The effect of catalyst properties on residue oil hydroconversion was studied at moderate operating conditions(at a temperature of 400 ℃, an initial hydrogen pressure of 10 MPa, and a reaction time of 4 h) in a batch ...The effect of catalyst properties on residue oil hydroconversion was studied at moderate operating conditions(at a temperature of 400 ℃, an initial hydrogen pressure of 10 MPa, and a reaction time of 4 h) in a batch mode slurry phase with different catalyst samples. The results showed that the catalyst acidity had a good effect on residue conversion and MCR(micro carbon residue) conversion but brought about higher coke yield. Residue conversion was thermally induced but the catalyst acidity changed its conversion route. A catalyst with higher metal loading, higher hydrogenation activity and appropriate pore size had higher sulfur and metal removal rate, higher MCR conversion and also a lower coke formation. The activity of spent commercial catalyst AS1 and DS1 was slightly lower than the corresponding fresh ones but was still high enough for residue oil hydroconversion. It assumes that the role of the catalyst is to activate hydrogen species toward reaction with an aromatic carbon radical to yield a cyclohexadienyl type intermediate which will turn into liquid and also to absorb the mesophase which can easily aggregate to form coke.展开更多
The recent studies of direct alcohol/ether synthesis process in slurry reactors were reviewed,and the research work in our laboratory was carried out in this paper.a global kinetics model for direct dimethyl ether(DME...The recent studies of direct alcohol/ether synthesis process in slurry reactors were reviewed,and the research work in our laboratory was carried out in this paper.a global kinetics model for direct dimethyl ether(DME)synthesis from syngas over a novel Cu-Zn-Al-Zr slurry catalyst was established according to the total of 25 experimental data,and a steady-state one-dimensional mathematical model was further developed in bubble column slurry reactor(BCSR),which was assumed that the bubble phase was plug flow,and the liquid phase was fully mixed flow.The numerical simulations of reactor design of 100000 t/a dimethyl ether pilot plant indicate that higher pressure and lower temperature were favorable to the increase of CO conversion,selectivity of dimethyl ether,product yield and height of slurry bed.The optimal operating conditions for DME synthesis process were obtained:reaction temperature at 240℃,reactor pressure at 5 MPa and reactor diameter of 2.5 m.展开更多
文摘The effect of catalyst properties on residue oil hydroconversion was studied at moderate operating conditions(at a temperature of 400 ℃, an initial hydrogen pressure of 10 MPa, and a reaction time of 4 h) in a batch mode slurry phase with different catalyst samples. The results showed that the catalyst acidity had a good effect on residue conversion and MCR(micro carbon residue) conversion but brought about higher coke yield. Residue conversion was thermally induced but the catalyst acidity changed its conversion route. A catalyst with higher metal loading, higher hydrogenation activity and appropriate pore size had higher sulfur and metal removal rate, higher MCR conversion and also a lower coke formation. The activity of spent commercial catalyst AS1 and DS1 was slightly lower than the corresponding fresh ones but was still high enough for residue oil hydroconversion. It assumes that the role of the catalyst is to activate hydrogen species toward reaction with an aromatic carbon radical to yield a cyclohexadienyl type intermediate which will turn into liquid and also to absorb the mesophase which can easily aggregate to form coke.
基金supported by a grant from the Major State Basic Research Development Program of China(973 Program,No.2005CB221205).
文摘The recent studies of direct alcohol/ether synthesis process in slurry reactors were reviewed,and the research work in our laboratory was carried out in this paper.a global kinetics model for direct dimethyl ether(DME)synthesis from syngas over a novel Cu-Zn-Al-Zr slurry catalyst was established according to the total of 25 experimental data,and a steady-state one-dimensional mathematical model was further developed in bubble column slurry reactor(BCSR),which was assumed that the bubble phase was plug flow,and the liquid phase was fully mixed flow.The numerical simulations of reactor design of 100000 t/a dimethyl ether pilot plant indicate that higher pressure and lower temperature were favorable to the increase of CO conversion,selectivity of dimethyl ether,product yield and height of slurry bed.The optimal operating conditions for DME synthesis process were obtained:reaction temperature at 240℃,reactor pressure at 5 MPa and reactor diameter of 2.5 m.