jimetion simulation equipment was used to study the thermal insulation performante. The results show that: (1) with high alumina fiber addition increasing, the linear shrinkage rate decreases, but thermal eonductivity changes a little; (2) adding ZnO can decrease thermal conductivity obviously; (3)for the specimen with ZnO and 15% of high alumina fiber, its cold face temperature hardly rises during the simulation experiment at 1 000 ℃ for 2 h, and the cold face temperature of the specimen with the smallest thickness of 2 cm doesn't exceed 180 ℃.展开更多
Calcium hexaluminate ( CA6 ) was synthesized by mixing light-weight calcium carbonate and Al2O3 mi- cropowder (calcined α-Al2O3, activated α-Al2O3 or α-Al2O3) according to the stoichimetric ratio of CA6, and ...Calcium hexaluminate ( CA6 ) was synthesized by mixing light-weight calcium carbonate and Al2O3 mi- cropowder (calcined α-Al2O3, activated α-Al2O3 or α-Al2O3) according to the stoichimetric ratio of CA6, and reaction sintering at 1 200, 1 300, 1 400 and 1 500 ℃fin 3 h, respectiely. Efcts of the three alu- mina micropowders on the phase composition, micro- structure and properties of CA were investigated. The re- sults show that : ( 1 ) for the three Al2O3 micropowders, the reaction to generate CA6 in specimens basically com- plete. at about 1 500 ℃ ; CA6 generated in all specimens is planar, bat the array modes are slightly different; (2) the specimel's prepared from, calcined α-Al2O3or ρ-Al2O3 shrink almost, while the specimens prepared from activated α-Al2O3 expand ; ( 3 ) the cold crushing strength of the specimen prepared from activated α-Al2O3 is the highest, reaching 42.5 MPa when only CA6 exists ( after firing at 1 500 ℃ ) ; ( 4 ) the specimen prepared from ρ-Al2O3 has the lowest generation temperature of CA6 and the highest apparent porosity, reaching 70. 1% when only CA exists (after firing at 1 500 ℃); (5) the specimen prepared from calcined α-Al2O3 has the biggest bulk density.展开更多
The construction industry in Senegal is experiencing an upsurge in the development of residential housing units and administrative buildings within the new Diamniadio municipality, an area located just about 35 km fro...The construction industry in Senegal is experiencing an upsurge in the development of residential housing units and administrative buildings within the new Diamniadio municipality, an area located just about 35 km from the capital city of Dakar. Laboratory oedometer or expansive-index tests, however, show poor density and compromised shear strength in the soil samples within the area -posing serious construction problems due to significant volume changes (swellings) that occur when subjected to moisture, thus, bringing into question the structural performance integrity of the soil, and the financial implications of substitute soil types used to compensate for its poor tensile strength. By way, the companies collect the soil of this location (Diamniadio) and throw it to make pile or micro-pile (pious) for their structures. This article demonstrates how we can value the soil of Diamniadio and the Typha Australis in residential building with a reasonable cost. Typha Australis is a plant generally luxuriant within the northern and central belts of Senegal but also known for its negative ecological impacts on the agricultural production of rice. The valorisation of the soil of Diamniadio will pass by the ability to increase its stability or to decrease its shrinkage/swelling rate. When we achieve it, the soil associate with Typha Australis will be used for small bricks which can be useful for partition wall and so the soil will not be ever thrown as a non-useful material. Tests results of soil specimens extracted from the site show a shrinkage rate of 29.19% with estimated cracking depths of 3.5 cm. But by adding gradually Typha Australis, the shrinkage rate will pass from 29.19% to 5.13% with the material treats with 10% by mass of Typha Australis. Moreover, the crackings in the cylindrical specimen disappear. That shows the increase of the stability;thus the composition will be used for building bricks. However, the densities will also be affected by the presence of Typha Australis. The density is decreased from 2032.28 Kg/m<sup>3</sup> for the soil without Typha Australis to 937 Kg/m<sup>3</sup> for the one with 10% of Typha Australis.展开更多
基金Funded by the National Key R&D Program of China(2017YFB0310201-04)。
文摘Different heating treatments with the variation of heating rates,holding temperatures and holding time were used to simulate the LTPS procedure.The experimental results show that the reheating shrinkage rates of glass substrates are rarely changed with increasing the heating rate,but strongly enhanced by raising the holding temperature and time,which shows that the reheating shrinkage of glass is closely related to heat treatment and structural relaxation.The production process of glass is critical to the reheating shrinkage of glass.
基金Project(51202296)supported by the National Natural Science Foundation of ChinaProject(20120162120006)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘BeO gelcast green bodies were dried by liquid drying method with liquid desiccant ethanol.Effects of ethanol concentration,solids loading and aspect ratio of green body on the moisture and shrinkage of green bodies were studied through measuring mass and dimension.Additionally,liquid drying stress was analyzed and a model of the initial stage drying stress was established.The results show that higher ethanol concentration,lower solids loading and higher aspect ratio of gelcast green bodies increase the drying rate.Increasing the ethanol concentration decreases the shrinkage rate.Liquid drying stress is generated due to a non-uniform drying rate.During the process of liquid drying,the inner drying stress of the green body changes from compressive stress to tensile stress,while the outer drying stress changes from tensile stress to compressive stress.
文摘To improve the crack-resistance of the mould for silica sol bonded quartz based ceramic mould casting,aluminum silicate fibers with the diameter ranging from 5 μm to 25 μm and the length about 1 mm were dispersed in the ceramic mould.The effect of the aluminum silicate fibers on the tensile strength,shrinkage rate and the cracking trend of the ceramic mould were investigated.In the ceramic slurry,quartz sand was applied as ceramic aggregate,silica sol containing 30% silicon dioxide as bonder,and the weight ratio of quartz sand to silica sol was 2.69;the dispersed fibers changed from 0 to 0.24vol.%.The mould samples were formed after the slurry was poured and gelled at room temperature,and then sintered at different temperatures ranging from 100 to 800 ℃ to measure the tensile strength and shrinkage rate.The results show that,with the aluminum silicate fiber addition increasing from 0 to 0.24vol.%,the tensile strength increases linearly from 0.175 MPa to 0.236 MPa,and the shrinkage rate decreases linearly from 1.75% to 1.68% for the ceramic mould sintered at 400 ℃,from 1.37% to 1.31% for the ceramic mould at room temperature.As the sintering temperature was raised from 100 ℃ to 800 ℃,the tensile strength increases,and the shrinkage rate decreases at all temperatures,compared with those without fiber dispersion,but their variation patterns remain the same.Furthermore,the cracking trend of the mould and its decreasing proportion were defined and analyzed quantitatively considering both effects of the fiber dispersion on the strength and shrinkage.The cracking trend appears to decrease linearly with increasing fiber content and to reach the maximum reduction of 28.8% when 0.24vol.% fiber was dispersed.Therefore,the investigation proposes a new method to improve the crack-resistance of the ceramic mould,i.e.,inorganic fiber dispersion into the ceramic mould.
基金supported by the Research Fund of the Key Disciplinary of Materials Processing Engineering,Xihua University
文摘Dry stock of silica sol ceramic mould was prepared by using of colloidal moulding technique with an optimized vacuum drying process. Effect of roasting process on the shrinkage rate and compressive strength of zircon-silica sol ceramic mould, and the relationship between the roasting temperature and microstructure of zirconsilica sol ceramic mould were studied. The optimum roasting temperature of zircon-silica sol ceramic mould gained by the experiments is 900~C and the holding time is 2 h. The scanning electron microscope (SEM) observation showed the growth of refractory particles during the roasting process. The occurrence of sintering was observed in the zircon-silica sol ceramic mould when roasting temperature was above 1,000℃.
基金support of the National Natural Science Foundation of China(No.51402265,51202225,and 51272240)
文摘The specimens were prepared with high alumina fiber accounting for 0. 5% , 10% or 15% by mass of the total amount of amorphous silica and high alumina fiber, using phenolic resin as binder, and extra-adding 0 or 0. 5% ZnO as sunscreen to cut the cost of SiO2 nanoporous insulation board. The hot volume stability and thermal conductivity (flat plate method ) of the specimens were tested and multi-Jimetion simulation equipment was used to study the thermal insulation performante. The results show that: (1) with high alumina fiber addition increasing, the linear shrinkage rate decreases, but thermal eonductivity changes a little; (2) adding ZnO can decrease thermal conductivity obviously; (3)for the specimen with ZnO and 15% of high alumina fiber, its cold face temperature hardly rises during the simulation experiment at 1 000 ℃ for 2 h, and the cold face temperature of the specimen with the smallest thickness of 2 cm doesn't exceed 180 ℃.
文摘Calcium hexaluminate ( CA6 ) was synthesized by mixing light-weight calcium carbonate and Al2O3 mi- cropowder (calcined α-Al2O3, activated α-Al2O3 or α-Al2O3) according to the stoichimetric ratio of CA6, and reaction sintering at 1 200, 1 300, 1 400 and 1 500 ℃fin 3 h, respectiely. Efcts of the three alu- mina micropowders on the phase composition, micro- structure and properties of CA were investigated. The re- sults show that : ( 1 ) for the three Al2O3 micropowders, the reaction to generate CA6 in specimens basically com- plete. at about 1 500 ℃ ; CA6 generated in all specimens is planar, bat the array modes are slightly different; (2) the specimel's prepared from, calcined α-Al2O3or ρ-Al2O3 shrink almost, while the specimens prepared from activated α-Al2O3 expand ; ( 3 ) the cold crushing strength of the specimen prepared from activated α-Al2O3 is the highest, reaching 42.5 MPa when only CA6 exists ( after firing at 1 500 ℃ ) ; ( 4 ) the specimen prepared from ρ-Al2O3 has the lowest generation temperature of CA6 and the highest apparent porosity, reaching 70. 1% when only CA exists (after firing at 1 500 ℃); (5) the specimen prepared from calcined α-Al2O3 has the biggest bulk density.
文摘The construction industry in Senegal is experiencing an upsurge in the development of residential housing units and administrative buildings within the new Diamniadio municipality, an area located just about 35 km from the capital city of Dakar. Laboratory oedometer or expansive-index tests, however, show poor density and compromised shear strength in the soil samples within the area -posing serious construction problems due to significant volume changes (swellings) that occur when subjected to moisture, thus, bringing into question the structural performance integrity of the soil, and the financial implications of substitute soil types used to compensate for its poor tensile strength. By way, the companies collect the soil of this location (Diamniadio) and throw it to make pile or micro-pile (pious) for their structures. This article demonstrates how we can value the soil of Diamniadio and the Typha Australis in residential building with a reasonable cost. Typha Australis is a plant generally luxuriant within the northern and central belts of Senegal but also known for its negative ecological impacts on the agricultural production of rice. The valorisation of the soil of Diamniadio will pass by the ability to increase its stability or to decrease its shrinkage/swelling rate. When we achieve it, the soil associate with Typha Australis will be used for small bricks which can be useful for partition wall and so the soil will not be ever thrown as a non-useful material. Tests results of soil specimens extracted from the site show a shrinkage rate of 29.19% with estimated cracking depths of 3.5 cm. But by adding gradually Typha Australis, the shrinkage rate will pass from 29.19% to 5.13% with the material treats with 10% by mass of Typha Australis. Moreover, the crackings in the cylindrical specimen disappear. That shows the increase of the stability;thus the composition will be used for building bricks. However, the densities will also be affected by the presence of Typha Australis. The density is decreased from 2032.28 Kg/m<sup>3</sup> for the soil without Typha Australis to 937 Kg/m<sup>3</sup> for the one with 10% of Typha Australis.