Similarity measure is an essential tool to compare and determine the degree of similarity between intuitionistic fuzzy sets (IFSs). In this paper, a new similarity measure between intuitionistic fuzzy sets based on th...Similarity measure is an essential tool to compare and determine the degree of similarity between intuitionistic fuzzy sets (IFSs). In this paper, a new similarity measure between intuitionistic fuzzy sets based on the mid points of transformed triangular fuzzy numbers is proposed. The proposed similarity measure provides reasonable results not only for the sets available in the literature but also gives very reasonable results, especially for fuzzy sets as well as for most intuitionistic fuzzy sets. To provide supportive evidence, the proposed similarity measure is tested on certain sets available in literature and is also applied to pattern recognition and medical diagnosis problems. It is observed that the proposed similarity measure provides a very intuitive quantification.展开更多
Two traditional recommendation techniques, content-based and collaborative filtering (CF), have been widely used in a broad range of domain areas. Both meth- ods have their advantages and disadvantages, and some of ...Two traditional recommendation techniques, content-based and collaborative filtering (CF), have been widely used in a broad range of domain areas. Both meth- ods have their advantages and disadvantages, and some of the defects can be resolved by integrating both techniques in a hybrid model to improve the quality of the recommendation. In this article, we will present a problem-oriented approach to design a hybrid immunizing solution for job recommen- dation problem from applicant's perspective. The proposed approach aims to recommend the best chances of opening jobs to the applicant who searches for job. It combines the artificial immune system (AIS), which has a powerful explo- ration capability in polynomial time, with the collaborative filtering, which can exploit the neighbors' interests. We will discuss the design issues, as well as the hybridization process that should be applied to the problem. Finally, experimental studies are conducted and the results show the importance of our approach for solving the job recommendation problem.展开更多
文摘Similarity measure is an essential tool to compare and determine the degree of similarity between intuitionistic fuzzy sets (IFSs). In this paper, a new similarity measure between intuitionistic fuzzy sets based on the mid points of transformed triangular fuzzy numbers is proposed. The proposed similarity measure provides reasonable results not only for the sets available in the literature but also gives very reasonable results, especially for fuzzy sets as well as for most intuitionistic fuzzy sets. To provide supportive evidence, the proposed similarity measure is tested on certain sets available in literature and is also applied to pattern recognition and medical diagnosis problems. It is observed that the proposed similarity measure provides a very intuitive quantification.
文摘Two traditional recommendation techniques, content-based and collaborative filtering (CF), have been widely used in a broad range of domain areas. Both meth- ods have their advantages and disadvantages, and some of the defects can be resolved by integrating both techniques in a hybrid model to improve the quality of the recommendation. In this article, we will present a problem-oriented approach to design a hybrid immunizing solution for job recommen- dation problem from applicant's perspective. The proposed approach aims to recommend the best chances of opening jobs to the applicant who searches for job. It combines the artificial immune system (AIS), which has a powerful explo- ration capability in polynomial time, with the collaborative filtering, which can exploit the neighbors' interests. We will discuss the design issues, as well as the hybridization process that should be applied to the problem. Finally, experimental studies are conducted and the results show the importance of our approach for solving the job recommendation problem.