Single-photon entanglement(SPE) is an important source in quantum communication. In this paper, we put forward a single-photon-assisted noiseless linear amplification protocol to protect the SPE of an arbitrary polari...Single-photon entanglement(SPE) is an important source in quantum communication. In this paper, we put forward a single-photon-assisted noiseless linear amplification protocol to protect the SPE of an arbitrary polarization–time-bin qudit from the photon transmission loss caused by the practical channel noise. After the amplification, the fidelity of the SPE can be effectively increased. Meanwhile, the encoded polarization–time-bin features of the qudit can be well preserved. The protocol can be realized under the current experimental conditions. Moreover, the amplification protocol can be extended to resist complete photon loss and partial photon loss during the photon transmission. After the amplification, we can not only increase the fidelity of the target state, but also solve the decoherence problem simultaneously. Based on the above features, our amplification protocol may be useful in future quantum communication.展开更多
We theoretically investigate coherent scattering of single photons and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system.Using the real-space Hamiltonian,analytical express...We theoretically investigate coherent scattering of single photons and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system.Using the real-space Hamiltonian,analytical expressions are derived for the transport spectra scattered by these two giant atoms with four azimuthal angles.Fano-like resonance can be exhibited in the scattering spectra by adjusting the azimuthal angle difference.High concurrence of the entangled state for two atoms can be implemented in a wide angle-difference range,and the entanglement of the atomic states can be switched on/off by modulating the additional azimuthal angle differences from the giant atoms.This suggests a novel handle to effectively control the single-photon scattering and quantum entanglement.展开更多
The study on the entanglement polygon inequality of multipartite systems has attracted much attention.However,most of the results are on pure states.Here we consider the property for a class of mixed states,which are ...The study on the entanglement polygon inequality of multipartite systems has attracted much attention.However,most of the results are on pure states.Here we consider the property for a class of mixed states,which are the reduced density matrices of generalizedW-class states in multipartite higher dimensional systems.First we show the class of mixed states satisfies the entanglement polygon inequalities in terms of Tsallis-q entanglement,then we propose a class of tighter inequalities for mixed states in terms of Tsallis-q entanglement.At last,we get an inequality for the mixed states,which can be regarded as a relation for bipartite entanglement.展开更多
Highly entangled hydrogels exhibit excellent mechanical properties,including high toughness,high stretchability,and low hysteresis.By considering the evolution of randomly distributed entanglements within the polymer ...Highly entangled hydrogels exhibit excellent mechanical properties,including high toughness,high stretchability,and low hysteresis.By considering the evolution of randomly distributed entanglements within the polymer network upon mechanical stretches,we develop a constitutive theory to describe the large stretch behaviors of these hydrogels.In the theory,we utilize a representative volume element(RVE)in the shape of a cube,within which there exists an averaged chain segment along each edge and a mobile entanglement at each corner.By employing an explicit method,we decouple the elasticity of the hydrogels from the sliding motion of their entanglements,and derive the stress-stretch relations for these hydrogels.The present theoretical analysis is in agreement with experiment,and highlights the significant influence of the entanglement distribution within the hydrogels on their elasticity.We also implement the present developed constitutive theory into a commercial finite element software,and the subsequent simulations demonstrate that the exact distribution of entanglements strongly affects the mechanical behaviors of the structures of these hydrogels.Overall,the present theory provides valuable insights into the deformation mechanism of highly entangled hydrogels,and can aid in the design of these hydrogels with enhanced performance.展开更多
Nonlinearly induced steady-state photon–phonon entanglement of a dissipative coupled system is studied in the bistable regime. Quantum dynamical characteristics are analysed by solving the mean-field and fluctuation ...Nonlinearly induced steady-state photon–phonon entanglement of a dissipative coupled system is studied in the bistable regime. Quantum dynamical characteristics are analysed by solving the mean-field and fluctuation equations of the system. It is shown that dissipative coupling can induce bistable behaviour for the effective dissipation of the system.Under suitable parameters, one of the steady states significantly reduces the dissipative effect of the system. Consequently,a larger steady-state entanglement can be achieved compared to linear dynamics. Furthermore, the experimental feasibility of the parameters is analysed. Our results provide a new perspective for the implementation of steady-state optomechanical entanglement.展开更多
Quantum entanglement between distant massive mechanical oscillators is an important resource in sensitive measurements and quantum information processing.We achieve the nonreciprocal mechanical entanglement in a compo...Quantum entanglement between distant massive mechanical oscillators is an important resource in sensitive measurements and quantum information processing.We achieve the nonreciprocal mechanical entanglement in a compound optomechanical device consisting of two mechanical oscillators and a spinning whispering-gallery mode(WGM)optical microresonator.It is found that obvious nonreciprocal mechanical entanglement emerges in this system in the presence of the Sagnac effect which is induced by the rotation of the WGM resonator,and the nonreciprocal region can be controlled by tuning the angular velocity of the rotation.The nonreciprocity originates from the breaking of the time-reversal symmetry of this multimode system due to the presence of the Sagnac effect.The optomechanical coupling and the mechanical interaction provide cooling channels for the first and second mechanical oscillators,respectively.Two mechanical oscillators can be cooled simultaneously.The simultaneous cooling and the mechanical coupling of two mechanical oscillators ensure the generation of mechanical entanglement.Furthermore,an optimal mechanical entanglement can be achieved when the moderate optical frequency detuning and the driving power are chosen.The thermal noise of the mechanical environment has a negative effect on mechanical entanglement.Our scheme provides promising opportunities for research of quantum information processing based on phonons and sensitive measurements.展开更多
Entanglement in macroscopic systems,as a fundamental quantum resource,has been utilized to propel the advancement of quantum technology and probe the boundary between the quantum and classical realms.This study focuse...Entanglement in macroscopic systems,as a fundamental quantum resource,has been utilized to propel the advancement of quantum technology and probe the boundary between the quantum and classical realms.This study focuses on a unique hybrid quantum system comprising of an ensemble of silicon vacancy(SiV)centers coupled to phononic waveguides in diamond via strain interactions.By employing two sets of time-dependent,non-overlapping driving fields,we investigate the generation process and dynamic properties of macroscopic quantum entanglement,providing fresh insights into the behavior of such hybrid quantum systems.Furthermore,it paves the way for new possibilities in utilizing quantum entanglement as an information carrier in quantum information processing and quantum communication.展开更多
We study genuine entanglement among three qubits undergoing a noisy process that includes dissipation, squeezing,and decoherence. We obtain a general solution and analyze the asymptotic quantum states. We find that mo...We study genuine entanglement among three qubits undergoing a noisy process that includes dissipation, squeezing,and decoherence. We obtain a general solution and analyze the asymptotic quantum states. We find that most of these asymptotic states can be genuinely entangled depending upon the parameters of the channel, memory parameter, and the parameters of the initial states. We study Greenberger–Horne–Zeilinger(GHZ) states and W states, mixed with white noise,and determine the conditions for them to be genuinely entangled at infinity. We find that for these mixtures, it is possible to start with a bi-separable state(with a specific mixture of white noise) and end with genuine entangled states. However, the memory parameter μ must be very high. We find that in contrast to the two-qubit case, none of the three-qubit asymptotic states for n → ∞ are genuinely entangled.展开更多
Quantum correlations that surpass entanglement are of great importance in the realms of quantum information processing and quantum computation.Essentially,for quantum systems prepared in pure states,it is difficult to...Quantum correlations that surpass entanglement are of great importance in the realms of quantum information processing and quantum computation.Essentially,for quantum systems prepared in pure states,it is difficult to differentiate between quantum entanglement and quantum correlation.Nonetheless,this indistinguishability is no longer holds for mixed states.To contribute to a better understanding of this differentiation,we have explored a simple model for both generating and measuring these quantum correlations.Our study concerns two macroscopic mechanical resonators placed in separate Fabry–Pérot cavities,coupled through the photon hopping process.this system offers a comprehensively way to investigate and quantify quantum correlations beyond entanglement between these mechanical modes.The key ingredient in analyzing quantum correlation in this system is the global covariance matrix.It forms the basis for computing two essential metrics:the logarithmic negativity(E_(N)^(m))and the Gaussian interferometric power(P_(G)^(m)).These metrics provide the tools to measure the degree of quantum entanglement and quantum correlations,respectively.Our study reveals that the Gaussian interferometric power(P_(G)^(m))proves to be a more suitable metric for characterizing quantum correlations among the mechanical modes in an optomechanical quantum system,particularly in scenarios featuring resilient photon hopping.展开更多
We explore the entanglement features of pure symmetric N-qubit states characterized by N-distinct spinors with a particular focus on the Greenberger-Horne-Zeilinger (GHZ) states and , an equal superposition of W and o...We explore the entanglement features of pure symmetric N-qubit states characterized by N-distinct spinors with a particular focus on the Greenberger-Horne-Zeilinger (GHZ) states and , an equal superposition of W and obverse W states. Along with a comparison of pairwise entanglement and monogamy properties, we explore the geometric information contained in them by constructing their canonical steering ellipsoids. We obtain the volume monogamy relations satisfied by states as a function of number of qubits and compare with the maximal monogamy property of GHZ states.展开更多
Using real fields instead of complex ones, it was recently claimed, that all fermions are made of pairs of coupled fields (strings) with an internal tension related to mutual attraction forces, related to Planck’s co...Using real fields instead of complex ones, it was recently claimed, that all fermions are made of pairs of coupled fields (strings) with an internal tension related to mutual attraction forces, related to Planck’s constant. Quantum mechanics is described with real fields and real operators. Schrodinger and Dirac equations then are solved. The solution to Dirac equation gives four, real, 2-vectors solutions ψ1=(U1D1)ψ2=(U2D2)ψ3=(U3D3)ψ4=(U4D4)where (ψ1,ψ4) are coupled via linear combinations to yield spin-up and spin-down fermions. Likewise, (ψ2,ψ3) are coupled via linear combinations to represent spin-up and spin-down anti-fermions. For an incoming entangled pair of fermions, the combined solution is Ψin=c1ψ1+c4ψ4where c1and c4are some hidden variables. By applying a magnetic field in +Z and +x the theoretical results of a triple Stern-Gerlach experiment are predicted correctly. Then, by repeating Bell’s and Mermin Gedanken experiment with three magnetic filters σθ, at three different inclination angles θ, the violation of Bell’s inequality is proven. It is shown that all fermions are in a mixed state of spins and the ratio between spin-up to spin-down depends on the hidden variables.展开更多
In this paper we develop and study, as the second part of one more general development, the energy transmutation equation for the material singularity, previously obtained through the symmetrisation of a wave packet, ...In this paper we develop and study, as the second part of one more general development, the energy transmutation equation for the material singularity, previously obtained through the symmetrisation of a wave packet, that is, we develop the correlation between the terms of this equation, which accounts for the formation of matter from a previous vibrational state, and the different possible energy species. These energetic species are ascribed, in a simplified form, to the equation E¯ω=E¯k+E¯f, which allows us, through its associated phase factor, to gain an insight into the wave character of the kinetic energy and thus to attain the basis of the matter-wave, and all sorts of related phenomenologies, including that concerning quantum entanglement. The formation of the matter was previously identified as an energetic process, analogous to the kinetic one, in which finally the inertial mass is consolidated as a mass in a different phase, now, in addition, the mass of the material singularity is identified as a volumetric density of waves of toroidal geometry created in the process of singularisation or energy transfer between species, which makes it possible to establish the real relation or correspondence between the corpuscular and photonic energy equation (E=mc2=hν), i.e. to explain through m the intimate sense of the first equivalence, which explains what νis in the second one.展开更多
The superiority of hypothetical quantum computers is not due to faster calculations but due to different scheme of calculations running on special hardware. At the same time, one should realize that quantum computers ...The superiority of hypothetical quantum computers is not due to faster calculations but due to different scheme of calculations running on special hardware. At the same time, one should realize that quantum computers would only provide dramatic speedups for a few specific problems, for example, factoring integers and breaking cryptographic codes in the conventional quantum computing approach. The core of quantum computing follows the way a state of a quantum system is defined when basic things interact with each other. In the conventional approach, it is implemented through the tensor product of qubits. In the suggested geometric algebra formalism simultaneous availability of all the results for non-measured observables is based on the definition of states as points on a three-dimensional sphere, which is very different from the usual Hilbert space scheme.展开更多
Heralded noiseless amplification is beneficial in overcoming transmission photon loss in a noisy quantum channel. We propose a single-photon-assisted heralded noiseless amplification protocol of the single- photon ent...Heralded noiseless amplification is beneficial in overcoming transmission photon loss in a noisy quantum channel. We propose a single-photon-assisted heralded noiseless amplification protocol of the single- photon entanglement (SPE), where the single-photon qubit has an arbitrary unknown polarization feature. We focus on both the complete and partial photon loss during the transmission process. After the amplification, the parties can recover the pure less-entangled SPE into a maximally entangled SPE and increase its fidelity. Moreover, the polarization feature of the single-photon qubit will be well preserved and not be leaked. Our protocol can be realized under our current experimental condition. Based on the features above, our protocol may be useful in the quantum secure communication schemes that encode information in the polarization degree of freedom of photons.展开更多
Entanglement and coherence are two important resources in quantum information theory. A question naturally arises:Is there some connection between them? We prove that the entanglement of formation and the first-order ...Entanglement and coherence are two important resources in quantum information theory. A question naturally arises:Is there some connection between them? We prove that the entanglement of formation and the first-order coherence of twoqubit states satisfy an inequality relation. Two-qubit pure state reaches the upper bound of this inequality. A large number of randomly generated states are used to intuitively verify the complementarity between the entanglement of formation and the first-order coherence. We give the maximum accessible coherence of two-qubit states. Our research results will provide a reliable theoretical basis for conversion of the two quantum resources.展开更多
We have demonstrated the existence of a pyramid power and have revealed its characteristics by strictly scientific experiments using biosensors. We also revealed the existence of a Bio-Entanglement, an entangled relat...We have demonstrated the existence of a pyramid power and have revealed its characteristics by strictly scientific experiments using biosensors. We also revealed the existence of a Bio-Entanglement, an entangled relationship between biosensors. A parallel study of biosensors (edible cucumber slices) had also been conducted, and we found that the circadian rhythm of gas concentrations emitted from biosensors changes seasonally. The pyramid power and Bio-Entanglement did not change the number of cycles in the periodic approximation curve representing circadian rhythm. Therefore, in this paper we analyzed the influence of the pyramid power and Bio-Entanglement, i.e., their influence on the phase, amplitude, and correlation coefficient of the periodic approximation curve representing the circadian rhythm of emitted gas concentrations. The main results are as follows. 1) The pyramid power shifted the phase of the periodic approximation curve representing the circadian rhythm by 43 minutes. 2) The amplitude of the periodic approximation curve changed with the pyramid power and the Bio-Entanglement. The effect on the lower and upper sections of the biosensors stacked in two layers was different, with a tendency to increase the amplitude of the lower layer and decrease the amplitude of the upper layer. 3) The pyramid power and the Bio-Entanglement affected the correlation coefficient between gas concentration and the periodic approximation curve representing the circadian rhythm of gas concentration. The effect on the lower and upper layers of the biosensors was different, with a tendency for the lower layer correlation coefficient to be larger and the upper layer correlation coefficient to be smaller. Previously we demonstrated that the pyramid power and the Bio-Entanglement affect the ratio of gas concentration, i.e., psi index Ψ. In this paper we demonstrate for the first time that the pyramid power and the Bio-Entanglement affect time, i.e., phase difference.展开更多
Monogamy and polygamy relations are important properties of entanglement,which characterize the entanglement distribution of multipartite systems.We explore monogamy and polygamy relations of entanglement in multipart...Monogamy and polygamy relations are important properties of entanglement,which characterize the entanglement distribution of multipartite systems.We explore monogamy and polygamy relations of entanglement in multipartite systems by using two newly derived parameterized mathematical inequalities,and establish classes of parameterized monogamy and polygamy relations of multiqubit entanglement in terms of concurrence and entanglement of formation.We show that these new parameterized monogamy and poelygamy inequalities are tighter than the existing ones by detailed examples.展开更多
Monogamy and polygamy relations characterize the distributions of entanglement in multipartite systems.We provide a characterization of multiqubit entanglement constraints in terms of unified-(q,s)entropy.A class of t...Monogamy and polygamy relations characterize the distributions of entanglement in multipartite systems.We provide a characterization of multiqubit entanglement constraints in terms of unified-(q,s)entropy.A class of tighter monogamy inequalities of multiqubit entanglement based on theα-th power of unified-(q,s)entanglement forα≥1 and a class of polygamy inequalities in terms of theβ-th power of unified-(q,s)entanglement of assistance are established in this paper.Our results present a general class of the monogamy and polygamy relations for bipartite entanglement measures based on unified-(q,s)entropy,which are tighter than the existing ones.What is more,some usual monogamy and polygamy relations,such as monogamy and polygamy relations based on entanglement of formation,Renyi-q entanglement of assistance and Tsallis-q entanglement of assistance,can be obtained from these results by choosing appropriate parameters(q,s)in unified-(q,s)entropy entanglement.Typical examples are also presented for illustration.展开更多
Quantifying entanglement in quantum systems is an important yet challenging task due to its NP-hard nature.In this work,we propose an efficient algorithm for evaluating distance-based entanglement measures.Our approac...Quantifying entanglement in quantum systems is an important yet challenging task due to its NP-hard nature.In this work,we propose an efficient algorithm for evaluating distance-based entanglement measures.Our approach builds on Gilbert's algorithm for convex optimization,providing a reliable upper bound on the entanglement of a given arbitrary state.We demonstrate the effectiveness of our algorithm by applying it to various examples,such as calculating the squared Bures metric of entanglement as well as the relative entropy of entanglement for GHZ states,W states,Horodecki states,and chessboard states.These results demonstrate that our algorithm is a versatile and accurate tool that can quickly provide reliable upper bounds for entanglement measures.展开更多
We study the quantum phase transition and entanglement in the Jaynes-Cummings model with squeezed light,utilize a special transformation method to obtain the analytical ground state of the model within the near-resona...We study the quantum phase transition and entanglement in the Jaynes-Cummings model with squeezed light,utilize a special transformation method to obtain the analytical ground state of the model within the near-resonance regime,and numerically verify the validity of the analytical ground state.It is found that the ground state exhibits a first-order quantum phase transition at the critical point linearly induced by squeezed light,and the ground state entanglement reaches its maximum when the qubit-field coupling strength is large enough at the critical point.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474168 and 11747161)the Priority Academic Program Development of Jiangsu Higher Education Institutions,Chinathe China Postdoctoral Science Foundation(Grant No.2018M642293)
文摘Single-photon entanglement(SPE) is an important source in quantum communication. In this paper, we put forward a single-photon-assisted noiseless linear amplification protocol to protect the SPE of an arbitrary polarization–time-bin qudit from the photon transmission loss caused by the practical channel noise. After the amplification, the fidelity of the SPE can be effectively increased. Meanwhile, the encoded polarization–time-bin features of the qudit can be well preserved. The protocol can be realized under the current experimental conditions. Moreover, the amplification protocol can be extended to resist complete photon loss and partial photon loss during the photon transmission. After the amplification, we can not only increase the fidelity of the target state, but also solve the decoherence problem simultaneously. Based on the above features, our amplification protocol may be useful in future quantum communication.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12365003,12364024,and 11864014)the Jiangxi Provincial Natural Science Foundation(Grant Nos.20212BAB201014 and 20224BAB201023)。
文摘We theoretically investigate coherent scattering of single photons and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system.Using the real-space Hamiltonian,analytical expressions are derived for the transport spectra scattered by these two giant atoms with four azimuthal angles.Fano-like resonance can be exhibited in the scattering spectra by adjusting the azimuthal angle difference.High concurrence of the entangled state for two atoms can be implemented in a wide angle-difference range,and the entanglement of the atomic states can be switched on/off by modulating the additional azimuthal angle differences from the giant atoms.This suggests a novel handle to effectively control the single-photon scattering and quantum entanglement.
基金Project supported by the National Natural Science Foundation of China(Grant No.12301580).
文摘The study on the entanglement polygon inequality of multipartite systems has attracted much attention.However,most of the results are on pure states.Here we consider the property for a class of mixed states,which are the reduced density matrices of generalizedW-class states in multipartite higher dimensional systems.First we show the class of mixed states satisfies the entanglement polygon inequalities in terms of Tsallis-q entanglement,then we propose a class of tighter inequalities for mixed states in terms of Tsallis-q entanglement.At last,we get an inequality for the mixed states,which can be regarded as a relation for bipartite entanglement.
基金Project supported by the Key Research Project of Zhejiang Laboratory (No.K2022NB0AC03)the National Natural Science Foundation of China (No.11872334)the National Natural Science Foundation of Zhejiang Province of China (No.LZ23A020004)。
文摘Highly entangled hydrogels exhibit excellent mechanical properties,including high toughness,high stretchability,and low hysteresis.By considering the evolution of randomly distributed entanglements within the polymer network upon mechanical stretches,we develop a constitutive theory to describe the large stretch behaviors of these hydrogels.In the theory,we utilize a representative volume element(RVE)in the shape of a cube,within which there exists an averaged chain segment along each edge and a mobile entanglement at each corner.By employing an explicit method,we decouple the elasticity of the hydrogels from the sliding motion of their entanglements,and derive the stress-stretch relations for these hydrogels.The present theoretical analysis is in agreement with experiment,and highlights the significant influence of the entanglement distribution within the hydrogels on their elasticity.We also implement the present developed constitutive theory into a commercial finite element software,and the subsequent simulations demonstrate that the exact distribution of entanglements strongly affects the mechanical behaviors of the structures of these hydrogels.Overall,the present theory provides valuable insights into the deformation mechanism of highly entangled hydrogels,and can aid in the design of these hydrogels with enhanced performance.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12074206)the Natural Science Foundation of Zhejiang Province of China (Grant No.LY22A040005)supported by the National Natural Science Foundation of China (Grant No. 22103043)。
文摘Nonlinearly induced steady-state photon–phonon entanglement of a dissipative coupled system is studied in the bistable regime. Quantum dynamical characteristics are analysed by solving the mean-field and fluctuation equations of the system. It is shown that dissipative coupling can induce bistable behaviour for the effective dissipation of the system.Under suitable parameters, one of the steady states significantly reduces the dissipative effect of the system. Consequently,a larger steady-state entanglement can be achieved compared to linear dynamics. Furthermore, the experimental feasibility of the parameters is analysed. Our results provide a new perspective for the implementation of steady-state optomechanical entanglement.
基金supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202400624)the Natural Science Foundation of Chongqing CSTC(Grant No.CSTB2022NSCQ-BHX0020).
文摘Quantum entanglement between distant massive mechanical oscillators is an important resource in sensitive measurements and quantum information processing.We achieve the nonreciprocal mechanical entanglement in a compound optomechanical device consisting of two mechanical oscillators and a spinning whispering-gallery mode(WGM)optical microresonator.It is found that obvious nonreciprocal mechanical entanglement emerges in this system in the presence of the Sagnac effect which is induced by the rotation of the WGM resonator,and the nonreciprocal region can be controlled by tuning the angular velocity of the rotation.The nonreciprocity originates from the breaking of the time-reversal symmetry of this multimode system due to the presence of the Sagnac effect.The optomechanical coupling and the mechanical interaction provide cooling channels for the first and second mechanical oscillators,respectively.Two mechanical oscillators can be cooled simultaneously.The simultaneous cooling and the mechanical coupling of two mechanical oscillators ensure the generation of mechanical entanglement.Furthermore,an optimal mechanical entanglement can be achieved when the moderate optical frequency detuning and the driving power are chosen.The thermal noise of the mechanical environment has a negative effect on mechanical entanglement.Our scheme provides promising opportunities for research of quantum information processing based on phonons and sensitive measurements.
基金the National Natural Science Foundationof China (Grant No. 12265022)the Natural ScienceFoundation of Inner Mongolia Autonomous Region, China(Grant No. 2021MS01012)the Inner Mongolia FundamentalResearch Funds for the Directly Affiliated Universities(Grant No. 2023RCTD014).
文摘Entanglement in macroscopic systems,as a fundamental quantum resource,has been utilized to propel the advancement of quantum technology and probe the boundary between the quantum and classical realms.This study focuses on a unique hybrid quantum system comprising of an ensemble of silicon vacancy(SiV)centers coupled to phononic waveguides in diamond via strain interactions.By employing two sets of time-dependent,non-overlapping driving fields,we investigate the generation process and dynamic properties of macroscopic quantum entanglement,providing fresh insights into the behavior of such hybrid quantum systems.Furthermore,it paves the way for new possibilities in utilizing quantum entanglement as an information carrier in quantum information processing and quantum communication.
文摘We study genuine entanglement among three qubits undergoing a noisy process that includes dissipation, squeezing,and decoherence. We obtain a general solution and analyze the asymptotic quantum states. We find that most of these asymptotic states can be genuinely entangled depending upon the parameters of the channel, memory parameter, and the parameters of the initial states. We study Greenberger–Horne–Zeilinger(GHZ) states and W states, mixed with white noise,and determine the conditions for them to be genuinely entangled at infinity. We find that for these mixtures, it is possible to start with a bi-separable state(with a specific mixture of white noise) and end with genuine entangled states. However, the memory parameter μ must be very high. We find that in contrast to the two-qubit case, none of the three-qubit asymptotic states for n → ∞ are genuinely entangled.
文摘Quantum correlations that surpass entanglement are of great importance in the realms of quantum information processing and quantum computation.Essentially,for quantum systems prepared in pure states,it is difficult to differentiate between quantum entanglement and quantum correlation.Nonetheless,this indistinguishability is no longer holds for mixed states.To contribute to a better understanding of this differentiation,we have explored a simple model for both generating and measuring these quantum correlations.Our study concerns two macroscopic mechanical resonators placed in separate Fabry–Pérot cavities,coupled through the photon hopping process.this system offers a comprehensively way to investigate and quantify quantum correlations beyond entanglement between these mechanical modes.The key ingredient in analyzing quantum correlation in this system is the global covariance matrix.It forms the basis for computing two essential metrics:the logarithmic negativity(E_(N)^(m))and the Gaussian interferometric power(P_(G)^(m)).These metrics provide the tools to measure the degree of quantum entanglement and quantum correlations,respectively.Our study reveals that the Gaussian interferometric power(P_(G)^(m))proves to be a more suitable metric for characterizing quantum correlations among the mechanical modes in an optomechanical quantum system,particularly in scenarios featuring resilient photon hopping.
文摘We explore the entanglement features of pure symmetric N-qubit states characterized by N-distinct spinors with a particular focus on the Greenberger-Horne-Zeilinger (GHZ) states and , an equal superposition of W and obverse W states. Along with a comparison of pairwise entanglement and monogamy properties, we explore the geometric information contained in them by constructing their canonical steering ellipsoids. We obtain the volume monogamy relations satisfied by states as a function of number of qubits and compare with the maximal monogamy property of GHZ states.
文摘Using real fields instead of complex ones, it was recently claimed, that all fermions are made of pairs of coupled fields (strings) with an internal tension related to mutual attraction forces, related to Planck’s constant. Quantum mechanics is described with real fields and real operators. Schrodinger and Dirac equations then are solved. The solution to Dirac equation gives four, real, 2-vectors solutions ψ1=(U1D1)ψ2=(U2D2)ψ3=(U3D3)ψ4=(U4D4)where (ψ1,ψ4) are coupled via linear combinations to yield spin-up and spin-down fermions. Likewise, (ψ2,ψ3) are coupled via linear combinations to represent spin-up and spin-down anti-fermions. For an incoming entangled pair of fermions, the combined solution is Ψin=c1ψ1+c4ψ4where c1and c4are some hidden variables. By applying a magnetic field in +Z and +x the theoretical results of a triple Stern-Gerlach experiment are predicted correctly. Then, by repeating Bell’s and Mermin Gedanken experiment with three magnetic filters σθ, at three different inclination angles θ, the violation of Bell’s inequality is proven. It is shown that all fermions are in a mixed state of spins and the ratio between spin-up to spin-down depends on the hidden variables.
文摘In this paper we develop and study, as the second part of one more general development, the energy transmutation equation for the material singularity, previously obtained through the symmetrisation of a wave packet, that is, we develop the correlation between the terms of this equation, which accounts for the formation of matter from a previous vibrational state, and the different possible energy species. These energetic species are ascribed, in a simplified form, to the equation E¯ω=E¯k+E¯f, which allows us, through its associated phase factor, to gain an insight into the wave character of the kinetic energy and thus to attain the basis of the matter-wave, and all sorts of related phenomenologies, including that concerning quantum entanglement. The formation of the matter was previously identified as an energetic process, analogous to the kinetic one, in which finally the inertial mass is consolidated as a mass in a different phase, now, in addition, the mass of the material singularity is identified as a volumetric density of waves of toroidal geometry created in the process of singularisation or energy transfer between species, which makes it possible to establish the real relation or correspondence between the corpuscular and photonic energy equation (E=mc2=hν), i.e. to explain through m the intimate sense of the first equivalence, which explains what νis in the second one.
文摘The superiority of hypothetical quantum computers is not due to faster calculations but due to different scheme of calculations running on special hardware. At the same time, one should realize that quantum computers would only provide dramatic speedups for a few specific problems, for example, factoring integers and breaking cryptographic codes in the conventional quantum computing approach. The core of quantum computing follows the way a state of a quantum system is defined when basic things interact with each other. In the conventional approach, it is implemented through the tensor product of qubits. In the suggested geometric algebra formalism simultaneous availability of all the results for non-measured observables is based on the definition of states as points on a three-dimensional sphere, which is very different from the usual Hilbert space scheme.
基金This work was supported by the National Natural Science Foundation of China under Grant Nos. 11474168 and 11747161 and the Natural Science Foundation of Jiangsu province under Grant No. BK20151502.
文摘Heralded noiseless amplification is beneficial in overcoming transmission photon loss in a noisy quantum channel. We propose a single-photon-assisted heralded noiseless amplification protocol of the single- photon entanglement (SPE), where the single-photon qubit has an arbitrary unknown polarization feature. We focus on both the complete and partial photon loss during the transmission process. After the amplification, the parties can recover the pure less-entangled SPE into a maximally entangled SPE and increase its fidelity. Moreover, the polarization feature of the single-photon qubit will be well preserved and not be leaked. Our protocol can be realized under our current experimental condition. Based on the features above, our protocol may be useful in the quantum secure communication schemes that encode information in the polarization degree of freedom of photons.
基金supported by the National Science Foundation of China (Grant Nos.12175001 and 12075001)the Natural Science Foundation of Education Department of Anhui Province,China (Grant No.KJ2016SD49)。
文摘Entanglement and coherence are two important resources in quantum information theory. A question naturally arises:Is there some connection between them? We prove that the entanglement of formation and the first-order coherence of twoqubit states satisfy an inequality relation. Two-qubit pure state reaches the upper bound of this inequality. A large number of randomly generated states are used to intuitively verify the complementarity between the entanglement of formation and the first-order coherence. We give the maximum accessible coherence of two-qubit states. Our research results will provide a reliable theoretical basis for conversion of the two quantum resources.
文摘We have demonstrated the existence of a pyramid power and have revealed its characteristics by strictly scientific experiments using biosensors. We also revealed the existence of a Bio-Entanglement, an entangled relationship between biosensors. A parallel study of biosensors (edible cucumber slices) had also been conducted, and we found that the circadian rhythm of gas concentrations emitted from biosensors changes seasonally. The pyramid power and Bio-Entanglement did not change the number of cycles in the periodic approximation curve representing circadian rhythm. Therefore, in this paper we analyzed the influence of the pyramid power and Bio-Entanglement, i.e., their influence on the phase, amplitude, and correlation coefficient of the periodic approximation curve representing the circadian rhythm of emitted gas concentrations. The main results are as follows. 1) The pyramid power shifted the phase of the periodic approximation curve representing the circadian rhythm by 43 minutes. 2) The amplitude of the periodic approximation curve changed with the pyramid power and the Bio-Entanglement. The effect on the lower and upper sections of the biosensors stacked in two layers was different, with a tendency to increase the amplitude of the lower layer and decrease the amplitude of the upper layer. 3) The pyramid power and the Bio-Entanglement affected the correlation coefficient between gas concentration and the periodic approximation curve representing the circadian rhythm of gas concentration. The effect on the lower and upper layers of the biosensors was different, with a tendency for the lower layer correlation coefficient to be larger and the upper layer correlation coefficient to be smaller. Previously we demonstrated that the pyramid power and the Bio-Entanglement affect the ratio of gas concentration, i.e., psi index Ψ. In this paper we demonstrate for the first time that the pyramid power and the Bio-Entanglement affect time, i.e., phase difference.
基金supported by the National Natural Science Foundation of China (Grant Nos.12075159 and 12171044)the Beijing Natural Science Foundation (Grant No.Z190005)the Academician Innovation Platform of Hainan Province。
文摘Monogamy and polygamy relations are important properties of entanglement,which characterize the entanglement distribution of multipartite systems.We explore monogamy and polygamy relations of entanglement in multipartite systems by using two newly derived parameterized mathematical inequalities,and establish classes of parameterized monogamy and polygamy relations of multiqubit entanglement in terms of concurrence and entanglement of formation.We show that these new parameterized monogamy and poelygamy inequalities are tighter than the existing ones by detailed examples.
基金the National Natural Science Foundation of China(Grant Nos.12175147,11847209,and 11675113)the Natural Science Foundation of Beijing(Grant No.KZ201810028042)Beijing Natural Science Foundation(Grant No.Z190005).
文摘Monogamy and polygamy relations characterize the distributions of entanglement in multipartite systems.We provide a characterization of multiqubit entanglement constraints in terms of unified-(q,s)entropy.A class of tighter monogamy inequalities of multiqubit entanglement based on theα-th power of unified-(q,s)entanglement forα≥1 and a class of polygamy inequalities in terms of theβ-th power of unified-(q,s)entanglement of assistance are established in this paper.Our results present a general class of the monogamy and polygamy relations for bipartite entanglement measures based on unified-(q,s)entropy,which are tighter than the existing ones.What is more,some usual monogamy and polygamy relations,such as monogamy and polygamy relations based on entanglement of formation,Renyi-q entanglement of assistance and Tsallis-q entanglement of assistance,can be obtained from these results by choosing appropriate parameters(q,s)in unified-(q,s)entropy entanglement.Typical examples are also presented for illustration.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12175014 and 92265115)the National Key Research and Development Program of China(Grant No.2022YFA1404900)+1 种基金supported by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation,project numbers 447948357 and 440958198)the Sino-German Center for Research Promotion(Project M-0294)。
文摘Quantifying entanglement in quantum systems is an important yet challenging task due to its NP-hard nature.In this work,we propose an efficient algorithm for evaluating distance-based entanglement measures.Our approach builds on Gilbert's algorithm for convex optimization,providing a reliable upper bound on the entanglement of a given arbitrary state.We demonstrate the effectiveness of our algorithm by applying it to various examples,such as calculating the squared Bures metric of entanglement as well as the relative entropy of entanglement for GHZ states,W states,Horodecki states,and chessboard states.These results demonstrate that our algorithm is a versatile and accurate tool that can quickly provide reliable upper bounds for entanglement measures.
基金Project supported by the Natural Science Foundation of Fujian Province,China(Grant No.2021J01574).
文摘We study the quantum phase transition and entanglement in the Jaynes-Cummings model with squeezed light,utilize a special transformation method to obtain the analytical ground state of the model within the near-resonance regime,and numerically verify the validity of the analytical ground state.It is found that the ground state exhibits a first-order quantum phase transition at the critical point linearly induced by squeezed light,and the ground state entanglement reaches its maximum when the qubit-field coupling strength is large enough at the critical point.