Resource recycling from waste-water and sludge is an important part of the 14th Five-Year Plan in China.The emerging titanium-based coagulants have drawn growing attentions due to their strong coagulation capability i...Resource recycling from waste-water and sludge is an important part of the 14th Five-Year Plan in China.The emerging titanium-based coagulants have drawn growing attentions due to their strong coagulation capability in water purification and value-added Ti-loaded sludge production.Management and recovery of the high value-added sludge into functional nanomaterials is highly significant for both sludge reduction and environmental remediation.The present study was carried out to investigate the recycle of the coagulated Ti-loaded sludge to produce functional C/TiO_(2)composites as the anode materials for lithium-ion batteries(LIBs).It is the first time that the application of the Ti-loaded wastewater sludge derived C/TiO_(2)was evaluated for LIBs.The experimental results showed that the carbon coating through in-situ carbonization of the sludge produced the C/TiO_(2)composites with a high specific surface area,stable structural integrity,and excellent electrochemical properties that would facilitate Li+diffusion in long-term LIBs usage.The C/TiO_(2)composites calcinated from the polytitanium sulfate-coagulated sludge at 800℃(N_(2))exhibited the best electrochemical performance during the cycling tests(601 m Ah/g at 100 m A/g after 200 cycles).The research work demonstrates the promising prospect of the recycle and value-added utilization of the Ti-loaded sludge in the production of high-performance C/TiO_(2)composites for energy storage applications.This study provides a new way for the management and reuse of Ti-loaded waste-sludge.展开更多
Microwave(MW) hybrid processes are able to disrupt the flocculent structure of complex waste activated sludge,and help promote the recovery of phosphorus as struvite.In this study,to optimize struvite yield,(1) th...Microwave(MW) hybrid processes are able to disrupt the flocculent structure of complex waste activated sludge,and help promote the recovery of phosphorus as struvite.In this study,to optimize struvite yield,(1) the characteristics of matter released in MW-hybrid treatments were compared,including MW,MW-acid,MW-alkali,MW-H2O2,and MW-H2O2- alkali.The results showed that selective release of carbon,nitrogen,phosphorus,Ca^2+,and Mg^2+ achieved by sludge pretreatment using MW-hybrid processes.MW-H2O2 is the recommended sludge pretreatment process for phosphorus recovery in the form of struvite.The ratio of Mg^2+:NH4^+-N:PO4^3--P was 1.2:2.9:1 in the supernatant.(2) To clarify the effects of organic matter on struvite recovery,the composition and molecular weight distribution of organic matters were analyzed.Low molecular weight COD was found to facilitate the removal rate of NH4^+-N and PO4^3-P via crystallization,and the amorphous struvite crystals(〈1 kDa) from the filtered solutions had high purity.Therefore,the present study reveals the necessity of taking into consideration the interference effect of high molecular weight organic matters during struvite crystallization from sewage sludge.展开更多
基金supported by grants from the Taishan Scholars Young Experts Program (No.tsqn202103080)The National Natural Science Foundation of China (No.51978311)+1 种基金the Project of Shandong Province Higher Educational Youth Innovation Science and Technology Program (No.2021KJ043)the Research Grants Council of the Hong Kong SAR Government (Nos.17210219 and T21-711/16-R)。
文摘Resource recycling from waste-water and sludge is an important part of the 14th Five-Year Plan in China.The emerging titanium-based coagulants have drawn growing attentions due to their strong coagulation capability in water purification and value-added Ti-loaded sludge production.Management and recovery of the high value-added sludge into functional nanomaterials is highly significant for both sludge reduction and environmental remediation.The present study was carried out to investigate the recycle of the coagulated Ti-loaded sludge to produce functional C/TiO_(2)composites as the anode materials for lithium-ion batteries(LIBs).It is the first time that the application of the Ti-loaded wastewater sludge derived C/TiO_(2)was evaluated for LIBs.The experimental results showed that the carbon coating through in-situ carbonization of the sludge produced the C/TiO_(2)composites with a high specific surface area,stable structural integrity,and excellent electrochemical properties that would facilitate Li+diffusion in long-term LIBs usage.The C/TiO_(2)composites calcinated from the polytitanium sulfate-coagulated sludge at 800℃(N_(2))exhibited the best electrochemical performance during the cycling tests(601 m Ah/g at 100 m A/g after 200 cycles).The research work demonstrates the promising prospect of the recycle and value-added utilization of the Ti-loaded sludge in the production of high-performance C/TiO_(2)composites for energy storage applications.This study provides a new way for the management and reuse of Ti-loaded waste-sludge.
基金financially supported by the Major Science and Technology Program for Water Pollution Control and Treatment of China (No. 2015ZX07203-005, 2012ZX07202-005)the National Natural Science Foundation of China (No. 51008297)
文摘Microwave(MW) hybrid processes are able to disrupt the flocculent structure of complex waste activated sludge,and help promote the recovery of phosphorus as struvite.In this study,to optimize struvite yield,(1) the characteristics of matter released in MW-hybrid treatments were compared,including MW,MW-acid,MW-alkali,MW-H2O2,and MW-H2O2- alkali.The results showed that selective release of carbon,nitrogen,phosphorus,Ca^2+,and Mg^2+ achieved by sludge pretreatment using MW-hybrid processes.MW-H2O2 is the recommended sludge pretreatment process for phosphorus recovery in the form of struvite.The ratio of Mg^2+:NH4^+-N:PO4^3--P was 1.2:2.9:1 in the supernatant.(2) To clarify the effects of organic matter on struvite recovery,the composition and molecular weight distribution of organic matters were analyzed.Low molecular weight COD was found to facilitate the removal rate of NH4^+-N and PO4^3-P via crystallization,and the amorphous struvite crystals(〈1 kDa) from the filtered solutions had high purity.Therefore,the present study reveals the necessity of taking into consideration the interference effect of high molecular weight organic matters during struvite crystallization from sewage sludge.