期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Planning and construction of Xiong’an New Area(city of over 5 million people):Contributions of China’s geologists and urban geology
1
作者 Bo Han Zhen Ma +9 位作者 Liang-jun Lin Hong-wei Liu Yi-hang Gao Yu-bo Xia Hai-tao Li Xu Guo Feng Ma Yu-shan Wang Ya-long Zhou Hong-qiang Li 《China Geology》 CAS CSCD 2024年第3期382-408,共27页
China established Xiong’an New Area in Hebei Province in 2017,which is planned to accommodate about 5 million people,aiming to relieve Beijing City of the functions non-essential to its role as China’s capital and t... China established Xiong’an New Area in Hebei Province in 2017,which is planned to accommodate about 5 million people,aiming to relieve Beijing City of the functions non-essential to its role as China’s capital and to expedite the coordinated development of the Beijing-Tianjin-Hebei region.From 2017 to 2021,the China Geological Survey(CGS)took the lead in multi-factor urban geological surveys involving space,resources,environments,and disasters according to the general requirements of“global vision,international standards,distinctive Chinese features,and future-oriented goals”in Xiong’an New Area,identifying the engineering geologic conditions and geologic environmental challenges of this area.The achievements also include a 3D engineering geological structure model for the whole area,along with“one city proper and five clusters”,insights into the ecology and the background endowment of natural resources like land,geothermal resources,groundwater,and wetland of the area before engineering construction,a comprehensive monitoring network of resources and environments in the area,and the“Transparent Xiong’an”geological information platform that is open,shared,dynamically updated,and three-dimensionally visualized.China’s geologists and urban geology have played a significant role in the urban planning and construction of Xiong’an New Area,providing whole-process geological solutions for urban planning,construction,operation and management.The future urban construction of Xiong’an New Area will necessitate the theoretical and technical support of earth system science(ESS)from various aspects,and the purpose is to enhance the resilience of the new type of city and to provide support for the green,low-carbon,and sustainable development of this area. 展开更多
关键词 Low Carbon New City Planning and construction Land Geothermal resources Groundwater Wetland Underground space Geologic disasters site stability Natural resource Ecosystem Geological safety Transparent Xiong’an Resilient city Xiong’an New Area
下载PDF
Full scale amendment of a contaminated wood impregnation site with iron water treatment residues 被引量:1
2
作者 Sanne Skov NIELSEN Peter KJELDSEN Rasmus JAKOBSEN 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2016年第4期169-178,共10页
Iron water treatment residues (Fe-WTR) are a free by-product of the treatment of drinking water with high concentration of iron oxides and potential for arsenic sorption. This paper aims at applying Fe- WTR to a con... Iron water treatment residues (Fe-WTR) are a free by-product of the treatment of drinking water with high concentration of iron oxides and potential for arsenic sorption. This paper aims at applying Fe- WTR to a contaminated site, measuring the reduction in contaminant leaching, and discussing the design of delivery and mixing strategy for soil stabilization at field scale and present a cost-effective method of soil mixing by connnon contractor machinery. Soil contaminated by As, Cr, and Cu at an abandoned wood impregnation site was amended with 0.22% (dw) Fe-WTR. To evaluate the full scale amendment a 100 mtest site and a control site (without amendment) were monitored for 14 months. Also soil analysis of Fe to evaluate the degree of soil and Fe-WTR mixing was done. Stabilization with Fe-WTR had a significant effect on leachable contaminants, reducing pore water As by 93%, Cu by 91% and Cr by 95% in the upper samplers. Dosage and mixing of Fe-WTR in the soil proved to be difficult in the deeper part of the field, and Pire water concentrations of arsenic was generally higher.Despite water logged conditions no increase in dissolved iron or arsenic was observed in the amended soil. Our field scale amendment of contaminated soil was overall successful in decreasing leaching of As, Cr and Cu. With minor improvements in the mixing and delivery strategy, this stabilization method is suggested for use in cases, where leaching ofCu, Cr and As constitutes a risk for groundwater and freshwater. 展开更多
关键词 Field experiment Iron oxide Arsenic Stabilization Wood preservation sites
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部