The authors study the singular integral operatorT_~Ω,α f(x)=p.v.∫_~Rn b(|y|)Ω(y′)|y|^-n-α f(x-y)dy,defined on all test functions f,where b is a bounded function,α>0,Ω(y′) is an integrable function on t...The authors study the singular integral operatorT_~Ω,α f(x)=p.v.∫_~Rn b(|y|)Ω(y′)|y|^-n-α f(x-y)dy,defined on all test functions f,where b is a bounded function,α>0,Ω(y′) is an integrable function on the unit sphere S^n-1 satisfying certain cancellation conditions.It is proved that,for n/(n+α)<p<∞,T_~Ω,α is a bounded operator from the Hardy-Sobolev space Hp_α to the Hardy space Hp.The results and its applications improve some theorems in a previous paper of the author and they are extensions of the main theorems in Wheeden's paper(1969).The proof is based on a new atomic decomposition of the space Hp_α by Han,Paluszynski and Weiss(1995).By using the same proof,the singluar integral operators with variable kernels are also studied.展开更多
In this paper, we will prove the Triebel-Lizorkin boundedness for some oscillatory singular integrals with the kernel (x) satisfying a condition introduced by Grafakos and Stefanov. Our theorems will be proved under...In this paper, we will prove the Triebel-Lizorkin boundedness for some oscillatory singular integrals with the kernel (x) satisfying a condition introduced by Grafakos and Stefanov. Our theorems will be proved under various conditions on the phase function, radial and nonradial. Since the L p boundedness of these operators is not complete yet, the theorems extend many known results.展开更多
In this paper, for the multilinear oscillatory singular integral operators TA1,A2,...Ar defined by TA1,A2,...,Arf(x) = p.v.∫R^n ^e^iP(x,y)Ω(x - y)/|x - y|^n+M r∏s=1 Rms+1(As;x,y)f(y)dy, n≥2 where P...In this paper, for the multilinear oscillatory singular integral operators TA1,A2,...Ar defined by TA1,A2,...,Arf(x) = p.v.∫R^n ^e^iP(x,y)Ω(x - y)/|x - y|^n+M r∏s=1 Rms+1(As;x,y)f(y)dy, n≥2 where P(x,y) is a nontrivial and real-valued polynomial defined on R^n×R^n,Ω(x) is homogeneous of degree zero on R^n, As(x) has derivatives of order ms in ∧βs (0〈βs〈 1), Rms+1 (As;x, y) denotes the (ms+1)-st remainder of the Taylor series of As at x expended about y (s = 1, 2, ..., r), M = ∑s^r =1 ms, the author proves that if 0 〈=β1=∑s^r=1 βs〈1,and Ω∈L^q(S^n-1) for some q 〉 1/(1 -β), then for any p∈(1, ∞), and some appropriate 0 〈β〈 1, TA1,A2,...,Ar, is bounded on L^P(R^n).展开更多
Let T be the singular integral operator with variable kernel, T* be the adjoint of T and T# be the pseudo-adjoint of T. Let TIT2 be the product of T1 and T2, T1 o T2 be the pseudo product of T1 and T2. In this paper,...Let T be the singular integral operator with variable kernel, T* be the adjoint of T and T# be the pseudo-adjoint of T. Let TIT2 be the product of T1 and T2, T1 o T2 be the pseudo product of T1 and T2. In this paper, we establish the boundedness for commutators of these operators and the fractional differentiation operator D^γ on the weighted Morrey spaces.展开更多
In this paper, we obtain the boundedness of the parabolic singular integral operator T with kernel in L(log L) 1/γ,(Sn- 1 ) on Triebel-Lizorkin spaces. Moreover, we prove the boundedness of a class of Marcinkiewi...In this paper, we obtain the boundedness of the parabolic singular integral operator T with kernel in L(log L) 1/γ,(Sn- 1 ) on Triebel-Lizorkin spaces. Moreover, we prove the boundedness of a class of Marcinkiewicz integrals μΩ,q (f) from ||f||Fp^oq(Rn) into Lp (Rn).展开更多
The singular integral operator FΩ.a, and the Marcinkiewicz integral operator μ^-Ω.a are studied. The kernels of the operators behave like |y|^-n-a(a〉0) near the origin, and contain an oscillating factor e^i|y...The singular integral operator FΩ.a, and the Marcinkiewicz integral operator μ^-Ω.a are studied. The kernels of the operators behave like |y|^-n-a(a〉0) near the origin, and contain an oscillating factor e^i|y|^-β(β〉0) and a distribution Ω on the unit sphere S^n-1. It is proved that, if Ω is in the Hardy space H^r(S^n-1) with 0〈r=(n-1)/(n-1+y)(r〉0), and satisfies certain eancellation condition,then FΩ.a and μ^-Ω.a extend the bounded operator from Sobolev space L^pr to Lebesgue space L^p for some p. The result improves and extends some known results.展开更多
In this paper, we study the mapping properties of singular integral operator along surfaces of revolution. We prove Lp bounds (1 < p < ∞) for such singular integral operators as well as for their corresponding ...In this paper, we study the mapping properties of singular integral operator along surfaces of revolution. We prove Lp bounds (1 < p < ∞) for such singular integral operators as well as for their corresponding maximal truncated singular integrals if the singular kernels are allowed to be in certain block spaces.展开更多
Let α≥ 0 and 0 〈 ρ ≤ n/2, the boundedness of hypersingular parameterized Marcinkiewicz integrals μΩ,α^ρ with variable kernels on Sobolev spaces Lα^ρ and HardySobolev spaces Hα^ρ is established.
In this paper,the boundedness is obtained on the Triebel-Lizorkin spaces and the Besov spaces for a class of oscillatory singular integrals with Hardy kernels.
For a class of multilinear singular integral operators TA,$$T_A f\left( x \right) = \int {_{\Ropf^n} } {{\Omega \left( {x - y} \right)} \over {\left| {x - y} \right|^{n + m - 1} }}R_m \left( {A;x,y} \right)f\left( y \...For a class of multilinear singular integral operators TA,$$T_A f\left( x \right) = \int {_{\Ropf^n} } {{\Omega \left( {x - y} \right)} \over {\left| {x - y} \right|^{n + m - 1} }}R_m \left( {A;x,y} \right)f\left( y \right)dy,$$where Rm (A; x, y) denotes the m-th Taylor series remainder of A at x expanded about y, A has derivatives of order m m 1 in $\dot \Lambda_\beta $(0 < # < 1), OHgr;(x) ] L^s(S^nm1)($s \ge {n \over {n - \beta }}$) is homogeneous of degree zero, the authors prove that TA is bounded from L^p(A^n) to L^q) (A^n) (${1 \over p} - {1 \over q} = {\beta \over n},\,1 < p < {n \over \beta }$) and from L^1 (A^n) to L^n/(nm#), ^X (A^n) with the bound $C\sum\nolimits_{\left| \gamma \right| = m - 1} {} \left\|\left\| {D^\gamma A} \right\|\right\|_{\dot \Lambda_\beta} $. And if Q has vanishing moments of order m m 1 and satisfies some kinds of Dini regularity otherwise, then TA is also bounded from L^p (A^n) to ${\dot F}^{\beta,\infty}_p$ (A^n)(1 < s' < p < X) with the bound $C\sum\nolimits_{\left| \gamma \right| = m - 1} {} \left\| \left\|{D^\gamma A} \right\|\right\|_{\dot \Lambda _\beta } $.展开更多
We consider the boundedness of the rough singular integral operator T_(?,ψ,h) along a surface of revolution on the Triebel-Lizorkin space F^α_( p,q)(R^n) for Ω ∈ H^1((S^n-1)) and Ω ∈ Llog^+L(S^n-1)...We consider the boundedness of the rough singular integral operator T_(?,ψ,h) along a surface of revolution on the Triebel-Lizorkin space F^α_( p,q)(R^n) for Ω ∈ H^1((S^n-1)) and Ω ∈ Llog^+L(S^n-1) ∪_1展开更多
In this paper,we prove that the commutators of maximal hypersingular integrals with rough kernels are bounded from the Sobolev space Lpγ(Rn) to the Lebesgue space Lp(Rn),which is a substantial improvement and an exte...In this paper,we prove that the commutators of maximal hypersingular integrals with rough kernels are bounded from the Sobolev space Lpγ(Rn) to the Lebesgue space Lp(Rn),which is a substantial improvement and an extension of some known results.展开更多
We obtain appropriate sharp bounds on Triebel-Lizorkin spaces for rough oscillatory inte- grals with polynomial phase. By using these bounds and using an extrapolation argument we obtain some new and previously known ...We obtain appropriate sharp bounds on Triebel-Lizorkin spaces for rough oscillatory inte- grals with polynomial phase. By using these bounds and using an extrapolation argument we obtain some new and previously known results for oscillatory integrals under very weak size conditions on the kernel functions.展开更多
In this paper we study the Hardy type estimates for commutators Tb of standard Calder(o)n-Zygmund singular integral operators T with a Lipschitz function b. The corresponding results are also obtained on the commutato...In this paper we study the Hardy type estimates for commutators Tb of standard Calder(o)n-Zygmund singular integral operators T with a Lipschitz function b. The corresponding results are also obtained on the commutators Sb generated by b with singular integral operators S with variable kernels.展开更多
We introduce a class of singular integral operators on product domains along twisted surfaces.We prove that the operators are bounded on L^(p) provided that the kernels satisfy weak conditions.
In this paper, we prove the Triebel-Lizorkin boundedness for the Marcinkiewicz integral with rough kernel. The method we apply here enables us to consider more general operators.
Suppose that {α<sub>k</sub>}<sub>k</sub><sup>∞</sup>=-∞ is a Lacunary sequence of positive numbers satisfying infα<sub>k+1</sub>/α<sub>k</sub>=α】1 and...Suppose that {α<sub>k</sub>}<sub>k</sub><sup>∞</sup>=-∞ is a Lacunary sequence of positive numbers satisfying infα<sub>k+1</sub>/α<sub>k</sub>=α】1 and that Ω(y’)is a function in the Besov space B<sub>1</sub><sup>0,1</sup>(S<sup>n-1</sup>)where S<sup>n-1</sup> is the unit sphere on R<sup>n</sup>(n≥2).We prove that if ∫<sub>S<sup>n-1</sup></sub>Ω(y’)dσ(y’)=0 then the discrete singular integral operator T<sub>Ω</sub>f(x)=∫(S<sup>n-1</sup>)f(x-α<sub>k</sub>y’)Ω(y’)dσ(y’) and the associated maximal operator T<sub>Ω</sub>f(x)=∫<sub>S<sup>n-1</sup></sub>f(x-α<sub>k</sub>y’)Ω(y’)dσ(y’) are both bounded in the space L<sup>2</sup>(R<sup>n</sup>). The theorems in this paper improve a result by Duoandikoetxea and Rubio de Francia in the L<sup>2</sup> case.展开更多
In this paper,we first introduce Lσ1-(log L)σ2 conditions satisfied by the variable kernelsΩ(x,z) for 0≤σ1≤1 and σ2≥0.Under these new smoothness conditions,we will prove the boundedness properties of singu...In this paper,we first introduce Lσ1-(log L)σ2 conditions satisfied by the variable kernelsΩ(x,z) for 0≤σ1≤1 and σ2≥0.Under these new smoothness conditions,we will prove the boundedness properties of singular integral operators TΩ,fractional integrals TΩ,α and parametric Marcinkiewicz integrals μΩρ with variable kernels on the Hardy spaces Hp(Rn) and weak Hardy spaces WHP(Rn).Moreover,by using the interpolation arguments,we can get some corresponding results for the above integral operators with variable kernels on Hardy-Lorentz spaces Hp,q(Rn) for all p 〈 q 〈 ∞.展开更多
In this paper, the authors give the boundedness of the commutator [b,μΩ,γ] from the homogeneous Sobolev space LP(R^n) to the Lebesgue space L^p(R^n) for 1 〈 p 〈 ∞, where μΩ,γ denotes the Marcinkiewicz int...In this paper, the authors give the boundedness of the commutator [b,μΩ,γ] from the homogeneous Sobolev space LP(R^n) to the Lebesgue space L^p(R^n) for 1 〈 p 〈 ∞, where μΩ,γ denotes the Marcinkiewicz integral with rough hypersingular kernel defined by μΩ,γf(x)=(∫0^∞|∫|x-y|≤tΩ(x-y)/|x-y|^n-1f(y)dy|^2dt/t^3+2γ)^1/2,with Ω∈L^1(S^n-1)for 0〈γ〈min(n/2,n/p)or Ω∈L(log+L)^β(S^n-1)for|1-2/p|〈β〈1(0〈γ〈n/2),respectively.展开更多
文摘The authors study the singular integral operatorT_~Ω,α f(x)=p.v.∫_~Rn b(|y|)Ω(y′)|y|^-n-α f(x-y)dy,defined on all test functions f,where b is a bounded function,α>0,Ω(y′) is an integrable function on the unit sphere S^n-1 satisfying certain cancellation conditions.It is proved that,for n/(n+α)<p<∞,T_~Ω,α is a bounded operator from the Hardy-Sobolev space Hp_α to the Hardy space Hp.The results and its applications improve some theorems in a previous paper of the author and they are extensions of the main theorems in Wheeden's paper(1969).The proof is based on a new atomic decomposition of the space Hp_α by Han,Paluszynski and Weiss(1995).By using the same proof,the singluar integral operators with variable kernels are also studied.
基金Supported by the National Natural Science Foundation of China (11026104, 11201103, 11226108)
文摘In this paper, we will prove the Triebel-Lizorkin boundedness for some oscillatory singular integrals with the kernel (x) satisfying a condition introduced by Grafakos and Stefanov. Our theorems will be proved under various conditions on the phase function, radial and nonradial. Since the L p boundedness of these operators is not complete yet, the theorems extend many known results.
文摘In this paper, for the multilinear oscillatory singular integral operators TA1,A2,...Ar defined by TA1,A2,...,Arf(x) = p.v.∫R^n ^e^iP(x,y)Ω(x - y)/|x - y|^n+M r∏s=1 Rms+1(As;x,y)f(y)dy, n≥2 where P(x,y) is a nontrivial and real-valued polynomial defined on R^n×R^n,Ω(x) is homogeneous of degree zero on R^n, As(x) has derivatives of order ms in ∧βs (0〈βs〈 1), Rms+1 (As;x, y) denotes the (ms+1)-st remainder of the Taylor series of As at x expended about y (s = 1, 2, ..., r), M = ∑s^r =1 ms, the author proves that if 0 〈=β1=∑s^r=1 βs〈1,and Ω∈L^q(S^n-1) for some q 〉 1/(1 -β), then for any p∈(1, ∞), and some appropriate 0 〈β〈 1, TA1,A2,...,Ar, is bounded on L^P(R^n).
基金supported by NSF of China (Grant No. 11471033)NCET of China (Grant No. NCET-11-0574)the Fundamental Research Funds for the Central Universities (FRF-TP-12-006B)
文摘Let T be the singular integral operator with variable kernel, T* be the adjoint of T and T# be the pseudo-adjoint of T. Let TIT2 be the product of T1 and T2, T1 o T2 be the pseudo product of T1 and T2. In this paper, we establish the boundedness for commutators of these operators and the fractional differentiation operator D^γ on the weighted Morrey spaces.
基金Supported in part by National Natural Foundation of China (Grant No. 11071250)
文摘In this paper, we obtain the boundedness of the parabolic singular integral operator T with kernel in L(log L) 1/γ,(Sn- 1 ) on Triebel-Lizorkin spaces. Moreover, we prove the boundedness of a class of Marcinkiewicz integrals μΩ,q (f) from ||f||Fp^oq(Rn) into Lp (Rn).
文摘The singular integral operator FΩ.a, and the Marcinkiewicz integral operator μ^-Ω.a are studied. The kernels of the operators behave like |y|^-n-a(a〉0) near the origin, and contain an oscillating factor e^i|y|^-β(β〉0) and a distribution Ω on the unit sphere S^n-1. It is proved that, if Ω is in the Hardy space H^r(S^n-1) with 0〈r=(n-1)/(n-1+y)(r〉0), and satisfies certain eancellation condition,then FΩ.a and μ^-Ω.a extend the bounded operator from Sobolev space L^pr to Lebesgue space L^p for some p. The result improves and extends some known results.
文摘In this paper, we study the mapping properties of singular integral operator along surfaces of revolution. We prove Lp bounds (1 < p < ∞) for such singular integral operators as well as for their corresponding maximal truncated singular integrals if the singular kernels are allowed to be in certain block spaces.
基金Supported by the National Natural Science Foundation of China(1057115610871173)
文摘Let α≥ 0 and 0 〈 ρ ≤ n/2, the boundedness of hypersingular parameterized Marcinkiewicz integrals μΩ,α^ρ with variable kernels on Sobolev spaces Lα^ρ and HardySobolev spaces Hα^ρ is established.
基金Supported by the National Natural Science Foundation of China (Grant No. 11071250)
文摘In this paper,the boundedness is obtained on the Triebel-Lizorkin spaces and the Besov spaces for a class of oscillatory singular integrals with Hardy kernels.
文摘For a class of multilinear singular integral operators TA,$$T_A f\left( x \right) = \int {_{\Ropf^n} } {{\Omega \left( {x - y} \right)} \over {\left| {x - y} \right|^{n + m - 1} }}R_m \left( {A;x,y} \right)f\left( y \right)dy,$$where Rm (A; x, y) denotes the m-th Taylor series remainder of A at x expanded about y, A has derivatives of order m m 1 in $\dot \Lambda_\beta $(0 < # < 1), OHgr;(x) ] L^s(S^nm1)($s \ge {n \over {n - \beta }}$) is homogeneous of degree zero, the authors prove that TA is bounded from L^p(A^n) to L^q) (A^n) (${1 \over p} - {1 \over q} = {\beta \over n},\,1 < p < {n \over \beta }$) and from L^1 (A^n) to L^n/(nm#), ^X (A^n) with the bound $C\sum\nolimits_{\left| \gamma \right| = m - 1} {} \left\|\left\| {D^\gamma A} \right\|\right\|_{\dot \Lambda_\beta} $. And if Q has vanishing moments of order m m 1 and satisfies some kinds of Dini regularity otherwise, then TA is also bounded from L^p (A^n) to ${\dot F}^{\beta,\infty}_p$ (A^n)(1 < s' < p < X) with the bound $C\sum\nolimits_{\left| \gamma \right| = m - 1} {} \left\| \left\|{D^\gamma A} \right\|\right\|_{\dot \Lambda _\beta } $.
基金supported by National Natural Science Foundation of China (Grant Nos. 11371057, 11471033 and 11571160)Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20130003110003)+2 种基金the Fundamental Research Funds for the Central Universities (Grant No. 2014KJJCA10)Grant-in-Aid for Scientific Research (C) (Grant No. 23540228)Japan Society for the Promotion of Science
文摘We consider the boundedness of the rough singular integral operator T_(?,ψ,h) along a surface of revolution on the Triebel-Lizorkin space F^α_( p,q)(R^n) for Ω ∈ H^1((S^n-1)) and Ω ∈ Llog^+L(S^n-1) ∪_1
基金supported by National Natural Science Foundation of China (Grant Nos.10901017 and 10931001)Program for New Century Excellent Talents in University (Grant No. NCET-11-0574)Doctoral Fund of Ministry of Education of China (Grant No. 20090003110018)
文摘In this paper,we prove that the commutators of maximal hypersingular integrals with rough kernels are bounded from the Sobolev space Lpγ(Rn) to the Lebesgue space Lp(Rn),which is a substantial improvement and an extension of some known results.
文摘We obtain appropriate sharp bounds on Triebel-Lizorkin spaces for rough oscillatory inte- grals with polynomial phase. By using these bounds and using an extrapolation argument we obtain some new and previously known results for oscillatory integrals under very weak size conditions on the kernel functions.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.10041005&10171045).
文摘In this paper we study the Hardy type estimates for commutators Tb of standard Calder(o)n-Zygmund singular integral operators T with a Lipschitz function b. The corresponding results are also obtained on the commutators Sb generated by b with singular integral operators S with variable kernels.
文摘We introduce a class of singular integral operators on product domains along twisted surfaces.We prove that the operators are bounded on L^(p) provided that the kernels satisfy weak conditions.
基金Supported by the National Science Foundation of China (Grants 10901043, 10701064, 10871173, and 10931001)Hangdian Foundation (KYS075608076)
文摘In this paper, we prove the Triebel-Lizorkin boundedness for the Marcinkiewicz integral with rough kernel. The method we apply here enables us to consider more general operators.
基金Supported in part by a grant from the USA National Science Foundation
文摘Suppose that {α<sub>k</sub>}<sub>k</sub><sup>∞</sup>=-∞ is a Lacunary sequence of positive numbers satisfying infα<sub>k+1</sub>/α<sub>k</sub>=α】1 and that Ω(y’)is a function in the Besov space B<sub>1</sub><sup>0,1</sup>(S<sup>n-1</sup>)where S<sup>n-1</sup> is the unit sphere on R<sup>n</sup>(n≥2).We prove that if ∫<sub>S<sup>n-1</sup></sub>Ω(y’)dσ(y’)=0 then the discrete singular integral operator T<sub>Ω</sub>f(x)=∫(S<sup>n-1</sup>)f(x-α<sub>k</sub>y’)Ω(y’)dσ(y’) and the associated maximal operator T<sub>Ω</sub>f(x)=∫<sub>S<sup>n-1</sup></sub>f(x-α<sub>k</sub>y’)Ω(y’)dσ(y’) are both bounded in the space L<sup>2</sup>(R<sup>n</sup>). The theorems in this paper improve a result by Duoandikoetxea and Rubio de Francia in the L<sup>2</sup> case.
文摘In this paper,we first introduce Lσ1-(log L)σ2 conditions satisfied by the variable kernelsΩ(x,z) for 0≤σ1≤1 and σ2≥0.Under these new smoothness conditions,we will prove the boundedness properties of singular integral operators TΩ,fractional integrals TΩ,α and parametric Marcinkiewicz integrals μΩρ with variable kernels on the Hardy spaces Hp(Rn) and weak Hardy spaces WHP(Rn).Moreover,by using the interpolation arguments,we can get some corresponding results for the above integral operators with variable kernels on Hardy-Lorentz spaces Hp,q(Rn) for all p 〈 q 〈 ∞.
基金Supported by National Natural Science Foundation of China (Grant Nos. 10931001, 10901017) and Specialized Research Fund for the Doctoral Program of China (Grant No. 20090003110018)Acknowledgements The authors would like to express their gratitude to the referee for his/her very careful reading and many important valuable comments.
文摘In this paper, the authors give the boundedness of the commutator [b,μΩ,γ] from the homogeneous Sobolev space LP(R^n) to the Lebesgue space L^p(R^n) for 1 〈 p 〈 ∞, where μΩ,γ denotes the Marcinkiewicz integral with rough hypersingular kernel defined by μΩ,γf(x)=(∫0^∞|∫|x-y|≤tΩ(x-y)/|x-y|^n-1f(y)dy|^2dt/t^3+2γ)^1/2,with Ω∈L^1(S^n-1)for 0〈γ〈min(n/2,n/p)or Ω∈L(log+L)^β(S^n-1)for|1-2/p|〈β〈1(0〈γ〈n/2),respectively.