期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Boosted Lithium-Ion Transport Kinetics in n-Type Siloxene Anodes Enabled by Selective Nucleophilic Substitution of Phosphorus
1
作者 Se In Kim Woong-Ju Kim +1 位作者 Jin Gu Kang Dong-Wan Kim 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期618-637,共20页
Doped two-dimensional(2D)materials hold significant promise for advancing many technologies,such as microelectronics,optoelectronics,and energy storage.Herein,n-type 2D oxidized Si nanosheets,namely n-type siloxene(n-... Doped two-dimensional(2D)materials hold significant promise for advancing many technologies,such as microelectronics,optoelectronics,and energy storage.Herein,n-type 2D oxidized Si nanosheets,namely n-type siloxene(n-SX),are employed as Li-ion battery anodes.Via thermal evaporation of sodium hypophosphite at 275℃,P atoms are effectively incorporated into siloxene(SX)without compromising its 2D layered morphology and unique Kautsky-type crystal structure.Further,selective nucleophilic substitution occurs,with only Si atoms being replaced by P atoms in the O_(3)≡Si-H tetrahedra.The resulting n-SX possesses two delocalized electrons arising from the presence of two electron donor types:(i)P atoms residing in Si sites and(ii)H vacancies.The doping concentrations are varied by controlling the amount of precursors or their mean free paths.Even at 2000 mA g^(-1),the n-SX electrode with the optimized doping concentration(6.7×10^(19) atoms cm^(-3))delivers a capacity of 594 mAh g^(-1) with a 73%capacity retention after 500 cycles.These improvements originate from the enhanced kinetics of charge transport processes,including electronic conduction,charge transfer,and solid-state diffusion.The approach proposed herein offers an unprecedented route for engineering SX anodes to boost Li-ion storage. 展开更多
关键词 Li-ion battery Two-dimensional N-type siloxene Doping mechanism KINETICS
下载PDF
Electrocatalytic and stoichiometric reactivity of 2D layered siloxene for high-energy-dense lithium-sulfur batteries
2
作者 Hui-Ju Kang Jae-Woo Park +6 位作者 Hyun Jin Hwang Heejin Kim Kwang-Suk Jang Xiulei Ji Hae Jin Kim Won Bin Im Young-Si Jun 《Carbon Energy》 SCIE CAS 2021年第6期976-990,共15页
Lithium-sulfur batteries(LSBs)have emerged as promising power sources for high-performance devices such as electric vehicles.However,the poor energy density of LSBs owing to polysulfide shuttling and passivation has l... Lithium-sulfur batteries(LSBs)have emerged as promising power sources for high-performance devices such as electric vehicles.However,the poor energy density of LSBs owing to polysulfide shuttling and passivation has limited their further market penetration.To mitigate this challenge,two-dimensional(2D)siloxene(2DSi),a Si-based analog of graphene,is utilized as an additive for sulfur cathodes.The 2DSi is fabricated on a large scale by simple solvent extraction of calcium disilicide to form a thin-layered structure of Si planes functionalized with vertically aligned hydroxyl groups in the 2DSi.The stoichiometric reaction of 2DSi with polysulfides generates a thiosulfate redox mediator,secures the intercalation pathway,and reveals Lewis acidic sites within the siloxene galleries.The 2DSi utilizes the corresponding in-situ-formed electrocatalyst,the 2D confinement effect of the layered structure,and the surface affinity based on Lewis acid-base interaction to improve the energy density of 2DSi-based LSB cells.Combined with the commercial carbon-based current collector,2DSi-based LSB cells achieve a volumetric energy density of 612 Wh Lcell^(−1) at 1 mA cm^(−2) with minor degradation of 0.17%per cycle,which rivals those of state-of-the-art LSBs.This study presents a method for the industrial production of high-energy-dense LSBs. 展开更多
关键词 2D confinement effects Lewis acid-base interactions lithium-sulfur batteries siloxenes thiosulfate-polythionate redox couple
下载PDF
Two-dimensional materials of group-IVA boosting the development of energy storage and conversion 被引量:11
3
作者 Qiang Guo Nan Chen Liangti Qu 《Carbon Energy》 CAS 2020年第1期54-71,共18页
Graphene,an emerging fabric of carbon atoms,has manifested its versatility in all kinds of fields encompassing electronics,optoelectronics,thermoelectrics,taking advantage of its excellent mechanical strength,exceptio... Graphene,an emerging fabric of carbon atoms,has manifested its versatility in all kinds of fields encompassing electronics,optoelectronics,thermoelectrics,taking advantage of its excellent mechanical strength,exceptional electronic and thermal conductivities,high surface specific area,and so forth.The prosperity of graphene never seen before has led the attention to silicene,siloxene,germanene,stanene,and plumbene due to their promising applications in the quantum spin Hall effect,topological insulator,batteries,capacitors,catalysis,and topological superconductivity.Herein,we review the existing production methods,numerous applications of two-dimensional group-IVA materials,and critically discuss the challenges of these materials,providing potential implications to the exploration of uncharted material systems. 展开更多
关键词 germanene GRAPHENE plumbene SILICENE siloxene stanene
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部