期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
ROUGH SINGULAR INTEGRAL OPERATORS ON HARDY- SOBOLEV SPACES 被引量:3
1
作者 ChenDaning ChenJiecheng FanDashan 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2005年第1期1-9,共9页
The authors study the singular integral operatorT_~Ω,α f(x)=p.v.∫_~Rn b(|y|)Ω(y′)|y|^-n-α f(x-y)dy,defined on all test functions f,where b is a bounded function,α>0,Ω(y′) is an integrable function on t... The authors study the singular integral operatorT_~Ω,α f(x)=p.v.∫_~Rn b(|y|)Ω(y′)|y|^-n-α f(x-y)dy,defined on all test functions f,where b is a bounded function,α>0,Ω(y′) is an integrable function on the unit sphere S^n-1 satisfying certain cancellation conditions.It is proved that,for n/(n+α)<p<∞,T_~Ω,α is a bounded operator from the Hardy-Sobolev space Hp_α to the Hardy space Hp.The results and its applications improve some theorems in a previous paper of the author and they are extensions of the main theorems in Wheeden's paper(1969).The proof is based on a new atomic decomposition of the space Hp_α by Han,Paluszynski and Weiss(1995).By using the same proof,the singluar integral operators with variable kernels are also studied. 展开更多
关键词 singular integral |sobolevH|soboleva|sobolevr|sobolevd|sobolevy|sobolev||sobolevS|sobolevo|sobolevb|sobolevo|sobolevl|soboleve|sobolevv|sobolev space rough kernel.
下载PDF
Boundedness of oscillatory singular integral with rough kernels on Triebel-Lizorkin spaces
2
作者 ZHANG Chun-jie ZHANG Yan-dan 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2013年第1期90-100,共11页
In this paper, we will prove the Triebel-Lizorkin boundedness for some oscillatory singular integrals with the kernel (x) satisfying a condition introduced by Grafakos and Stefanov. Our theorems will be proved under... In this paper, we will prove the Triebel-Lizorkin boundedness for some oscillatory singular integrals with the kernel (x) satisfying a condition introduced by Grafakos and Stefanov. Our theorems will be proved under various conditions on the phase function, radial and nonradial. Since the L p boundedness of these operators is not complete yet, the theorems extend many known results. 展开更多
关键词 Oscillatory singular integral Triebel-Lizorkin space rough kernel phase function.
下载PDF
A LIPSCHITZ ESTIMATE FOR MULTILINEAR OSCILLATORY SINGULAR INTEGRALS WITH ROUGH KERNELS 被引量:2
3
作者 伍火熊 《Acta Mathematica Scientia》 SCIE CSCD 2005年第4期761-770,共10页
In this paper, for the multilinear oscillatory singular integral operators TA1,A2,...Ar defined by TA1,A2,...,Arf(x) = p.v.∫R^n ^e^iP(x,y)Ω(x - y)/|x - y|^n+M r∏s=1 Rms+1(As;x,y)f(y)dy, n≥2 where P... In this paper, for the multilinear oscillatory singular integral operators TA1,A2,...Ar defined by TA1,A2,...,Arf(x) = p.v.∫R^n ^e^iP(x,y)Ω(x - y)/|x - y|^n+M r∏s=1 Rms+1(As;x,y)f(y)dy, n≥2 where P(x,y) is a nontrivial and real-valued polynomial defined on R^n×R^n,Ω(x) is homogeneous of degree zero on R^n, As(x) has derivatives of order ms in ∧βs (0〈βs〈 1), Rms+1 (As;x, y) denotes the (ms+1)-st remainder of the Taylor series of As at x expended about y (s = 1, 2, ..., r), M = ∑s^r =1 ms, the author proves that if 0 〈=β1=∑s^r=1 βs〈1,and Ω∈L^q(S^n-1) for some q 〉 1/(1 -β), then for any p∈(1, ∞), and some appropriate 0 〈β〈 1, TA1,A2,...,Ar, is bounded on L^P(R^n). 展开更多
关键词 Multilinear operator oscillatory singular integral Lipschitz spaces rough kernel
下载PDF
Boundedness for the Singular Integral with Variable Kernel and Fractional Differentiation on Weighted Morrey Spaces 被引量:1
4
作者 Chao Xue Kai Zhu Yanping Chen 《Analysis in Theory and Applications》 CSCD 2016年第3期205-214,共10页
Let T be the singular integral operator with variable kernel, T* be the adjoint of T and T# be the pseudo-adjoint of T. Let TIT2 be the product of T1 and T2, T1 o T2 be the pseudo product of T1 and T2. In this paper,... Let T be the singular integral operator with variable kernel, T* be the adjoint of T and T# be the pseudo-adjoint of T. Let TIT2 be the product of T1 and T2, T1 o T2 be the pseudo product of T1 and T2. In this paper, we establish the boundedness for commutators of these operators and the fractional differentiation operator D^γ on the weighted Morrey spaces. 展开更多
关键词 singular integral variable kernel fractional differentiation BMO sobolev space weighted Morrey spaces
下载PDF
BOUNDEDNESS OF PARABOLIC SINGULAR INTEGRALS AND MARCINKIEWICZ INTEGRALS ON TRIEBEL-LIZORKIN SPACES 被引量:3
5
作者 Yaoming Niu Shuangping Tao 《Analysis in Theory and Applications》 2011年第1期59-75,共17页
In this paper, we obtain the boundedness of the parabolic singular integral operator T with kernel in L(log L) 1/γ,(Sn- 1 ) on Triebel-Lizorkin spaces. Moreover, we prove the boundedness of a class of Marcinkiewi... In this paper, we obtain the boundedness of the parabolic singular integral operator T with kernel in L(log L) 1/γ,(Sn- 1 ) on Triebel-Lizorkin spaces. Moreover, we prove the boundedness of a class of Marcinkiewicz integrals μΩ,q (f) from ||f||Fp^oq(Rn) into Lp (Rn). 展开更多
关键词 parabolic singular integral Triebel-Lizorkin space Marcinkiewica integral rough kernel
下载PDF
ROUGH HYPERSINGULAR INTEGRAL OPERATORS WITH AN OSCILLATING FACTOR
6
作者 陈杰诚 尤英 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2006年第2期179-190,共12页
The singular integral operator FΩ.a, and the Marcinkiewicz integral operator μ^-Ω.a are studied. The kernels of the operators behave like |y|^-n-a(a〉0) near the origin, and contain an oscillating factor e^i|y... The singular integral operator FΩ.a, and the Marcinkiewicz integral operator μ^-Ω.a are studied. The kernels of the operators behave like |y|^-n-a(a〉0) near the origin, and contain an oscillating factor e^i|y|^-β(β〉0) and a distribution Ω on the unit sphere S^n-1. It is proved that, if Ω is in the Hardy space H^r(S^n-1) with 0〈r=(n-1)/(n-1+y)(r〉0), and satisfies certain eancellation condition,then FΩ.a and μ^-Ω.a extend the bounded operator from Sobolev space L^pr to Lebesgue space L^p for some p. The result improves and extends some known results. 展开更多
关键词 rough hypersingular integral operator Marcinkiewicz integral operator rough kernel sobolev space.
下载PDF
SINGULAR INTEGRALS ALONG SURFACES ON PRODUCT DOMAINS 被引量:1
7
作者 Hussain Al-Qassem 《Analysis in Theory and Applications》 2004年第2期99-112,共14页
In this paper, we study the mapping properties of singular integral operator along surfaces of revolution. We prove Lp bounds (1 < p < ∞) for such singular integral operators as well as for their corresponding ... In this paper, we study the mapping properties of singular integral operator along surfaces of revolution. We prove Lp bounds (1 < p < ∞) for such singular integral operators as well as for their corresponding maximal truncated singular integrals if the singular kernels are allowed to be in certain block spaces. 展开更多
关键词 singular integrals product domains rough kernels Block spaces
全文增补中
Hypersingular parameterized Marcinkiewicz integrals with variable kernels on Sobolev and Hardy-Sobolev spaces 被引量:2
8
作者 CHEN Jie-cheng YU Xiao ZHANG Yan-dan WANG Hui 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2008年第4期420-430,共11页
Let α≥ 0 and 0 〈 ρ ≤ n/2, the boundedness of hypersingular parameterized Marcinkiewicz integrals μΩ,α^ρ with variable kernels on Sobolev spaces Lα^ρ and HardySobolev spaces Hα^ρ is established.
关键词 parameterized Marcinkiewicz integral variable kernel hardy-sobolev space L^α-Dini condition
下载PDF
A Class of Oscillatory Singular Integrals with Hardy Kernels on Triebel-Lizorkin Spaces and Besov Spaces
9
作者 Yao Ming NIU Shuang Ping TAO 《Journal of Mathematical Research and Exposition》 CSCD 2011年第3期509-520,共12页
In this paper,the boundedness is obtained on the Triebel-Lizorkin spaces and the Besov spaces for a class of oscillatory singular integrals with Hardy kernels.
关键词 oscillatory singular integrals Triebel-Lizorkin spaces Besov spaces hardy kernel.
下载PDF
Multilinear Singular Integrals with Rough Kernel 被引量:15
10
作者 ShanZhenLU HuoXiongWU PuZHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2003年第1期51-62,共12页
For a class of multilinear singular integral operators TA,$$T_A f\left( x \right) = \int {_{\Ropf^n} } {{\Omega \left( {x - y} \right)} \over {\left| {x - y} \right|^{n + m - 1} }}R_m \left( {A;x,y} \right)f\left( y \... For a class of multilinear singular integral operators TA,$$T_A f\left( x \right) = \int {_{\Ropf^n} } {{\Omega \left( {x - y} \right)} \over {\left| {x - y} \right|^{n + m - 1} }}R_m \left( {A;x,y} \right)f\left( y \right)dy,$$where Rm (A; x, y) denotes the m-th Taylor series remainder of A at x expanded about y, A has derivatives of order m m 1 in $\dot \Lambda_\beta $(0 < # < 1), OHgr;(x) ] L^s(S^nm1)($s \ge {n \over {n - \beta }}$) is homogeneous of degree zero, the authors prove that TA is bounded from L^p(A^n) to L^q) (A^n) (${1 \over p} - {1 \over q} = {\beta \over n},\,1 < p < {n \over \beta }$) and from L^1 (A^n) to L^n/(nm#), ^X (A^n) with the bound $C\sum\nolimits_{\left| \gamma \right| = m - 1} {} \left\|\left\| {D^\gamma A} \right\|\right\|_{\dot \Lambda_\beta} $. And if Q has vanishing moments of order m m 1 and satisfies some kinds of Dini regularity otherwise, then TA is also bounded from L^p (A^n) to ${\dot F}^{\beta,\infty}_p$ (A^n)(1 < s' < p < X) with the bound $C\sum\nolimits_{\left| \gamma \right| = m - 1} {} \left\| \left\|{D^\gamma A} \right\|\right\|_{\dot \Lambda _\beta } $. 展开更多
关键词 Multilinear operator singular integral Lipschitz spaces Triebel Lizorkin spaces rough kernel
原文传递
Triebel-Lizorkin space boundedness of rough singular integrals associated to surfaces of revolution 被引量:5
11
作者 DING Yong YABUTA Kozo 《Science China Mathematics》 SCIE CSCD 2016年第9期1721-1736,共16页
We consider the boundedness of the rough singular integral operator T_(?,ψ,h) along a surface of revolution on the Triebel-Lizorkin space F^α_( p,q)(R^n) for Ω ∈ H^1((S^n-1)) and Ω ∈ Llog^+L(S^n-1)... We consider the boundedness of the rough singular integral operator T_(?,ψ,h) along a surface of revolution on the Triebel-Lizorkin space F^α_( p,q)(R^n) for Ω ∈ H^1((S^n-1)) and Ω ∈ Llog^+L(S^n-1) ∪_1 展开更多
关键词 singular integrals Triebel-Lizorkin spaces rough kernel surface of revolution
原文传递
The boundedness for commutators of maximal hypersingular integrals with rough kernels 被引量:1
12
作者 CHEN YanPing DING Yong LI Ran 《Science China Mathematics》 SCIE 2013年第4期707-728,共22页
In this paper,we prove that the commutators of maximal hypersingular integrals with rough kernels are bounded from the Sobolev space Lpγ(Rn) to the Lebesgue space Lp(Rn),which is a substantial improvement and an exte... In this paper,we prove that the commutators of maximal hypersingular integrals with rough kernels are bounded from the Sobolev space Lpγ(Rn) to the Lebesgue space Lp(Rn),which is a substantial improvement and an extension of some known results. 展开更多
关键词 COMMUTATOR maximal hypersingular integrals rough kernel BMO sobolev space
原文传递
On the Boundedness of Rough Oscillatory Singular Integrals on Triebel-Lizorkin Spaces
13
作者 Leslie CHENG Yi Biao PAN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第10期1881-1898,共18页
We obtain appropriate sharp bounds on Triebel-Lizorkin spaces for rough oscillatory inte- grals with polynomial phase. By using these bounds and using an extrapolation argument we obtain some new and previously known ... We obtain appropriate sharp bounds on Triebel-Lizorkin spaces for rough oscillatory inte- grals with polynomial phase. By using these bounds and using an extrapolation argument we obtain some new and previously known results for oscillatory integrals under very weak size conditions on the kernel functions. 展开更多
关键词 Oscillatory singular integral rough kernel Orlicz spaces Block spaces EXTRAPOLATION Triebel-Lizorkin spaces
原文传递
Hardy type estimates for commutators of singular integrals 被引量:4
14
作者 SUN Yongzhong SU Weiyi 《Science China Mathematics》 SCIE 2005年第4期563-575,共13页
In this paper we study the Hardy type estimates for commutators Tb of standard Calder(o)n-Zygmund singular integral operators T with a Lipschitz function b. The corresponding results are also obtained on the commutato... In this paper we study the Hardy type estimates for commutators Tb of standard Calder(o)n-Zygmund singular integral operators T with a Lipschitz function b. The corresponding results are also obtained on the commutators Sb generated by b with singular integral operators S with variable kernels. 展开更多
关键词 Calder(o)n-Zygmund singular integrals commutators Lipschitz TYPE spaces hardy TYPE spaces singular integralS with variable kernels.
原文传递
Singular integral operators on product domains along twisted surfaces 被引量:1
15
作者 Ahmad AL-SALMAN 《Frontiers of Mathematics in China》 SCIE CSCD 2021年第1期13-28,共16页
We introduce a class of singular integral operators on product domains along twisted surfaces.We prove that the operators are bounded on L^(p) provided that the kernels satisfy weak conditions.
关键词 singular integral operators on product domains rough kernels L^(p)estimates hardy Littlewood maximal function truncated maximal singular integrals twisted surfaces block spaces
原文传递
Boundedness of Hyper-Singular Parametric Marcinkiewicz Integrals with Variable Kernels
16
作者 Qiquan Fang Xianliang Shi 《Applied Mathematics》 2013年第11期28-34,共7页
In this article, we consider the boundedness of? on Hardy type space? .
关键词 Hyper-singular MARCINKIEWICZ integral Variable kernel MULTILINEAR COMMUTATOR hardy Type space
下载PDF
Boundedness of Marcinkiewicz integral on Triebel-Lizorkin spaces 被引量:5
17
作者 ZHANG Chun-jie CHEN Jie-cheng 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2010年第1期48-54,共7页
In this paper, we prove the Triebel-Lizorkin boundedness for the Marcinkiewicz integral with rough kernel. The method we apply here enables us to consider more general operators.
关键词 Marcinkiewicz integral Triebel-Lizorkin spaces rough kernel singular integral.
下载PDF
A Discrete Singular Integral Operator(In Memory of Professor Long Ruilin) 被引量:1
18
作者 Fan Dashan (Department of Mathematical Sciences,University of Wisconsin-Milwaukee,Milwaukee,WI 53201,USA)(Email:fan@alpha1.csd.uwm.edu)Lu Shanzhen (Department of Mathematics,Beijing Normal University,Beijing 100875,China)(Email:lusz@sun.ihep.ac.cn)Pan Yibiao (Department of Mathematics and Statistics,University of Pittsburgh,Pittsburgh,PA 15260,USA)(Email:yibiao@tomato.math.pitt.edu) 《Acta Mathematica Sinica,English Series》 SCIE CSCD 1998年第2期235-244,共10页
Suppose that {α<sub>k</sub>}<sub>k</sub><sup>∞</sup>=-∞ is a Lacunary sequence of positive numbers satisfying infα<sub>k+1</sub>/α<sub>k</sub>=α】1 and... Suppose that {α<sub>k</sub>}<sub>k</sub><sup>∞</sup>=-∞ is a Lacunary sequence of positive numbers satisfying infα<sub>k+1</sub>/α<sub>k</sub>=α】1 and that Ω(y’)is a function in the Besov space B<sub>1</sub><sup>0,1</sup>(S<sup>n-1</sup>)where S<sup>n-1</sup> is the unit sphere on R<sup>n</sup>(n≥2).We prove that if ∫<sub>S<sup>n-1</sup></sub>Ω(y’)dσ(y’)=0 then the discrete singular integral operator T<sub>Ω</sub>f(x)=∫(S<sup>n-1</sup>)f(x-α<sub>k</sub>y’)Ω(y’)dσ(y’) and the associated maximal operator T<sub>Ω</sub>f(x)=∫<sub>S<sup>n-1</sup></sub>f(x-α<sub>k</sub>y’)Ω(y’)dσ(y’) are both bounded in the space L<sup>2</sup>(R<sup>n</sup>). The theorems in this paper improve a result by Duoandikoetxea and Rubio de Francia in the L<sup>2</sup> case. 展开更多
关键词 singular integral Besov space rough kernel
原文传递
Estimates of Some Integral Operators with Bounded Variable Kernels on the Hardy and Weak Hardy Spaces over R^n 被引量:3
19
作者 Hua WANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2016年第4期411-438,共28页
In this paper,we first introduce Lσ1-(log L)σ2 conditions satisfied by the variable kernelsΩ(x,z) for 0≤σ1≤1 and σ2≥0.Under these new smoothness conditions,we will prove the boundedness properties of singu... In this paper,we first introduce Lσ1-(log L)σ2 conditions satisfied by the variable kernelsΩ(x,z) for 0≤σ1≤1 and σ2≥0.Under these new smoothness conditions,we will prove the boundedness properties of singular integral operators TΩ,fractional integrals TΩ,α and parametric Marcinkiewicz integrals μΩρ with variable kernels on the Hardy spaces Hp(Rn) and weak Hardy spaces WHP(Rn).Moreover,by using the interpolation arguments,we can get some corresponding results for the above integral operators with variable kernels on Hardy-Lorentz spaces Hp,q(Rn) for all p 〈 q 〈 ∞. 展开更多
关键词 singular integral operators fractional integrals parametric Marcinkiewicz integrals variable kernels hardy spaces H^p(R^n) weak hardy spaces WH^p(R^n) hardy-Lorentz spaces Hp q(Rn)
原文传递
Commutators of Marcinkiewicz Integral with Rough Kernels on Sobolev Spaces
20
作者 Yan Ping CHEN Yong DING Xin Xia WANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第7期1345-1366,共22页
In this paper, the authors give the boundedness of the commutator [b,μΩ,γ] from the homogeneous Sobolev space LP(R^n) to the Lebesgue space L^p(R^n) for 1 〈 p 〈 ∞, where μΩ,γ denotes the Marcinkiewicz int... In this paper, the authors give the boundedness of the commutator [b,μΩ,γ] from the homogeneous Sobolev space LP(R^n) to the Lebesgue space L^p(R^n) for 1 〈 p 〈 ∞, where μΩ,γ denotes the Marcinkiewicz integral with rough hypersingular kernel defined by μΩ,γf(x)=(∫0^∞|∫|x-y|≤tΩ(x-y)/|x-y|^n-1f(y)dy|^2dt/t^3+2γ)^1/2,with Ω∈L^1(S^n-1)for 0〈γ〈min(n/2,n/p)or Ω∈L(log+L)^β(S^n-1)for|1-2/p|〈β〈1(0〈γ〈n/2),respectively. 展开更多
关键词 Marcinkiewicz integral COMMUTATOR rough kernel sobolev space Bony paraproduct
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部