期刊文献+
共找到511,419篇文章
< 1 2 250 >
每页显示 20 50 100
Single-cell transcriptomic atlas of goat ovarian aging 被引量:1
1
作者 Dejun Xu Shuaifei Song +5 位作者 Fuguo Wang Yawen Li Ziyuan Li Hui Yao Yongju Zhao Zhongquan Zhao 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第1期146-161,共16页
Background The ovaries are one of the first organs that undergo degenerative changes earlier in the aging process,and ovarian aging is shown by a decrease in the number and quality of oocytes.However,little is known a... Background The ovaries are one of the first organs that undergo degenerative changes earlier in the aging process,and ovarian aging is shown by a decrease in the number and quality of oocytes.However,little is known about the molecular mechanisms of female age-related fertility decline in different types of ovarian cells during aging,especially in goats.Therefore,the aim of this study was to reveal the mechanisms driving ovarian aging in goats at single-cell resolution.Results For the first time,we surveyed the single-cell transcriptomic landscape of over 27,000 ovarian cells from newborn,young and aging goats,and identified nine ovarian cell types with distinct gene-expression signatures.Functional enrichment analysis showed that ovarian cell types were involved in their own unique biological processes,such as Wnt beta-catenin signalling was enriched in germ cells,whereas ovarian steroidogenesis was enriched in granulosa cells(GCs).Further analysis showed that ovarian aging was linked to GCs-specific changes in the antioxidant system,oxidative phosphorylation,and apoptosis.Subsequently,we identified a series of dynamic genes,such as AMH,CRABP2,THBS1 and TIMP1,which determined the fate of GCs.Additionally,FOXO1,SOX4,and HIF1A were identified as significant regulons that instructed the differentiation of GCs in a distinct manner during ovarian aging.Conclusions This study revealed a comprehensive aging-associated transcriptomic atlas characterizing the cell typespecific mechanisms during ovarian aging at the single-cell level and offers new diagnostic biomarkers and potential therapeutic targets for age-related goat ovarian diseases. 展开更多
关键词 GOAT Granulosa cells Ovarian aging single-cell transcriptomic
下载PDF
Comprehensive integration of single-cell transcriptomic data illuminates the regulatory network architecture of plant cell fate specification
2
作者 Shanni Cao Xue Zhao +6 位作者 Zhuojin Li Ranran Yu Yuqi Li Xinkai Zhou Wenhao Yan Dijun Chen Chao He 《Plant Diversity》 SCIE CAS CSCD 2024年第3期372-385,共14页
Plant morphogenesis relies on precise gene expression programs at the proper time and position which is orchestrated by transcription factors(TFs)in intricate regulatory networks in a cell-type specific manner.Here we... Plant morphogenesis relies on precise gene expression programs at the proper time and position which is orchestrated by transcription factors(TFs)in intricate regulatory networks in a cell-type specific manner.Here we introduced a comprehensive single-cell transcriptomic atlas of Arabidopsis seedlings.This atlas is the result of meticulous integration of 63 previously published scRNA-seq datasets,addressing batch effects and conserving biological variance.This integration spans a broad spectrum of tissues,including both below-and above-ground parts.Utilizing a rigorous approach for cell type annotation,we identified 47 distinct cell types or states,largely expanding our current view of plant cell compositions.We systematically constructed cell-type specific gene regulatory networks and uncovered key regulators that act in a coordinated manner to control cell-type specific gene expression.Taken together,our study not only offers extensive plant cell atlas exploration that serves as a valuable resource,but also provides molecular insights into gene-regulatory programs that varies from different cell types. 展开更多
关键词 ARABIDOPSIS single cell transcriptome Gene regulatory network Data integration Plant cell atlas
下载PDF
Single nucleus/cell RNA-seq of the chicken hypothalamicpituitaryovarian axis offers new insights into the molecular regulatory mechanisms of ovarian development
3
作者 Dong Leng Bo Zeng +3 位作者 Tao Wang Bin-Long Chen Di-Yan Li Zhuan-Jian Li 《Zoological Research》 SCIE CSCD 2024年第5期1088-1107,共20页
The hypothalamic-pituitary-ovarian(HPO)axis represents a central neuroendocrine network essential for reproductive function.Despite its critical role,the intrinsic heterogeneity within the HPO axis across vertebrates ... The hypothalamic-pituitary-ovarian(HPO)axis represents a central neuroendocrine network essential for reproductive function.Despite its critical role,the intrinsic heterogeneity within the HPO axis across vertebrates and the complex intercellular interactions remain poorly defined.This study provides the first comprehensive,unbiased,cell type-specific molecular profiling of all three components of the HPO axis in adult Lohmann layers and Liangshan Yanying chickens.Within the hypothalamus,pituitary,and ovary,seven,12,and 13 distinct cell types were identified,respectively.Results indicated that the pituitary adenylate cyclase activating polypeptide(PACAP),follicle-stimulating hormone(FSH),and prolactin(PRL)signaling pathways may modulate the synthesis and secretion of gonadotropin-releasing hormone(GnRH),FSH,and luteinizing hormone(LH)within the hypothalamus and pituitary.In the ovary,interactions between granulosa cells and oocytes involved the KIT,CD99,LIFR,FN1,and ANGPTL signaling pathways,which collectively regulate follicular maturation.The SEMA4 signaling pathway emerged as a critical mediator across all three tissues of the HPO axis.Additionally,gene expression analysis revealed that relaxin 3(RLN3),gastrin-releasing peptide(GRP),and cocaine-and amphetamine regulated transcripts(CART,also known as CARTPT)may function as novel endocrine hormones,influencing the HPO axis through autocrine,paracrine,and endocrine pathways.Comparative analyses between Lohmann layers and Liangshan Yanying chickens demonstrated higher expression levels of GRP,RLN3,CARTPT,LHCGR,FSHR,and GRPR in the ovaries of Lohmann layers,potentially contributing to their superior reproductive performance.In conclusion,this study provides a detailed molecular characterization of the HPO axis,offering novel insights into the regulatory mechanisms underlying reproductive biology. 展开更多
关键词 CHICKENS single nucleus/cell transcriptome Hypothalamic-pituitary-ovarian axis Signal crosstalk HORMONES
下载PDF
The early life immune dynamics and cellular drivers at single-cell resolution in lamb forestomachs and abomasum 被引量:1
4
作者 Kailang Huang Bin Yang +2 位作者 Zebang Xu Hongwei Chen Jiakun Wang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第1期218-235,共18页
Background Four-chambered stomach including the forestomachs(rumen,reticulum,and omasum)and abomasum allows ruminants convert plant fiber into high-quality animal products.The early development of this four-chambered ... Background Four-chambered stomach including the forestomachs(rumen,reticulum,and omasum)and abomasum allows ruminants convert plant fiber into high-quality animal products.The early development of this four-chambered stomach is crucial for the health and well-being of young ruminants,especially the immune development.However,the dynamics of immune development are poorly understood.Results We investigated the early gene expression patterns across the four-chambered stomach in Hu sheep,at 5,10,15,and 25 days of age.We found that forestomachs share similar gene expression patterns,all four stomachs underwent widespread activation of both innate and adaptive immune responses from d 5 to 25,whereas the metabolic function were significantly downregulated with age.We constructed a cell landscape of the four-chambered stomach using single-cell sequencing.Integrating transcriptomic and single-cell transcriptomic analyses revealed that the immune-associated module hub genes were highly expressed in T cells,monocytes and macrophages,as well as the defense-associated module hub genes were highly expressed in endothelial cells in the four-stomach tissues.Moreover,the non-immune cells such as epithelial cells play key roles in immune maturation.Cell communication analysis predicted that in addition to immune cells,non-immune cells recruit immune cells through macrophage migration inhibitory factor signaling in the forestomachs.Conclusions Our results demonstrate that the immune and defense responses of four stomachs are quickly developing with age in lamb's early life.We also identified the gene expression patterns and functional cells associated with immune development.Additionally,we identified some key receptors and signaling involved in immune regulation.These results help to understand the early life immune development at single-cell resolution,which has implications to develop nutritional manipulation and health management strategies based on specific targets including key receptors and signaling pathways. 展开更多
关键词 Early life Forestomachs Four-chambered stomach Immune cells Immune system maturation MIF signaling RUMEN Ruminant development single-cell transcriptomic sequencing
下载PDF
Single‑cell sequencing reveals the reproductive variations between primiparous and multiparous Hu ewes
5
作者 Ting Ge Yifan Wen +3 位作者 Bo Li Xiaoyu Huang Shaohua Jiang Enping Zhang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第2期614-631,共18页
Background In the modern sheep production systems,the reproductive performance of ewes determines the economic profitability of farming.Revealing the genetic mechanisms underlying differences in the litter size is imp... Background In the modern sheep production systems,the reproductive performance of ewes determines the economic profitability of farming.Revealing the genetic mechanisms underlying differences in the litter size is important for the selection and breeding of highly prolific ewes.Hu sheep,a high-quality Chinese sheep breed,is known for its high fecundity and is often used as a model to study prolificacy traits.In the current study,animals were divided into two groups according to their delivery rates in three consecutive lambing seasons(namely,the high and low reproductive groups with≥3 lambs and one lamb per season,n=3,respectively).The ewes were slaughtered within 12 h of estrus,and unilateral ovarian tissues were collected and analyzed by 10×Genomics single-cell RNA sequencing.Results A total of 5 types of somatic cells were identified and corresponding expression profiles were mapped in the ovaries of each group.Noticeably,the differences in the ovary somatic cell expression profiles between the high and low reproductive groups were mainly clustered in the granulosa cells.Furthermore,four granulosa cell subtypes were identified.GeneSwitches analysis revealed that the abundance of JPH1 expression and the reduction of LOC101112291 expression could lead to different evolutionary directions of the granulosa cells.Additionally,the expression levels of FTH1 and FTL in mural granulosa cells of the highly reproductive group were significantly higher.These genes inhibit necroptosis and ferroptosis of mural granulosa cells,which helps prevent follicular atresia.Conclusions This study provides insights into the molecular mechanisms underlying the high fecundity of Hu sheep.The differences in gene expression profiles,particularly in the granulosa cells,suggest that these cells play a critical role in female prolificacy.The findings also highlight the importance of genes such as JPH1,LOC101112291,FTH1,and FTL in regulating granulosa cell function and follicular development. 展开更多
关键词 Granulosa cells Hu sheep Lambing number Ovarian somatic cells single-cell RNA sequencing
下载PDF
Surface-functionalized hole-selective monolayer for high efficiency single-junction wide-bandgap and monolithic tandem perovskite solar cells
6
作者 Devthade Vidyasagar Yeonghun Yun +13 位作者 Jae Yu Cho Hyemin Lee Kyung Won Kim Yong Tae Kim Sung Woong Yang Jina Jung Won Chang Choi Seonu Kim Rajendra Kumar Gunasekaran Seok Beom Kang Kwang Heo Dong Hoe Kim Jaeyeong Heo Sangwook Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期317-326,I0008,共11页
Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovski... Carbazole moiety-based 2PACz([2-(9H-carbazol-9-yl)ethyl]phosphonic acid)self-assembled monolayers(SAMs)are excellent hole-selective contact(HSC)materials with abilities to excel the charge-transferdynamics of perovskite solar cells(PSCs).Herein,we report a facile but powerful method to functionalize the surface of 2PACz-SAM,by which reproducible,highly stable,high-efficiency wide-bandgap PSCs can be obtained.The 2PACz surface treatment with various donor number solvents improves assembly of 2PACz-SAM and leave residual surface-bound solvent molecules on 2PACz-SAM,which increases perovskite grain size,retards halide segregation,and accelerates hole extraction.The surface functionalization achieves a high power conversion efficiency(PCE)of 17.62%for a single-junction wide-bandgap(~1.77 e V)PSC.We also demonstrate a monolithic all-perovskite tandem solar cell using surfaceengineered HSC,showing high PCE of 24.66%with large open-circuit voltage of 2.008 V and high fillfactor of 81.45%.Our results suggest this simple approach can further improve the tandem device,when coupled with a high-performance narrow-bandgap sub-cell. 展开更多
关键词 Perovskite solar cells 2PACz Monolithic tandem solar cells Wide bandgap
下载PDF
Single-cell sequencing technology in diabetic wound healing:New insights into the progenitors-based repair strategies
7
作者 Zhen Xiang Rui-Peng Cai +1 位作者 Yang Xiao Yong-Can Huang 《World Journal of Stem Cells》 SCIE 2024年第5期462-466,共5页
Diabetes mellitus(DM),an increasingly prevalent chronic metabolic disease,is characterised by prolonged hyperglycaemia,which leads to long-term health consequences.Although much effort has been put into understanding ... Diabetes mellitus(DM),an increasingly prevalent chronic metabolic disease,is characterised by prolonged hyperglycaemia,which leads to long-term health consequences.Although much effort has been put into understanding the pathogenesis of diabetic wounds,the underlying mechanisms remain unclear.The advent of single-cell RNA sequencing(scRNAseq)has revolutionised biological research by enabling the identification of novel cell types,the discovery of cellular markers,the analysis of gene expression patterns and the prediction of develop-mental trajectories.This powerful tool allows for an in-depth exploration of pathogenesis at the cellular and molecular levels.In this editorial,we focus on progenitor-based repair strategies for diabetic wound healing as revealed by scRNAseq and highlight the biological behaviour of various healing-related cells and the alteration of signalling pathways in the process of diabetic wound healing.ScRNAseq could not only deepen our understanding of the complex biology of diabetic wounds but also identify and validate new targets for inter-vention,offering hope for improved patient outcomes in the management of this challenging complication of DM. 展开更多
关键词 single-cell sequencing Diabetic wound healing cell subpopulations Heterogeneity PATHOGENESIS Progenitor cells
下载PDF
Multitap RF Canceller with Single LMS Loop for Adaptive Co-Site Broadband Interference Cancellation
8
作者 Jiang Yunhao Liu Zhipeng +4 位作者 Yuan Lei Xu Anfei Wang Hang Zhao Nan Wu Minghu 《China Communications》 SCIE CSCD 2024年第9期179-197,共19页
With the development of wireless communication technology,an urgent problem to be solved is co-site broadband interference on independent communication platforms such as satellites,space stations,aircrafts and ships.A... With the development of wireless communication technology,an urgent problem to be solved is co-site broadband interference on independent communication platforms such as satellites,space stations,aircrafts and ships.Also,the problem of strong selfinterference rejection should be solved in the co-time co-frequency full duplex mode which realizes spectrum multiplication in 5G communication technology.In the research of such interference rejection,interference cancellation technology has been applied.In order to reject multipath interference,multitap double LMS(Least Mean Square)loop interference cancellation system is often used for cancelling RF(Radio Frequency)domain interference cancelling.However,more taps will lead to a more complex structure of the cancellation system.A novel tap single LMS loop adaptive interference cancellation system was proposed to improve the system compactness and reduce the cost.In addition,a mathematical model was built for the proposed cancellation system,the correlation function of CP2FSK(Continuous Phase Binary Frequency Shift Keying)signal was derived,and the quantitative relationship was established between the correlation function and the interference signal bandwidth and tap delay differential.The steadystate weights and the expression of the average interference cancellation ratio(ICR)were deduced in the scenes of LOS(Line of Sight)interference with antenna swaying on an independent communication platform and indoor multipath interference.The quantitative relationship was deeply analyzed between the interference cancellation performance and the parameters such as antenna swing,LMS loop gain,and interference signal bandwidth,which was verified by simulation experiment.And the performance of the proposed interference cancellation system was compared with that of the traditional double LMS loop cancellation system.The results showed that the compact single LMS loop cancellation system can achieve an average interference rejection capability comparable to the double LMS loop cancellation system. 展开更多
关键词 co-site broadband interference delay matching RF interference cancellation single LMS loop
下载PDF
Single-cell RNA sequencing analysis of the retina under acute high intraocular pressure
9
作者 Shaojun Wang Siti Tong +5 位作者 Xin Jin Na Li Pingxiu Dang Yang Sui Ying Liu Dajiang Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2522-2531,共10页
High intraocular pressure causes retinal ganglion cell injury in primary and secondary glaucoma diseases,yet the molecular landscape characteristics of retinal cells under high intraocular pressure remain unknown.Rat ... High intraocular pressure causes retinal ganglion cell injury in primary and secondary glaucoma diseases,yet the molecular landscape characteristics of retinal cells under high intraocular pressure remain unknown.Rat models of acute hypertension ocular pressure were established by injection of cross-linked hyaluronic acid hydrogel(Healaflow■).Single-cell RNA sequencing was then used to describe the cellular composition and molecular profile of the retina following high intraocular pressure.Our results identified a total of 12 cell types,namely retinal pigment epithelial cells,rod-photoreceptor cells,bipolar cells,Müller cells,microglia,cone-photoreceptor cells,retinal ganglion cells,endothelial cells,retinal progenitor cells,oligodendrocytes,pericytes,and fibroblasts.The single-cell RNA sequencing analysis of the retina under acute high intraocular pressure revealed obvious changes in the proportions of various retinal cells,with ganglion cells decreased by 23%.Hematoxylin and eosin staining and TUNEL staining confirmed the damage to retinal ganglion cells under high intraocular pressure.We extracted data from retinal ganglion cells and analyzed the retinal ganglion cell cluster with the most distinct expression.We found upregulation of the B3gat2 gene,which is associated with neuronal migration and adhesion,and downregulation of the Tsc22d gene,which participates in inhibition of inflammation.This study is the first to reveal molecular changes and intercellular interactions in the retina under high intraocular pressure.These data contribute to understanding of the molecular mechanism of retinal injury induced by high intraocular pressure and will benefit the development of novel therapies. 展开更多
关键词 APOPTOSIS axon degeneration high intraocular pressure MICROGLIA ocular hypertension photoreceptor cells RETINA retinal degeneration retinal ganglion cells single-cell RNA sequencing
下载PDF
Single-cell analysis of tumor microenvironment and cell adhesion reveals that interleukin-1 beta promotes cancer cell proliferation in breast cancer
10
作者 Wenyan Wang Gehong Dong +5 位作者 Ziguo Yang Shaoxiang Li Jia Li Lin Wang Qiang Zhu Yuchen Wang 《Animal Models and Experimental Medicine》 CAS CSCD 2024年第5期617-625,共9页
Background: Triple-negative breast cancer(TNBC), which is so called because of the lack of estrogen receptors(ER), progesterone receptors(PR), and human epidermal growth factor receptor 2(HER2) receptors on the cancer... Background: Triple-negative breast cancer(TNBC), which is so called because of the lack of estrogen receptors(ER), progesterone receptors(PR), and human epidermal growth factor receptor 2(HER2) receptors on the cancer cells, accounts for 10%–15% of all breast cancers. The heterogeneity of the tumor microenvironment is high.However, the role of plasma cells controlling the tumor migration progression in TNBC is still not fully understood.Methods: We analyzed single-cell RNA sequencing data from five HER2 positive, 12ER positive/PR positive, and nine TNBC samples. The potential targets were validated by immunohistochemistry.Results: Plasma cells were enriched in TNBC samples, which was consistent with validation using data from The Cancer Genome Atlas. Cell communication analysis revealed that plasma cells interact with T cells through the intercellular adhesion molecule 2–integrin–aLb2 complex, and then release interleukin 1 beta(IL1B), as verified by immunohistochemistry, ultimately promoting tumor growth.Conclusion: Our results revealed the role of plasma cells in TNBC and identified IL1B as a new prognostic marker for TNBC. 展开更多
关键词 biomaterial breast cancer IL1B plasma cells scRNA-seq
下载PDF
Single incision laparoscopic surgery for hepatocellular carcinoma
11
作者 Ilhan Karabicak Kadir Yildirim +1 位作者 Mahmut Fikret Gursel Zafer Malazgirt 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第10期3078-3083,共6页
Single incision laparoscopic liver resection(SILLR)is the most recent develop-ment in the laparoscopic approach to the liver.SILLR for hepatocellular carci-noma(HCC)has developed much more slowly than multiport LLR.So... Single incision laparoscopic liver resection(SILLR)is the most recent develop-ment in the laparoscopic approach to the liver.SILLR for hepatocellular carci-noma(HCC)has developed much more slowly than multiport LLR.So far,195 patients completed SILLR for HCC.In this paper,we reviewed all published papers about SILLR for HCC and discussed the feasibility of the SILLR,peri and postoperative findings,tricks of patient selection and whether SILLR compromise the oncological principles. 展开更多
关键词 single incision Laparoscopic liver surgery Liver resection Hepatocellular carcinoma Multiport laparoscopic liver resection
下载PDF
Applications of single-cell RNA sequencing in spermatogenesis and molecular evolution
12
作者 Wen-Bo Chen Meng-Fei Zhang +1 位作者 Fan Yang Jin-Lian Hua 《Zoological Research》 SCIE CSCD 2024年第3期575-585,共11页
Spermatogenic cell heterogeneity is determined by the complex process of spermatogenesis differentiation.However,effectively revealing the regulatory mechanisms underlying mammalian spermatogenic cell development and ... Spermatogenic cell heterogeneity is determined by the complex process of spermatogenesis differentiation.However,effectively revealing the regulatory mechanisms underlying mammalian spermatogenic cell development and differentiation via traditional methods is difficult.Advances in technology have led to the emergence of many single-cell transcriptome sequencing protocols,which have partially addressed these challenges.In this review,we detail the principles of 10x Genomics technology and summarize the methods for downstream analysis of single-cell transcriptome sequencing data.Furthermore,we explore the role of single-cell transcriptome sequencing in revealing the heterogeneity of testicular ecological niche cells,delineating the establishment and disruption of testicular immune homeostasis during human spermatogenesis,investigating abnormal spermatogenesis in humans,and,ultimately,elucidating the molecular evolution of mammalian spermatogenesis. 展开更多
关键词 single-cell RNA sequencing(scRNA-seq) SPERMATOGENESIS Molecular evolution Sertoli cell
下载PDF
Revolutionizing stem cell research:unbiased insights through single-cell sequencing
13
作者 HAO WU NA HUO +3 位作者 SITUO WANG ZIWEI LIU YI JIANG QUAN SHI 《BIOCELL》 SCIE 2024年第11期1531-1542,共12页
Stem cells have shown great application potential in wound repair,tissue regeneration,and disease treatment.Therefore,a full understanding of stem cells and their related regulatory mechanisms in disease treatment is ... Stem cells have shown great application potential in wound repair,tissue regeneration,and disease treatment.Therefore,a full understanding of stem cells and their related regulatory mechanisms in disease treatment is conducive to improving the therapeutic effect of stem cells.However,thus far,there are still many unsolved mysteries in thefield of stem cells due to technical limitations,which hinder the in-depth exploration of stem cells and their wide clinical application.Single-cell sequencing(SCS)has provided very powerful and unbiased insights into cell gene expression profiles at the single-cell level,bringing exciting results to the stem cellfield.At present,SCS has been widely applied in thefield of stem cells,covering various aspects,including lineage tracing the development of stem cells,identifying new stem cell types,exploring cellular heterogeneity,and identifying internal functional subpopulations.In this paper,we focus on the latest research progress and discuss the application of SCS technology in stem cells. 展开更多
关键词 Stem cell single-cell sequencing cellular heterogeneity SUBPOPULATIONS Functional analysis Lineage-tracing
下载PDF
Insights gained from single-cell analysis of chimeric antigen receptor T-cell immunotherapy in cancer
14
作者 Lu Tang Zhong-Pei Huang +1 位作者 Heng Mei Yu Hu 《Military Medical Research》 SCIE CAS CSCD 2024年第5期717-746,共30页
Advances in chimeric antigen receptor(CAR)-T cell therapy have significantly improved clinical outcomes of patients with relapsed or refractory hematologic malignancies.However,progress is still hindered as clinical b... Advances in chimeric antigen receptor(CAR)-T cell therapy have significantly improved clinical outcomes of patients with relapsed or refractory hematologic malignancies.However,progress is still hindered as clinical benefit is only available for a fraction of patients.A lack of understanding of CAR-T cell behaviors in vivo at the single-cell level impedes their more extensive application in clinical practice.Mounting evidence suggests that single-cell sequencing techniques can help perfect the receptor design,guide gene-based T cell modification,and optimize the CAR-T manufacturing conditions,and all of them are essential for long-term immunosurveillance and more favorable clinical outcomes.The information generated by employing these methods also potentially informs our understanding of the numerous complex factors that dictate therapeutic efficacy and toxicities.In this review,we discuss the reasons why CAR-T immunotherapy fails in clinical practice and what this field has learned since the milestone of single-cell sequencing technologies.We further outline recent advances in the application of single-cell analyses in CAR-T immunotherapy.Specifically,we provide an overview of single-cell studies focusing on target antigens,CAR-transgene integration,and preclinical research and clinical applications,and then discuss how it will affect the future of CAR-T cell therapy. 展开更多
关键词 single-cell sequencing Cancer immunotherapy CAR-T therapy cell heterogeneity Trajectory inference Tumor microenvironment
原文传递
New perspectives on biology,disease progression,and therapy response of head and neck cancer gained from single cell RNA sequencing and spatial transcriptomics
15
作者 GERWIN HELLER THORSTEN FUEREDER +1 位作者 ALEXANDER MICHAEL GRANDITS ROTRAUD WIESER 《Oncology Research》 SCIE 2024年第1期1-17,共17页
Head and neck squamous cell carcinoma(HNSCC)is one of the most frequent cancers worldwide.The main risk factors are consumption of tobacco products and alcohol,as well as infection with human papilloma virus.Approved ... Head and neck squamous cell carcinoma(HNSCC)is one of the most frequent cancers worldwide.The main risk factors are consumption of tobacco products and alcohol,as well as infection with human papilloma virus.Approved therapeutic options comprise surgery,radiation,chemotherapy,targeted therapy through epidermal growth factor receptor inhibition,and immunotherapy,but outcome has remained unsatisfactory due to recurrence rates of~50%and the frequent occurrence of second primaries.The availability of the human genome sequence at the beginning of the millennium heralded the omics era,in which rapid technological progress has advanced our knowledge of the molecular biology of malignant diseases,including HNSCC,at an unprecedented pace.Initially,microarray-based methods,followed by approaches based on next-generation sequencing,were applied to study the genetics,epigenetics,and gene expression patterns of bulk tumors.More recently,the advent of single-cell RNA sequencing(scRNAseq)and spatial transcriptomics methods has facilitated the investigation of the heterogeneity between and within different cell populations in the tumor microenvironment(e.g.,cancer cells,fibroblasts,immune cells,endothelial cells),led to the discovery of novel cell types,and advanced the discovery of cell-cell communication within tumors.This review provides an overview of scRNAseq,spatial transcriptomics,and the associated bioinformatics methods,and summarizes how their application has promoted our understanding of the emergence,composition,progression,and therapy responsiveness of,and intercellular signaling within,HNSCC. 展开更多
关键词 Head and neck squamous cell carcinoma Tumor microenvironment IMMUNOTHERAPY Gene expression OMICS
下载PDF
Action of circulating and infiltrating B cells in the immune microenvironment of colorectal cancer by single-cell sequencing analysis
16
作者 Jing-Po Zhang Bing-Zheng Yan +1 位作者 Jie Liu Wei Wang 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第6期2683-2696,共14页
BACKGROUND The complexity of the immune microenvironment has an impact on the treatment of colorectal cancer(CRC),one of the most prevalent malignancies worldwide.In this study,multi-omics and single-cell sequencing t... BACKGROUND The complexity of the immune microenvironment has an impact on the treatment of colorectal cancer(CRC),one of the most prevalent malignancies worldwide.In this study,multi-omics and single-cell sequencing techniques were used to investigate the mechanism of action of circulating and infiltrating B cells in CRC.By revealing the heterogeneity and functional differences of B cells in cancer immunity,we aim to deepen our understanding of immune regulation and provide a scientific basis for the development of more effective cancer treatment strategies.AIM To explore the role of circulating and infiltrating B cell subsets in the immune microenvironment of CRC,explore the potential driving mechanism of B cell development,analyze the interaction between B cells and other immune cells in the immune microenvironment and the functions of communication molecules,and search for possible regulatory pathways to promote the anti-tumor effects of B cells.METHODS A total of 69 paracancer(normal),tumor and peripheral blood samples were collected from 23 patients with CRC from The Cancer Genome Atlas database(https://portal.gdc.cancer.gov/).After the immune cells were sorted by multicolor flow cytometry,the single cell transcriptome and B cell receptor group library were sequenced using the 10X Genomics platform,and the data were analyzed using bioinformatics tools such as Seurat.The differences in the number and function of B cell infiltration between tumor and normal tissue,the interaction between B cell subsets and T cells and myeloid cell subsets,and the transcription factor regulatory network of B cell subsets were explored and analyzed.RESULTS Compared with normal tissue,the infiltrating number of CD20+B cell subsets in tumor tissue increased significantly.Among them,germinal center B cells(GCB)played the most prominent role,with positive clone expansion and heavy chain mutation level increasing,and the trend of differentiation into memory B cells increased.However,the number of plasma cells in the tumor microenvironment decreased significantly,and the plasma cells secreting IgA antibodies decreased most obviously.In addition,compared with the immune microenvironment of normal tissues,GCB cells in tumor tissues became more closely connected with other immune cells such as T cells,and communication molecules that positively regulate immune function were significantly enriched.CONCLUSION The role of GCB in CRC tumor microenvironment is greatly enhanced,and its affinity to tumor antigen is enhanced by its significantly increased heavy chain mutation level.Meanwhile,GCB has enhanced its association with immune cells in the microenvironment,which plays a positive anti-tumor effect. 展开更多
关键词 Colorectal cancer Multi-omics analysis single-cell sequencing analysis Immune microenvironment Infiltrating B cells
下载PDF
PPP1R14A is Associated with Immunotherapy Resistance in Head and Neck Squamous Cell Carcinoma Identified by Single-Cell and Bulk RNA-Sequencing
17
作者 Jun-Jie Ma Lei Zhang +1 位作者 Jin Lu Hao-Xuan Zhang 《Chinese Medical Sciences Journal》 CAS CSCD 2024年第2期111-121,共11页
Objective To identify nivolumab resistance-related genes in patients with head and neck squamous cell carcinoma(HNSCC)using single-cell and bulk RNA-sequencing data.Methods The single-cell and bulk RNA-sequencing data... Objective To identify nivolumab resistance-related genes in patients with head and neck squamous cell carcinoma(HNSCC)using single-cell and bulk RNA-sequencing data.Methods The single-cell and bulk RNA-sequencing data downloaded from the Gene Expression Omnibus database were analyzed to screen out differentially expressed genes(DEGs)between nivolumab resistant and nivolumab sensitive patients using R software.The Least Absolute Shrinkage Selection Operator(LASSO)regression and Recursive Feature Elimination(RFE)algorithm were performed to identify key genes associated with nivolumab resistance.Functional enrichment of DEGs was analyzed with Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses.The relationships of key genes with immune cell infiltration,differentation trajectory,dynamic gene expression profiles,and ligand-receptor interaction were explored.Results We found 83 DEGs.They were mainly enriched in T-cell differentiation,PD-1 and PD-L1 checkpoint,and T-cell receptor pathways.Among six key genes identified using machine learning algorithms,only PPP1R14A gene was differentially expressed between the nivolumab resistant and nivolumab sensitive groups both before and after immunotherapy(P<0.05).The high PPP1R14A gene expression group had lower immune score(P<0.01),higher expression of immunosuppressive factors(such as PDCD1,CTLA4,and PDCD1LG2)(r>0,P<0.05),lower differentiation of infiltrated immune cells(P<0.05),and a higher degree of interaction between HLA and CD4(P<0.05).Conclusions PPP1R14A gene is closely associated with resistance to nivolumab in HNSCC patients.Therefore,PPP1R14A may be a target to ameliorate nivolumab resistance of HNSCC patients. 展开更多
关键词 PPP1R14A head and neck squamous cell carcinoma IMMUNOTHERAPY drug resistance
下载PDF
Fe-N-C core-shell catalysts with single low-spin Fe(Ⅱ)-N_(4)species for oxygen reduction reaction and high-performance proton exchange membrane fuel cells
18
作者 Yan Wan Linhui Yu +5 位作者 Bingxin Yang Caihong Li Chen Fang Wei Guo Fang-Xing Xiao Yangming Lin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期538-546,I0013,共10页
Fe-N-doped carbon materials(Fe-N-C)are promising candidates for oxygen reduction reaction(ORR)relative to Pt-based catalysts in proton exchange membrane fuel cells(PEMFCs).However,the intrinsic contributions of Fe-N_(... Fe-N-doped carbon materials(Fe-N-C)are promising candidates for oxygen reduction reaction(ORR)relative to Pt-based catalysts in proton exchange membrane fuel cells(PEMFCs).However,the intrinsic contributions of Fe-N_(4)moiety with different chemical/spin states(e.g.D1,D2,D3)to ORR are unclear since various states coexist inevitably.In the present work,Fe-N-C core-shell nanocatalyst with single lowspin Fe(Ⅱ)-N_(4)species(D1)is synthesized and identified with ex-situ ultralow temperature Mossbauer spectroscopy(T=1.6 K)that could essentially differentiate various Fe-N_(4)states and invisible Fe-O species.By quantifying with CO-pulse chemisorption,site density and turnover frequency of Fe-N-C catalysts reach 2.4×10^(-9)site g^(-1)and 23 e site~(-1)s^(-1)during the ORR,respectively.Half-wave potential(0.915V_(RHE))of the Fe-N-C catalyst is more positive(approximately 54 mV)than that of Pt/C.Moreover,we observe that the performance of PEMFCs on Fe-N-C almost achieves the 2025 target of the US Department of Energy by demonstrating a current density of 1.037 A cm^(-2)combined with the peak power density of 0,685 W cm^(-2),suggesting the critical role of Fe(Ⅱ)-N_(4)site(D1).After 500 h of running,PEMFCs still deliver a power density of 1.26 W cm^(-2)at 1.0 bar H_(2)-O_(2),An unexpected rate-determining step is figured out by isotopic labelling experiment and theoretical calculation.This work not only offers valuable insights regarding the intrinsic contribution of Fe-N_(4)with a single spin state to alkaline/acidic ORR,but also provides great opportunities for developing high-performance stable PEMFCs. 展开更多
关键词 Fuel cells Oxygen reduction reaction Non-platinum group metals(PGMs) Isotopic labelling Active site TOF
下载PDF
Prediction of single cell mechanical properties in microchannels based on deep learning
19
作者 Jiajie GONG Xinyue LIU +2 位作者 Yancong ZHANG Fengping ZHU Guohui HU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第11期1857-1874,共18页
Traditional methods for measuring single-cell mechanical characteristics face several challenges,including lengthy measurement times,low throughput,and a requirement for advanced technical skills.To overcome these cha... Traditional methods for measuring single-cell mechanical characteristics face several challenges,including lengthy measurement times,low throughput,and a requirement for advanced technical skills.To overcome these challenges,a novel machine learning(ML)approach is implemented based on the convolutional neural networks(CNNs),aiming at predicting cells'elastic modulus and constitutive equations from their deformations while passing through micro-constriction channels.In the present study,the computational fluid dynamics technology is used to generate a dataset within the range of the cell elastic modulus,incorporating three widely-used constitutive models that characterize the cellular mechanical behavior,i.e.,the Mooney-Rivlin(M-R),Neo-Hookean(N-H),and Kelvin-Voigt(K-V)models.Utilizing this dataset,a multi-input convolutional neural network(MI-CNN)algorithm is developed by incorporating cellular deformation data as well as the time and positional information.This approach accurately predicts the cell elastic modulus,with a coefficient of determination R^(2)of 0.999,a root mean square error of 0.218,and a mean absolute percentage error of 1.089%.The model consistently achieves high-precision predictions of the cellular elastic modulus with a maximum R^(2)of 0.99,even when the stochastic noise is added to the simulated data.One significant feature of the present model is that it has the ability to effectively classify the three types of constitutive equations we applied.The model accurately and reliably predicts single-cell mechanical properties,showcasing a robust ability to generalize.We demonstrate that incorporating deformation features at multiple time points can enhance the algorithm's accuracy and generalization.This algorithm presents a possibility for high-throughput,highly automated,real-time,and precise characterization of single-cell mechanical properties. 展开更多
关键词 cell deformation single-cell mechanics machine learning(ML) constitutive law convolutional neural network(CNN)
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部