In this paper we study the extraordinary optical transmission of one-dimensional multi-slits in an ideal metal film.The transmissivity is calculated as a function of various structural parameters.The transmissivity os...In this paper we study the extraordinary optical transmission of one-dimensional multi-slits in an ideal metal film.The transmissivity is calculated as a function of various structural parameters.The transmissivity oscillates,with the period being just the light wavelength,as a function of the spacing between slits.As the number of slits increases,the transmissivity varies in one of three ways.It can increase,attenuate,or remain basically unchanged,depending on the spacing between slits.Each way is in an oscillatory manner.The slit interaction responsible for the oscillating transmission strength that depends on slit spacing is the subject of more detailed investigation.The interaction most intuitively manifests as a current distribution in the metal surface between slits.We find that this current is attenuated in an oscillating fashion from the slit corners to the center of the region between two adjacent slits,and we present a mathematical expression for its waveform.展开更多
The transmission characteristics of a metallic film with subwavelength periodic slits are investigated by using the two-dimensional finite-difference time-domain method (2D-FDTD). Two models are constructed to show ...The transmission characteristics of a metallic film with subwavelength periodic slits are investigated by using the two-dimensional finite-difference time-domain method (2D-FDTD). Two models are constructed to show the dependance of the transmission spectrum on the slit structure. A sandwiched structure is used to exhibit the contribution of the metallic wall inside slits to the extraordinary high transmission. And a filled slit structure is employed to reflect the relation between the average refractive index inside the slits and the transmission spectrum of the structure. The transmission characteristics of two structures can be explained well with the waveguide resonance theory.展开更多
In this paper, we discuss the influence of ratio of minor to major axis on the propagation property and focusing performance of a plasmonic lens with variant periodic concentric elliptical slits illuminating under a G...In this paper, we discuss the influence of ratio of minor to major axis on the propagation property and focusing performance of a plasmonic lens with variant periodic concentric elliptical slits illuminating under a Gaussian beam. In order to analyse the influence theoretically, a finite-difference time-domain (FDTD) numerical algorithm is adopted for the computational numerical calculation and the design of the plasmonic structure. The structure is flanked with penetrated slits through a 200-nm metal film (Au) which is coated on a quartz substrate. Tunability of focusing capability of the plasmonic lenses is studied by tailoring the ratio. Our calculation results demonstrate that the ratio of the elliptical slits greatly affects the focusing capability of the lense. The plasmonic lenses with concentric elliptical slits illuminating under a Gaussian beam have ultra-elongated depth of focus. These results are very encouraging for the future study of the plasmonic lens-based applications.展开更多
A novel plasmonic structure consisting of three nano-scaled slits coupled by nano-disk-shaped nanocavities is pro- posed to produce subwavelength focusing and beam bending at optical frequencies. The incident light pa...A novel plasmonic structure consisting of three nano-scaled slits coupled by nano-disk-shaped nanocavities is pro- posed to produce subwavelength focusing and beam bending at optical frequencies. The incident light passes through the metal slits in the form of surface plasmon polaritons (SPPs) ,and then scatters into radiation fields. Numerical simulations using finite-difference time-domain (FDTD) method show that the transmitted fields through the design example can gener- ate light focusing and deflection by altering the refractive index of the coupled nanocavity. The simulation results indicate that the focal spot is beyond the diffraction limit. Light impinges on the surface at an angle to the optical axis will add an extra planar phase front that interferes with the asymmetric phase front of the plasmonic lens, leading to a larger bending angle off the axial direction. The advantages of the proposed plasmonic lens are smaller device size and ease of fabrication. Such geometries offer the potential to be controlled by using nano-positior!i0g systems for applications in dynamic beam shaping and scanning on the nanoscale.展开更多
The influence of the selection of receiving slits and the use of standard samples with random orientation on the result of quantitative texture analysis was tested and discussed. The result proves that it will improve...The influence of the selection of receiving slits and the use of standard samples with random orientation on the result of quantitative texture analysis was tested and discussed. The result proves that it will improve the precision of the analysis to use proper slits and a randomly oriented standard sample. A simple method was given to interpolate the correction curves of random intensities.展开更多
Shale oil formations contain both inorganic and organic media.The organic matter holds both free oil in the pores and dissolved oil within the kerogen molecules.The free oil flow in organic pores and the dissolved oil...Shale oil formations contain both inorganic and organic media.The organic matter holds both free oil in the pores and dissolved oil within the kerogen molecules.The free oil flow in organic pores and the dissolved oil diffusion in kerogen molecules are coupled together.The molecular flow of free n-alkanes is an important process of shale oil accumulation and production.To study the dynamics of imbibition process of n-alkane molecules into kerogen slits,molecular dynamics(MD)simulations are conducted.Effects of slit width,temperature,and n-alkane types on the penetration speed,dynamic contact angle,and molecular conformations were analyzed.Results showed that molecular transportation of n-alkanes is dominated by molecular structure and molecular motion at this scale.The space-confinement conformational changes of molecules slow down the filling speeds in the narrow slits.The n-alkane molecules with long carbon chains require more time to undergo conformational changes.The high content of short-chain alkanes and high temperature facilitate the flow of alkane mixtures in kerogen slits.Results obtained from this study are useful for understanding the underlying nanoscale flow mechanism in shale formations.展开更多
This study proposes a novel mild steel damper with non-uniform vertical slits. The influence of different shapes of vertical slits of the core energy plate on the energy dissipation and buckling resistance capacities ...This study proposes a novel mild steel damper with non-uniform vertical slits. The influence of different shapes of vertical slits of the core energy plate on the energy dissipation and buckling resistance capacities is analyzed. Based on the theoretical analysis, formulas of key parameters of the dampers, including the elastic lateral stiffness, shear bearing capacity and yield displacement, are derived. The effectiveness of the proposed damper is demonstrated through pseudo static tests on four 0.25-scale specimens. Performance of these dampers, i.e. cyclic deformation, stress distribution, energy dissipation capacity, etc., are presented and discussed. Using the numerical models of dampers calibrated through test data, earthquake time-history analyses were conducted, and it is observed that the dampers significantly reduce the seismic responses of the prototype frame and have a desirable energy dissipation capacity.展开更多
This study investigated numerically the characteristics of laminar flow around two identical circular cylinders placed in tandem, with slits of the same width through their respective axis. The center to center distan...This study investigated numerically the characteristics of laminar flow around two identical circular cylinders placed in tandem, with slits of the same width through their respective axis. The center to center distance between the cylinders and the slit orientation were varied to study their effects on the flow structure, lift and drag, and vortex shedding characteristics. It was found that three flow regimes could be distinguished, the transitions between which could be indicated by the sudden changes in drag and lift. Asymmetrically, configured slits destabilized the stagnant region between cylinders;whereas in-line slits connect the two cylinders to act as a single elongated bluff body, even at large cylinder separation, by stabilizing the stagnant region in between. These in turn strongly modified the transition between flow regimes. Vortex shedding was also strongly influenced by both slit configuration and cylinder separation.展开更多
In the framework of phenomenological time-dependent Ginzburg-Landau(TDGL) formalism,the dynamical properties of vortex-antivortex(V-Av) pair in a superconductor film with a narrow slit was studied.The slit positio...In the framework of phenomenological time-dependent Ginzburg-Landau(TDGL) formalism,the dynamical properties of vortex-antivortex(V-Av) pair in a superconductor film with a narrow slit was studied.The slit position and length can have a great impact not only on the vortex dynamical behavior but also the current-voltage(Ⅰ-Ⅴ) characteristics of the sample.Kinematic vortex lines can be predominated by the location of the slit.In the range of relatively low applied currents for a constant weak magnetic field,kinematic vortex line appears at right or left side of the slit by turns periodically.We found such single-side kinematic vortex line cannot lead to a jump in the Ⅰ-Ⅴ curve.At higher applied currents the phase-slip lines can be observed at left and right sides of the slit simultaneously.The competition between the vortex created at the lateral edge of the sample and the V-Av pair in the slit will result in three distinctly different scenarios of vortex dynamics depending on slit length:the lateral vortex penetrates the sample to annihilate the antivortex in the slit;the V-Av pair in the slit are driven off and expelled laterally;both the lateral vortex and the slit antivortex are depinned and driven together to annihilation in the halfway.展开更多
Vortex beams with fractional topological charge(FTC) have many special characteristics and novel applications.However, one of the obstacles for their application is the difficulty of precisely determining the FTC of f...Vortex beams with fractional topological charge(FTC) have many special characteristics and novel applications.However, one of the obstacles for their application is the difficulty of precisely determining the FTC of fractional vortex beams. We find that when a vortex beam with an FTC illuminates a dynamic angular double slit(ADS), the far-field interference patterns that include the information of the FTC of the beam at the angular bisector direction of the ADS vary periodically. Based on this property, a simple dynamic ADS device and data fitting method can be used to precisely measure the FTC of a vortex light beam with an error of less than 5%.展开更多
The fast and convenient demultiplex of optical vortex(OV) mode is crucial for its further application. We propose a novel approach that combines classic Young's doublet with an OV source to effectively identify th...The fast and convenient demultiplex of optical vortex(OV) mode is crucial for its further application. We propose a novel approach that combines classic Young's doublet with an OV source to effectively identify the OV mode through the analysis of interference patterns. The interference patterns of the OV source incident on the double slits can be perfectly illustrated by using both the classical double-slit interference method and the Huygens–Fresnel principle. The interference fringes will twist along the negative or positive direction of x axis when topological charge(TC)l>0 or l<0, and the degree of the movement varies with the TC, allowing for a quantitative display of the OV characteristics through the interference patterns. Additionally, we deduce analytically that the zeroth-order interference fringe has a linear relationship with the TC and the vertical position. These findings highlight the ability to identify the OV mode by analyzing the interference patterns produced by Young's doublet.展开更多
It is acknowledged that injecting CO_(2) into oil reservoirs and saline aquifers for storage is a practical and affordable method for CO_(2) sequestration.Most CO_(2) produced from industrial exhaust contains impurity...It is acknowledged that injecting CO_(2) into oil reservoirs and saline aquifers for storage is a practical and affordable method for CO_(2) sequestration.Most CO_(2) produced from industrial exhaust contains impurity gases such as H_(2)S that might impact CO_(2) sequestration due to competitive adsorption.This study makes a commendable effort to explore the adsorption behavior of CO_(2)/H_(2)S mixtures in calcite slit nanopores.Grand Canonical Monte Carlo(GCMC)simulation is employed to reveal the adsorption of CO_(2),H_(2)S as well as their binary mixtures in calcite nanopores.Results show that the increase in pressure and temperature can promote and inhibit the adsorption capacity of CO_(2) and H_(2)S in calcite nanopores,respectively.CO_(2)exhibits stronger adsorption on calcite surface than H_(2)S.Electrostatic energy plays the dominating role in the adsorption behavior.Electrostatic energy accounts for 97.11%of the CO_(2)-calcite interaction energy and 56.33%of the H_(2)S-calcite interaction energy at 10 MPa and 323.15 K.The presence of H_(2)S inhibits the CO_(2) adsorption in calcite nanopores due to competitive adsorption,and a higher mole fraction of H_(2)S leads to less CO_(2) adsorption.The quantity of CO_(2) adsorbed is lessened by approximately 33%when the mole fraction of H_(2)S reaches 0.25.CO_(2) molecules preferentially occupy the regions near the po re wall and H_(2)S molecules tend to reside at the center of nanopore even when the molar ratio of CO_(2) is low,indicating that CO_(2) has an adsorption priority on the calcite surface over H_(2)S.In addition,moisture can weaken the adsorption of both CO_(2) and H_(2)S,while CO_(2) is more affected.More interestingly,we find that pure CO_(2) is more suitable to be sequestrated in the shallower formations,i.e.,500-1500 m,whereas CO_(2)with H_(2)S impurity should be settled in the deeper reservoirs.展开更多
We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. S...We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. Several properties such as concave single slit pattern and large influence of slight displacement of the emission position were different from the experimental results. In this study we tried other slit conditions and obtained consistent patterns with experiments. We do not claim that the adaptive dynamics is the principle of quantum mechanics, but the present results support the probability of adaptive dynamics as the candidate of the basis of quantum mechanics. We discuss the advantages of the adaptive dynamical view for foundations of quantum mechanics.展开更多
The electromagnetic scattering, leaking and coupling from a cylinder with an infinite axial slit have been investigated by many authors. However, they have not obtained strict closed form solutions. Almost all of the...The electromagnetic scattering, leaking and coupling from a cylinder with an infinite axial slit have been investigated by many authors. However, they have not obtained strict closed form solutions. Almost all of the papers only reported the method for the simplest problems. For slight complicated problems, such as the scattering, leaking or coupling from a cylinder with infinite axial slits or with arbitrary width of axial slits, the former authors have only discussed formally or even not discussed because their methods were inconvenient. In addition, the problems of the EM scattering, leaking or coupling from an elliptic cylinder with infinite axial slits, which can be used wildly in practice based on its easily variable shape, have not be solved. It is imaginable that to solve these problems is more difficult, because many authors were unfamiliar with Mathieu Functions. Meanwhile we have not had a completed Mathieu Function system as the study for Mathieu Function have been processing aiming to establish a completed system just like Bessel Function system. However, if people make use of some method and technique as well as the knowledge of Bessel Functions, the problem can be studied. In this theory, the author has studied strictly the electromagnetic problems (scattering, leaking and coupling) of an elliptic cylinder as well as a cylinder with infinite axial slits, and obtained strict closed form solutions. The train of thought is: (1) elliptic Cylinder by using separation of variables in elliptic coordinates to find the field expressions in each domain, matching them on boundary to obtain a dual series equation system, then letting the convenient auxiliary functions to change the dual series equation system to integral equations, making use of WKBJ Method to draw the singular kernel from the integral equations, we finally obtain a singular integral equations to be able to be solved by the theory of singular integral equation. (2) cylinder by using separation of variables method in cylinder coordinates to find the field expressions in each domain and matching them on the boundary, we can obtain a dual series equations system, then letting auxiliary functions to change the dual series equations to integral equations. The singular integral equation can be obtained utilizing asymptotic representation of Bessel or Hankle Function. Then the strict closed form solutions can be obtained.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11074145,10874124,and 61275028)
文摘In this paper we study the extraordinary optical transmission of one-dimensional multi-slits in an ideal metal film.The transmissivity is calculated as a function of various structural parameters.The transmissivity oscillates,with the period being just the light wavelength,as a function of the spacing between slits.As the number of slits increases,the transmissivity varies in one of three ways.It can increase,attenuate,or remain basically unchanged,depending on the spacing between slits.Each way is in an oscillatory manner.The slit interaction responsible for the oscillating transmission strength that depends on slit spacing is the subject of more detailed investigation.The interaction most intuitively manifests as a current distribution in the metal surface between slits.We find that this current is attenuated in an oscillating fashion from the slit corners to the center of the region between two adjacent slits,and we present a mathematical expression for its waveform.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10604042 and 10674038) and National Basic Research Program of China (Grant No 2006CB302901).
文摘The transmission characteristics of a metallic film with subwavelength periodic slits are investigated by using the two-dimensional finite-difference time-domain method (2D-FDTD). Two models are constructed to show the dependance of the transmission spectrum on the slit structure. A sandwiched structure is used to exhibit the contribution of the metallic wall inside slits to the extraordinary high transmission. And a filled slit structure is employed to reflect the relation between the average refractive index inside the slits and the transmission spectrum of the structure. The transmission characteristics of two structures can be explained well with the waveguide resonance theory.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11079014 and 61077010)
文摘In this paper, we discuss the influence of ratio of minor to major axis on the propagation property and focusing performance of a plasmonic lens with variant periodic concentric elliptical slits illuminating under a Gaussian beam. In order to analyse the influence theoretically, a finite-difference time-domain (FDTD) numerical algorithm is adopted for the computational numerical calculation and the design of the plasmonic structure. The structure is flanked with penetrated slits through a 200-nm metal film (Au) which is coated on a quartz substrate. Tunability of focusing capability of the plasmonic lenses is studied by tailoring the ratio. Our calculation results demonstrate that the ratio of the elliptical slits greatly affects the focusing capability of the lense. The plasmonic lenses with concentric elliptical slits illuminating under a Gaussian beam have ultra-elongated depth of focus. These results are very encouraging for the future study of the plasmonic lens-based applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.61203211)the Natural Science Foundation of Jiangsu Higher Education Institutions of China(Grant No.13KJB140006)the Foundation for Outstanding Young Teachers of Nanjing University of Information Science&Technology,China(Grant No.20110423)
文摘A novel plasmonic structure consisting of three nano-scaled slits coupled by nano-disk-shaped nanocavities is pro- posed to produce subwavelength focusing and beam bending at optical frequencies. The incident light passes through the metal slits in the form of surface plasmon polaritons (SPPs) ,and then scatters into radiation fields. Numerical simulations using finite-difference time-domain (FDTD) method show that the transmitted fields through the design example can gener- ate light focusing and deflection by altering the refractive index of the coupled nanocavity. The simulation results indicate that the focal spot is beyond the diffraction limit. Light impinges on the surface at an angle to the optical axis will add an extra planar phase front that interferes with the asymmetric phase front of the plasmonic lens, leading to a larger bending angle off the axial direction. The advantages of the proposed plasmonic lens are smaller device size and ease of fabrication. Such geometries offer the potential to be controlled by using nano-positior!i0g systems for applications in dynamic beam shaping and scanning on the nanoscale.
文摘The influence of the selection of receiving slits and the use of standard samples with random orientation on the result of quantitative texture analysis was tested and discussed. The result proves that it will improve the precision of the analysis to use proper slits and a randomly oriented standard sample. A simple method was given to interpolate the correction curves of random intensities.
基金financially supported by the National Natural Science Foundation of China(Grant No.52004317,42090024)the Natural Science Foundation of Shandong Province of China(No.ZR2020ME091)+1 种基金the Fundamental Research Funds for the Central Universities(20CX06016A)the National Science and Technology Major Project(2017ZX05049-004)
文摘Shale oil formations contain both inorganic and organic media.The organic matter holds both free oil in the pores and dissolved oil within the kerogen molecules.The free oil flow in organic pores and the dissolved oil diffusion in kerogen molecules are coupled together.The molecular flow of free n-alkanes is an important process of shale oil accumulation and production.To study the dynamics of imbibition process of n-alkane molecules into kerogen slits,molecular dynamics(MD)simulations are conducted.Effects of slit width,temperature,and n-alkane types on the penetration speed,dynamic contact angle,and molecular conformations were analyzed.Results showed that molecular transportation of n-alkanes is dominated by molecular structure and molecular motion at this scale.The space-confinement conformational changes of molecules slow down the filling speeds in the narrow slits.The n-alkane molecules with long carbon chains require more time to undergo conformational changes.The high content of short-chain alkanes and high temperature facilitate the flow of alkane mixtures in kerogen slits.Results obtained from this study are useful for understanding the underlying nanoscale flow mechanism in shale formations.
基金Natural Science Foundation of China under Grant No.51278104
文摘This study proposes a novel mild steel damper with non-uniform vertical slits. The influence of different shapes of vertical slits of the core energy plate on the energy dissipation and buckling resistance capacities is analyzed. Based on the theoretical analysis, formulas of key parameters of the dampers, including the elastic lateral stiffness, shear bearing capacity and yield displacement, are derived. The effectiveness of the proposed damper is demonstrated through pseudo static tests on four 0.25-scale specimens. Performance of these dampers, i.e. cyclic deformation, stress distribution, energy dissipation capacity, etc., are presented and discussed. Using the numerical models of dampers calibrated through test data, earthquake time-history analyses were conducted, and it is observed that the dampers significantly reduce the seismic responses of the prototype frame and have a desirable energy dissipation capacity.
基金Project(51576213) supported by the National Natural Science Foundation of ChinaProject(2017JJ1031) supported by Hunan Provincial Natural Science Foundation of China+1 种基金Project(CSUZC201921) supported by the Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University,ChinaProject(2019zzts536) supported by the Fundamental Research Funds for the Central Universities,China
文摘This study investigated numerically the characteristics of laminar flow around two identical circular cylinders placed in tandem, with slits of the same width through their respective axis. The center to center distance between the cylinders and the slit orientation were varied to study their effects on the flow structure, lift and drag, and vortex shedding characteristics. It was found that three flow regimes could be distinguished, the transitions between which could be indicated by the sudden changes in drag and lift. Asymmetrically, configured slits destabilized the stagnant region between cylinders;whereas in-line slits connect the two cylinders to act as a single elongated bluff body, even at large cylinder separation, by stabilizing the stagnant region in between. These in turn strongly modified the transition between flow regimes. Vortex shedding was also strongly influenced by both slit configuration and cylinder separation.
基金Project supported by the Fundamental Research Funds for the Central Universities,China(Grant Nos.310812171011 and G2016KY0305)the National Natural Science Foundation of China(Grant No.11421062)the National Key Project of Magneto-Constrained Fusion Energy Development Program,China(Grant No.2013GB110002)
文摘In the framework of phenomenological time-dependent Ginzburg-Landau(TDGL) formalism,the dynamical properties of vortex-antivortex(V-Av) pair in a superconductor film with a narrow slit was studied.The slit position and length can have a great impact not only on the vortex dynamical behavior but also the current-voltage(Ⅰ-Ⅴ) characteristics of the sample.Kinematic vortex lines can be predominated by the location of the slit.In the range of relatively low applied currents for a constant weak magnetic field,kinematic vortex line appears at right or left side of the slit by turns periodically.We found such single-side kinematic vortex line cannot lead to a jump in the Ⅰ-Ⅴ curve.At higher applied currents the phase-slip lines can be observed at left and right sides of the slit simultaneously.The competition between the vortex created at the lateral edge of the sample and the V-Av pair in the slit will result in three distinctly different scenarios of vortex dynamics depending on slit length:the lateral vortex penetrates the sample to annihilate the antivortex in the slit;the V-Av pair in the slit are driven off and expelled laterally;both the lateral vortex and the slit antivortex are depinned and driven together to annihilation in the halfway.
基金Fundamental Research Funds for the Central UniversitiesNational Natural Science Foundation of China(NSFC)(11374008,11374238,11374239,11534008)
文摘Vortex beams with fractional topological charge(FTC) have many special characteristics and novel applications.However, one of the obstacles for their application is the difficulty of precisely determining the FTC of fractional vortex beams. We find that when a vortex beam with an FTC illuminates a dynamic angular double slit(ADS), the far-field interference patterns that include the information of the FTC of the beam at the angular bisector direction of the ADS vary periodically. Based on this property, a simple dynamic ADS device and data fitting method can be used to precisely measure the FTC of a vortex light beam with an error of less than 5%.
基金Project supported by the National Key Research and Development Program of China (Grant Nos.2020YFA0710100 and 2023YFA1407100)the National Natural Science Foundation of China (Grant Nos.92050102 and 12374410)+2 种基金the Jiangxi Provincial Natural Science Foundation (Grant No.20224ACB201005)the Fundamental Research Funds for the Central Universities (Grant Nos.20720230102 and 20720220033)China Scholarship Council (Grant No.202206310009)。
文摘The fast and convenient demultiplex of optical vortex(OV) mode is crucial for its further application. We propose a novel approach that combines classic Young's doublet with an OV source to effectively identify the OV mode through the analysis of interference patterns. The interference patterns of the OV source incident on the double slits can be perfectly illustrated by using both the classical double-slit interference method and the Huygens–Fresnel principle. The interference fringes will twist along the negative or positive direction of x axis when topological charge(TC)l>0 or l<0, and the degree of the movement varies with the TC, allowing for a quantitative display of the OV characteristics through the interference patterns. Additionally, we deduce analytically that the zeroth-order interference fringe has a linear relationship with the TC and the vertical position. These findings highlight the ability to identify the OV mode by analyzing the interference patterns produced by Young's doublet.
基金financial support from the National Natural Science Foundation of China (Grant No.52004320)the Science Foundation of China University of Petroleum,Beijing (No.2462021QNXZ012,No.2462022BJRC001,and No.2462021YJRC012)the funding from the State Key Laboratory of Petroleum Resources and Engineering (No.PRP/indep-1-2103)。
文摘It is acknowledged that injecting CO_(2) into oil reservoirs and saline aquifers for storage is a practical and affordable method for CO_(2) sequestration.Most CO_(2) produced from industrial exhaust contains impurity gases such as H_(2)S that might impact CO_(2) sequestration due to competitive adsorption.This study makes a commendable effort to explore the adsorption behavior of CO_(2)/H_(2)S mixtures in calcite slit nanopores.Grand Canonical Monte Carlo(GCMC)simulation is employed to reveal the adsorption of CO_(2),H_(2)S as well as their binary mixtures in calcite nanopores.Results show that the increase in pressure and temperature can promote and inhibit the adsorption capacity of CO_(2) and H_(2)S in calcite nanopores,respectively.CO_(2)exhibits stronger adsorption on calcite surface than H_(2)S.Electrostatic energy plays the dominating role in the adsorption behavior.Electrostatic energy accounts for 97.11%of the CO_(2)-calcite interaction energy and 56.33%of the H_(2)S-calcite interaction energy at 10 MPa and 323.15 K.The presence of H_(2)S inhibits the CO_(2) adsorption in calcite nanopores due to competitive adsorption,and a higher mole fraction of H_(2)S leads to less CO_(2) adsorption.The quantity of CO_(2) adsorbed is lessened by approximately 33%when the mole fraction of H_(2)S reaches 0.25.CO_(2) molecules preferentially occupy the regions near the po re wall and H_(2)S molecules tend to reside at the center of nanopore even when the molar ratio of CO_(2) is low,indicating that CO_(2) has an adsorption priority on the calcite surface over H_(2)S.In addition,moisture can weaken the adsorption of both CO_(2) and H_(2)S,while CO_(2) is more affected.More interestingly,we find that pure CO_(2) is more suitable to be sequestrated in the shallower formations,i.e.,500-1500 m,whereas CO_(2)with H_(2)S impurity should be settled in the deeper reservoirs.
文摘We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. Several properties such as concave single slit pattern and large influence of slight displacement of the emission position were different from the experimental results. In this study we tried other slit conditions and obtained consistent patterns with experiments. We do not claim that the adaptive dynamics is the principle of quantum mechanics, but the present results support the probability of adaptive dynamics as the candidate of the basis of quantum mechanics. We discuss the advantages of the adaptive dynamical view for foundations of quantum mechanics.
文摘The electromagnetic scattering, leaking and coupling from a cylinder with an infinite axial slit have been investigated by many authors. However, they have not obtained strict closed form solutions. Almost all of the papers only reported the method for the simplest problems. For slight complicated problems, such as the scattering, leaking or coupling from a cylinder with infinite axial slits or with arbitrary width of axial slits, the former authors have only discussed formally or even not discussed because their methods were inconvenient. In addition, the problems of the EM scattering, leaking or coupling from an elliptic cylinder with infinite axial slits, which can be used wildly in practice based on its easily variable shape, have not be solved. It is imaginable that to solve these problems is more difficult, because many authors were unfamiliar with Mathieu Functions. Meanwhile we have not had a completed Mathieu Function system as the study for Mathieu Function have been processing aiming to establish a completed system just like Bessel Function system. However, if people make use of some method and technique as well as the knowledge of Bessel Functions, the problem can be studied. In this theory, the author has studied strictly the electromagnetic problems (scattering, leaking and coupling) of an elliptic cylinder as well as a cylinder with infinite axial slits, and obtained strict closed form solutions. The train of thought is: (1) elliptic Cylinder by using separation of variables in elliptic coordinates to find the field expressions in each domain, matching them on boundary to obtain a dual series equation system, then letting the convenient auxiliary functions to change the dual series equation system to integral equations, making use of WKBJ Method to draw the singular kernel from the integral equations, we finally obtain a singular integral equations to be able to be solved by the theory of singular integral equation. (2) cylinder by using separation of variables method in cylinder coordinates to find the field expressions in each domain and matching them on the boundary, we can obtain a dual series equations system, then letting auxiliary functions to change the dual series equations to integral equations. The singular integral equation can be obtained utilizing asymptotic representation of Bessel or Hankle Function. Then the strict closed form solutions can be obtained.