Recent advances in functionally graded additive manufacturing(FGAM)technology have enabled the seamless hybridization of multiple functionalities in a single structure.Soft robotics can become one of the largest benef...Recent advances in functionally graded additive manufacturing(FGAM)technology have enabled the seamless hybridization of multiple functionalities in a single structure.Soft robotics can become one of the largest beneficiaries of these advances,through the design of a facile four-dimensional(4D)FGAM process that can grant an intelligent stimuli-responsive mechanical functionality to the printed objects.Herein,we present a simple binder jetting approach for the 4D printing of functionally graded porous multi-materials(FGMM)by introducing rationally designed graded multiphase feeder beds.Compositionally graded cross-linking agents gradually form stable porous network structures within aqueous polymer particles,enabling programmable hygroscopic deformation without complex mechanical designs.Furthermore,a systematic bed design incorporating additional functional agents enables a multi-stimuli-responsive and untethered soft robot with stark stimulus selectivity.The biodegradability of the proposed 4D-printed soft robot further ensures the sustainability of our approach,with immediate degradation rates of 96.6%within 72 h.The proposed 4D printing concept for FGMMs can create new opportunities for intelligent and sustainable additive manufacturing in soft robotics.展开更多
In recent years,breakthrough has been made in the field of artificial intelligence(AI),which has also revolutionized the industry of robotics.Soft robots featured with high-level safety,less weight,lower power consump...In recent years,breakthrough has been made in the field of artificial intelligence(AI),which has also revolutionized the industry of robotics.Soft robots featured with high-level safety,less weight,lower power consumption have always been one of the research hotspots.Recently,multifunctional sensors for perception of soft robotics have been rapidly developed,while more algorithms and models of machine learning with high accuracy have been optimized and proposed.Designs of soft robots with AI have also been advanced ranging from multimodal sensing,human-machine interaction to effective actuation in robotic systems.Nonethe-less,comprehensive reviews concerning the new developments and strategies for the ingenious design of the soft robotic systems equipped with AI are rare.Here,the new development is systematically reviewed in the field of soft robots with AI.First,background and mechanisms of soft robotic systems are briefed,after which development focused on how to endow the soft robots with AI,including the aspects of feeling,thought and reaction,is illustrated.Next,applications of soft robots with AI are systematically summarized and discussed together with advanced strategies proposed for performance enhancement.Design thoughts for future intelligent soft robotics are pointed out.Finally,some perspectives are put forward.展开更多
Soft robots have become important members of the robot community with many potential applications owing to their unique flexibility and security embedded at the material level.An increasing number of researchers are i...Soft robots have become important members of the robot community with many potential applications owing to their unique flexibility and security embedded at the material level.An increasing number of researchers are interested in their designing,manufacturing,modeling,and control.However,the dynamic simulation of soft robots is difficult owing to their infinite degrees of freedom and nonlinear characteristics that are associated with soft materials and flexible geometric structures.In this study,a novel multi-flexible body dynamic modeling and simulation technique is introduced for soft robots.Various actuators for soft robots are modeled in a virtual environment,including soft cable-driven,spring actuation,and pneumatic driving.A pneumatic driving simulation was demonstrated by the bending modules with different materials.A cable-driven soft robot arm prototype and a cylindrical soft module actuated by shape memory alley springs inspired by an octopus were manufactured and used to validate the simulation model,and the experimental results demonstrated adequate accuracy.The proposed technique can be widely applied for the modeling and dynamic simulation of other soft robots,including hybrid actuated robots and rigid-flexible coupling robots.This study also provides a fundamental framework for simulating soft mobile robots and soft manipulators in contact with the environment.展开更多
This paper presents an experimental study to compare the performance of model-free control strategies for pneumatic soft robots.Fabricated using soft materials,soft robots have gained much attention in academia and in...This paper presents an experimental study to compare the performance of model-free control strategies for pneumatic soft robots.Fabricated using soft materials,soft robots have gained much attention in academia and industry during recent years because of their inherent safety in human interaction.However,due to structural flexibility and compliance,mathematical models for these soft robots are nonlinear with an infinite degree of freedom(DOF).Therefore,accurate position(or orientation)control and optimization of their dynamic response remains a challenging task.Most existing soft robots currently employed in industrial and rehabilitation applications use model-free control algorithms such as PID.However,to the best of our knowledge,there has been no systematic study on the comparative performance of model-free control algorithms and their ability to optimize dynamic response,i.e.,reduce overshoot and settling time.In this paper,we present comparative performance of several variants of model-free PID-controllers based on extensive experimental results.Additionally,most of the existing work on modelfree control in pneumatic soft-robotic literature use manually tuned parameters,which is a time-consuming,labor-intensive task.We present a heuristic-based coordinate descent algorithm to tune the controller parameter automatically.We presented results for both manual tuning and automatic tuning using the Ziegler-Nichols method and proposed algorithm,respectively.We then used experimental results to statistically demonstrate that the presented automatic tuning algorithm results in high accuracy.The experiment results show that for soft robots,the PID-controller essentially reduces to the PI controller.This behavior was observed in both manual and automatic tuning experiments;we also discussed a rationale for removing the derivative term.展开更多
Nowadays,soft robots have become a research hot spot due to high degree of freedom,adaptability to the environment and safer interaction with humans.The carbon nanotube(CNT)/polydimethylsiloxane(PDMS)electrothermal co...Nowadays,soft robots have become a research hot spot due to high degree of freedom,adaptability to the environment and safer interaction with humans.The carbon nanotube(CNT)/polydimethylsiloxane(PDMS)electrothermal composites have attracted wide attention in the field of flexible actuations due to large deformation at low voltages.Here,the preparation process of CNT/PDMS composites was designed and optimized,and electrothermal actuators(ETAs)were fabricated by cutting the CNT/PDMS composite films into a“U”shape and coating conductive adhesive.The deformation performance of the ETAs with different thicknesses at different voltages was studied.At a low voltage of about 7 V,the ETA has a deformation rate of up to 93%.Finally,two kinds of electrothermal soft robots(ETSRs)with four-legged and three-legged structures were fabricated,and their inchworm-like motion characteristics were studied.The ETSR2 has the best motion performance due to the moderate thickness and three-legged electrode structure.展开更多
The remarkable functionality of biological systems in detecting and adapting to various environmental conditions has inspired the design of the latest electronics and robots with advanced features.This review focuses ...The remarkable functionality of biological systems in detecting and adapting to various environmental conditions has inspired the design of the latest electronics and robots with advanced features.This review focuses on intelligent bio-inspired strategies for developing soft bioelectronics and robotics that can accommodate nanocomposite adhesives and integrate them into biological surfaces.The underlying principles of the material and structural design of nanocomposite adhesives were investigated for practical applications with excellent functionalities,such as soft skin-attachable health care sensors,highly stretchable adhesive electrodes,switchable adhesion,and untethered soft robotics.In addition,we have discussed recent progress in the development of effective fabrication methods for micro/nanostructures for integration into devices,presenting the current challenges and prospects.展开更多
Generating efficient locomotion in granular media is important,although it is difficult for robots.Inspired by the fact that sand vipers usually have saw-like scales,in this study,we design a soft undulation robot wit...Generating efficient locomotion in granular media is important,although it is difficult for robots.Inspired by the fact that sand vipers usually have saw-like scales,in this study,we design a soft undulation robot with tangential anisotropic friction to enhance the undulation performance of soft robots in granular media.A mathematical model was derived and numerical simulations were conducted accordingly to investigate the effectiveness of tangential friction anisotropy for undulation gait generation in granular media.In particular,we introduce a pseudo-rigid-body dynamics model consisting of links and joints while simulating the pneumatic actuation method to more closely approximate the response of soft robots.Moreover,a soft snake-like robot was fabricated,and its forward and reverse undulations were compared in two sets of controlled experiments.The consistency between the experimental results and the numerical simulations confirms that tangential anisotropic friction induces a propulsive effect in undulation,thereby increasing the robot's locomotion speed.This discovery provides new insights into the design of undulation robots in granular environments.2024 The Author(s).Published by Elsevier B.V.on behalf of Shandong University.This is an open access articleunder the CCBY license(http://creativecommons.org/licenses/by/4.0/).展开更多
Integrated printing of magnetic soft robots with complex structures using recyclable materials to achieve sustainability of the soft robots remains a persistent challenge.Here,we propose a kind of ferromagnetic fibers...Integrated printing of magnetic soft robots with complex structures using recyclable materials to achieve sustainability of the soft robots remains a persistent challenge.Here,we propose a kind of ferromagnetic fibers that can be used to print soft robots with complex structures.These ferromagnetic fibers are recyclable and can make soft robots sustainable.The ferromagnetic fibers based on thermoplastic polyurethane(TPU)/NdFeB hybrid particles are extruded by an extruder.We use a desktop three-dimensional(3D)printer to demonstrate the feasibility of printing two-dimensional(2D)and complex 3D soft robots.These printed soft robots can be recycled and reprinted into new robots once their tasks are completed.Moreover,these robots show almost no difference in actuation capability compared to prior versions and have new functions.Successful applications include lifting,grasping,and moving objects,and these functions can be operated untethered wirelessly.In addition,the locomotion of the magnetic soft robot in a human stomach model shows the prospect of medical applications.Overall,these fully recyclable ferromagnetic fibers pave the way for printing and reprinting sustainable soft robots while also effectively reducing e-waste and robotics waste materials,which is important for resource conservation and environmental protection.展开更多
The soft robotics field is on the rise. The highly adaptive robots provide the opportunity to bridge the gap between machines and people. However, their elastomeric nature poses significant challenges to the perceptio...The soft robotics field is on the rise. The highly adaptive robots provide the opportunity to bridge the gap between machines and people. However, their elastomeric nature poses significant challenges to the perception, control, and signal processing. Hydrogels and machine learning provide promising solutions to the problems above. This review aims to summarize this recent trend by first assessing the current hydrogel-based sensing and actuation methods applied to soft robots. We outlined the mechanisms of perception in response to various external stimuli. Next, recent achievements of machine learning for soft robots’ sensing data processing and optimization are evaluated. Here we list the strategies for implementing machine learning models from the perspective of applications. Last, we discuss the challenges and future opportunities in perception data processing and soft robots’ high level tasks.展开更多
Designing soft robots that are able to perceive unstructured,dynamic environments and their deformations has been a long-term goal.Previously reported self-sensing soft actuators were mostly constructed via integratin...Designing soft robots that are able to perceive unstructured,dynamic environments and their deformations has been a long-term goal.Previously reported self-sensing soft actuators were mostly constructed via integrating separate actuators and sensors.The actuation performances and the sensing reliability are affected owing to the unmatched materials and weak connections.Realizing a seamless integration of soft actuators and sensors remains a grand challenge.Here,we report a fabrication strategy to endow soft actuators with sensing capability and programmable actuation performances.The foam inside the actuator functions as actuator and sensor simultaneously,effectively addressing the conformability and connection reliability issues that existed in current self-sensing actuators.The actuators are lightweight(a decrease of 58%in weight),powerful(lifting a load of 433 times of its own weight),and versatile(coupling twisting and contraction motions).Furthermore,the actuators are able to detect multiple physical stimuli with high reliability,demonstrating their exteroception and proprioception capability.Two self-sensing soft robotic prototypes,including a bionic bicep and a bionic neck,are constructed to illustrate their multifunctionality.Our study opens up new possibilities for the design of soft actuators and has promising potential in a variety of applications,ranging from human-robot interaction,soft orthotics,to wearable robotics.展开更多
Soft actuators have garnered substantial attention in current years in view of their potential appliances in diverse domains like robotics,biomedical devices,and biomimetic systems.These actuators mimic the natural mo...Soft actuators have garnered substantial attention in current years in view of their potential appliances in diverse domains like robotics,biomedical devices,and biomimetic systems.These actuators mimic the natural movements of living organisms,aiming to attain enhanced flexibility,adaptability,and versatility.On the other hand,angle-independent structural color has been achieved through innovative design strategies and engineering approaches.By carefully controlling the size,shape,and arrangement of nanostructures,researchers have been able to create materials exhibiting consistent colors regardless of the viewing angle.One promising class of materials that holds great potential for bioinspired soft actuators is MXenes in view of their exceptional mechanical,electrical,and optical properties.The integration of MXenes for bioinspired soft actuators with angle-independent structural color offers exciting possibilities.Overcoming material compatibility issues,improving color reproducibility,scalability,durability,power supply efficiency,and cost-effectiveness will play vital roles in advancing these technologies.This perspective appraises the development of bioinspired MXene-centered soft actuators with angleindependent structural color in soft robotics.展开更多
In nature,many living organisms exhibiting unique structural coloration and soft-bodied actuation have inspired scientists to develop advanced structural colored soft actuators toward biomimetic soft robots.However,it...In nature,many living organisms exhibiting unique structural coloration and soft-bodied actuation have inspired scientists to develop advanced structural colored soft actuators toward biomimetic soft robots.However,it is challenging to simultaneously biomimic the angle-independent structural color and shape-morphing capabilities found in the plum-throated cotinga flying bird.Herein,we report biomimetic MXene-based soft actuators with angle-independent structural color that are fabricated through controlled self-assembly of colloidal SiO_(2) nanoparticles onto highly aligned MXene films followed by vacuum-assisted infiltration of polyvinylidene fluoride into the interstices.The resulting soft actuators are found to exhibit brilliant,angle-independent structural color,as well as ultrafast actuation and recovery speeds(a maximum curvature of 0.52 mm−1 can be achieved within 1.16 s,and a recovery time of~0.24 s)in response to acetone vapor.As proof-of-concept illustrations,structural colored soft actuators are applied to demonstrate a blue gripper-like bird’s claw that can capture the target,artificial green tendrils that can twine around tree branches,and an artificial multicolored butterfly that can flutter its wings upon cyclic exposure to acetone vapor.The strategy is expected to offer new insights into the development of biomimetic multifunctional soft actuators for somatosensory soft robotics and next-generation intelligent machines.展开更多
This paper presents a dynamic model and performance constraint control of a line-driven soft robotic arm.The dynamics model of the soft robotic arm is established by combining the screw theory and the Cosserat theory....This paper presents a dynamic model and performance constraint control of a line-driven soft robotic arm.The dynamics model of the soft robotic arm is established by combining the screw theory and the Cosserat theory.The unmodeled dynamics of the system are considered,and an adaptive neural network controller is designed using the backstepping method and radial basis function neural network.The stability of the closed-loop system and the boundedness of the tracking error are verified using Lyapunov theory.The simulation results show that our approach is a good solution to the motion constraint problem of the line-driven soft robotic arm.展开更多
General,high-precision theoretical modeling method is not well developed in the field of soft robotics,which holds back motion control and practical application of soft robots.The concept of modularization brings nove...General,high-precision theoretical modeling method is not well developed in the field of soft robotics,which holds back motion control and practical application of soft robots.The concept of modularization brings novel structure,novel locomotion patterns as well as novel control method for soft robots.This paper presents the concept of hierarchical control method for modular soft robot system and a H-configuration pneumatic modular soft robot is designed as the control object.The H-configuration modular soft robot is composed of two basic motion units that take worm-like locomotion principle.The locomotion principle of the basic motion unit is analyzed and the actuation sequence is optimized by evolution strategy in VOXCAD simulation software.The differential drive method is applied to the H-configuration modular soft robot with multi motion modes and vision sensor is used to control the motion mode of the robot.The H-configuration modular soft robot and the basic motion unit are assembled by a cubic soft module made of silicone rubber.Also,connection mechanism is designed to ensure that the soft modules can be assembled in any direction and posture.Experiments are conducted to verify the effect of the hierarchical control method of the modular soft robots.展开更多
Actuator plays a significant role in soft robotics.This paper proposed an ultralong stretchable soft actuator(US2A)with a variable and sizeable maximum elongation.The US2A is composed of a silicone rubber tube and a b...Actuator plays a significant role in soft robotics.This paper proposed an ultralong stretchable soft actuator(US2A)with a variable and sizeable maximum elongation.The US2A is composed of a silicone rubber tube and a bellows woven sleeve.The maximal extension can be conveniently regulated by just adjusting the wrinkles’initial angle of the bellows woven sleeve.The kinematics of US2A could be obtained by geometrically analyzing the structure of the bellows woven sleeve when the silicone rubber tube is inflated.Based on the principle of virtual work,the actuating models have been established:the pressure-elongation model and the pressure-force model.These models reflect the influence of the silicone tube’s shell thickness and material properties on the pneumatic muscle’s performance,which facilitates the optimal design of US2A for various working conditions.The experimental results showed that the maximum elongation of the US2A prototype is 257%,and the effective elongation could be variably regulated in the range of 0 and 257%.The proposed models were also verified by pressure-elongation and pressure-force experiments,with an average error of 5%and 2.5%,respectively.Finally,based on the US2A,we designed a pneumatic rehabilitation glove,soft arm robot,and rigid-soft coupling continuous robot,which further verified the feasibility of US2A as a soft driving component.展开更多
Compared to traditional rigid robots, soft robots, primarily made of deformable, or less rigid materials, have good adaptability, conformability and safety in interacting with the environment. Although soft robots hav...Compared to traditional rigid robots, soft robots, primarily made of deformable, or less rigid materials, have good adaptability, conformability and safety in interacting with the environment. Although soft robots have shown great potentials for extended applications and possibilities that are impossible or difficult for rigid body robots, it is of great importance for them to have the capability of controllable stiffness modulation. Stiffness modulation allows soft robots to have reversible change between the compliant, or flexible state and the rigid state. In this paper, we summarize existing principles and methods for stiffness modulation in soft robotic development and divide them into four groups based on their working principles. Acoustic-based methods have been proposed as the potential fifth group in stiffness modulation of soft robots. Initial design proposals based on the proposed acoustic method are presented, and challenges in further development are highlighted.展开更多
Dielectric elastomer actuators (DEAs) artificial muscle is a typical interdisciplinary research category, which has developed by leaps and bounds in the past 20 years, showing great application prospects in various fi...Dielectric elastomer actuators (DEAs) artificial muscle is a typical interdisciplinary research category, which has developed by leaps and bounds in the past 20 years, showing great application prospects in various fields. Upon external electrical stimulation, dielectric elastomers (DEs) display large deformation, high energy density and fast response, affording a promising material candidate for soft robotics. Herein, the working mechanisms, commonly used materials as well as the concepts for improving the performance of DEA materials are introduced. Various DEA driven soft robots, including soft grippers, bioinspired artificial arms, crawling/walking/underwater/flying/jumping soft robots and tunable lenses, are then described in detail. Finally, the main challenges of DEA driven soft robots are summarized, and some perspectives for promoting the practical application of DEAs are also proposed.展开更多
Soft machine refers to a kind of mechanical system made of soft materials to complete sophisticated missions, such as handling a fragile object and crawling along a narrow tunnel corner, under low cost control and act...Soft machine refers to a kind of mechanical system made of soft materials to complete sophisticated missions, such as handling a fragile object and crawling along a narrow tunnel corner, under low cost control and actuation. Hence, soft machines have raised great challenges to computational dynamics. In this review article, recent studies of the authors on the dynamic modeling, numerical simulation, and experimental validation of soft machines are summarized in the framework of multibody system dynamics. The dynamic modeling approaches are presented first for the geometric nonlinearities of coupled overall motions and large deformations of a soft component, the physical nonlinearities of a soft component made of hyperelastic or elastoplastic materials, and the frictional contacts/impacts of soft components, respectively. Then the computation approach is outlined for the dynamic simulation of soft machines governed by a set of differential-algebraic equations of very high dimensions, with an emphasis on the efficient computations of the nonlinear elastic force vector of finite elements. The validations of the proposed approaches are given via three case studies, including the locomotion of a soft quadrupedal robot, the spinning deployment of a solar sail of a spacecraft, and the deployment of a mesh reflector of a satellite antenna, as well as the corresponding experimental studies. Finally, some remarks are made for future studies.展开更多
Robotics has aroused huge attention since the 1950s.Irrespective of the uniqueness that industrial applications exhibit,conventional rigid robots have displayed noticeable limitations,particularly in safe cooperation ...Robotics has aroused huge attention since the 1950s.Irrespective of the uniqueness that industrial applications exhibit,conventional rigid robots have displayed noticeable limitations,particularly in safe cooperation as well as with environmental adaption.Accordingly,scientists have shifted their focus on soft robotics to apply this type of robots more effectively in unstructured environments.For decades,they have been committed to exploring sub-fields of soft robotics(e.g.,cutting-edge techniques in design and fabrication,accurate modeling,as well as advanced control algorithms).Although scientists have made many different efforts,they share the common goal of enhancing applicability.The presented paper aims to brief the progress of soft robotic research for readers interested in this field,and clarify how an appropriate control algorithm can be produced for soft robots with specific morphologies.This paper,instead of enumerating existing modeling or control methods of a certain soft robot prototype,interprets for the relationship between morphology and morphology-dependent motion strategy,attempts to delve into the common issues in a particular class of soft robots,and elucidates a generic solution to enhance their performance.展开更多
With the advance of smart material science,robotics is evolving from rigid robots to soft robots.Compared to rigid robots,soft robots can safely interact with the environment,easily navigate in unstructured fields,and...With the advance of smart material science,robotics is evolving from rigid robots to soft robots.Compared to rigid robots,soft robots can safely interact with the environment,easily navigate in unstructured fields,and be minimized to operate in narrow spaces,owning to the new actuation and sensing technologies developed by the smart materials.In the review,different actuation and sensing technologies based on different smart materials are analyzed and summarized.According to the driving or feedback signals,actuators are categorized into electrically responsive actuators,thermally responsive actuators,magnetically responsive actuators,and photoresponsive actuators;sensors are categorized into resistive sensors,capacitive sensors,magnetic sensors,and optical waveguide sensors.After introducing the principle and several robotic prototypes of some typical materials in each category of the actuators and sensors.The advantages and disadvantages of the actuators and sensors are compared based on the categories,and their potential applications in robotics are also presented.展开更多
基金supported by National R&D Program through the NRF funded by Ministry of Science and ICT(2021M3D1A2049315)and the Technology Innovation Program(20021909,Development of H2 gas detection films(?0.1%)and process technologies)funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea)supported by the Basic Science Program through the NRF of Korea,funded by the Ministry of Science and ICT,Korea.(Project Number:NRF-2022R1C1C1008845)supported by Basic Science Research Program through the NRF funded by the Ministry of Education(Project Number:NRF-2022R1A6A3A13073158)。
文摘Recent advances in functionally graded additive manufacturing(FGAM)technology have enabled the seamless hybridization of multiple functionalities in a single structure.Soft robotics can become one of the largest beneficiaries of these advances,through the design of a facile four-dimensional(4D)FGAM process that can grant an intelligent stimuli-responsive mechanical functionality to the printed objects.Herein,we present a simple binder jetting approach for the 4D printing of functionally graded porous multi-materials(FGMM)by introducing rationally designed graded multiphase feeder beds.Compositionally graded cross-linking agents gradually form stable porous network structures within aqueous polymer particles,enabling programmable hygroscopic deformation without complex mechanical designs.Furthermore,a systematic bed design incorporating additional functional agents enables a multi-stimuli-responsive and untethered soft robot with stark stimulus selectivity.The biodegradability of the proposed 4D-printed soft robot further ensures the sustainability of our approach,with immediate degradation rates of 96.6%within 72 h.The proposed 4D printing concept for FGMMs can create new opportunities for intelligent and sustainable additive manufacturing in soft robotics.
基金supported by the Hong Kong Polytechnic University(Project No.1-WZ1Y).
文摘In recent years,breakthrough has been made in the field of artificial intelligence(AI),which has also revolutionized the industry of robotics.Soft robots featured with high-level safety,less weight,lower power consumption have always been one of the research hotspots.Recently,multifunctional sensors for perception of soft robotics have been rapidly developed,while more algorithms and models of machine learning with high accuracy have been optimized and proposed.Designs of soft robots with AI have also been advanced ranging from multimodal sensing,human-machine interaction to effective actuation in robotic systems.Nonethe-less,comprehensive reviews concerning the new developments and strategies for the ingenious design of the soft robotic systems equipped with AI are rare.Here,the new development is systematically reviewed in the field of soft robots with AI.First,background and mechanisms of soft robotic systems are briefed,after which development focused on how to endow the soft robots with AI,including the aspects of feeling,thought and reaction,is illustrated.Next,applications of soft robots with AI are systematically summarized and discussed together with advanced strategies proposed for performance enhancement.Design thoughts for future intelligent soft robotics are pointed out.Finally,some perspectives are put forward.
基金Supported by the National Natural Science Foundation of China(Grant Nos.51822502 and 91948202)the National Key Research and Development Program of China(No.2019YFB1309500)the“111 Project”(Grant No.B07018).
文摘Soft robots have become important members of the robot community with many potential applications owing to their unique flexibility and security embedded at the material level.An increasing number of researchers are interested in their designing,manufacturing,modeling,and control.However,the dynamic simulation of soft robots is difficult owing to their infinite degrees of freedom and nonlinear characteristics that are associated with soft materials and flexible geometric structures.In this study,a novel multi-flexible body dynamic modeling and simulation technique is introduced for soft robots.Various actuators for soft robots are modeled in a virtual environment,including soft cable-driven,spring actuation,and pneumatic driving.A pneumatic driving simulation was demonstrated by the bending modules with different materials.A cable-driven soft robot arm prototype and a cylindrical soft module actuated by shape memory alley springs inspired by an octopus were manufactured and used to validate the simulation model,and the experimental results demonstrated adequate accuracy.The proposed technique can be widely applied for the modeling and dynamic simulation of other soft robots,including hybrid actuated robots and rigid-flexible coupling robots.This study also provides a fundamental framework for simulating soft mobile robots and soft manipulators in contact with the environment.
文摘This paper presents an experimental study to compare the performance of model-free control strategies for pneumatic soft robots.Fabricated using soft materials,soft robots have gained much attention in academia and industry during recent years because of their inherent safety in human interaction.However,due to structural flexibility and compliance,mathematical models for these soft robots are nonlinear with an infinite degree of freedom(DOF).Therefore,accurate position(or orientation)control and optimization of their dynamic response remains a challenging task.Most existing soft robots currently employed in industrial and rehabilitation applications use model-free control algorithms such as PID.However,to the best of our knowledge,there has been no systematic study on the comparative performance of model-free control algorithms and their ability to optimize dynamic response,i.e.,reduce overshoot and settling time.In this paper,we present comparative performance of several variants of model-free PID-controllers based on extensive experimental results.Additionally,most of the existing work on modelfree control in pneumatic soft-robotic literature use manually tuned parameters,which is a time-consuming,labor-intensive task.We present a heuristic-based coordinate descent algorithm to tune the controller parameter automatically.We presented results for both manual tuning and automatic tuning using the Ziegler-Nichols method and proposed algorithm,respectively.We then used experimental results to statistically demonstrate that the presented automatic tuning algorithm results in high accuracy.The experiment results show that for soft robots,the PID-controller essentially reduces to the PI controller.This behavior was observed in both manual and automatic tuning experiments;we also discussed a rationale for removing the derivative term.
基金Project supported by the National Natural Science Foundation of China(Grant No.51602021)the Fundamental Research Funds for the Central Universities,China(Grant No.FRF-TP-18-023A2)
文摘Nowadays,soft robots have become a research hot spot due to high degree of freedom,adaptability to the environment and safer interaction with humans.The carbon nanotube(CNT)/polydimethylsiloxane(PDMS)electrothermal composites have attracted wide attention in the field of flexible actuations due to large deformation at low voltages.Here,the preparation process of CNT/PDMS composites was designed and optimized,and electrothermal actuators(ETAs)were fabricated by cutting the CNT/PDMS composite films into a“U”shape and coating conductive adhesive.The deformation performance of the ETAs with different thicknesses at different voltages was studied.At a low voltage of about 7 V,the ETA has a deformation rate of up to 93%.Finally,two kinds of electrothermal soft robots(ETSRs)with four-legged and three-legged structures were fabricated,and their inchworm-like motion characteristics were studied.The ETSR2 has the best motion performance due to the moderate thickness and three-legged electrode structure.
基金supported by the R&D program of the Ministry of Trade,Industry&Energy(No.20016252,Development of a hybrid-type high-performance multimodal electronic skin sensor and a scalable module for robot manipulation)supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(Ministry of Science and ICT,MSIT)(No.RS-2023-00214236)+1 种基金the National Research Council of Science&Technology(NST)grant by the Korea government(MSIT)(No.CRC230231-000)the Korea Evaluation Institute of Industrial Technology(KEIT)grant funded by the Korean government(MOTIE,No.RS-2022-00154781,Development of large-area wafer-level flexible/stretchable hybrid sensor platform technology for form factor-free highly integrated convergence sensors).
文摘The remarkable functionality of biological systems in detecting and adapting to various environmental conditions has inspired the design of the latest electronics and robots with advanced features.This review focuses on intelligent bio-inspired strategies for developing soft bioelectronics and robotics that can accommodate nanocomposite adhesives and integrate them into biological surfaces.The underlying principles of the material and structural design of nanocomposite adhesives were investigated for practical applications with excellent functionalities,such as soft skin-attachable health care sensors,highly stretchable adhesive electrodes,switchable adhesion,and untethered soft robotics.In addition,we have discussed recent progress in the development of effective fabrication methods for micro/nanostructures for integration into devices,presenting the current challenges and prospects.
基金supported by Fundamental Research Funds for the Central Universities,China(ZY2301,BH2316,buctrc202215)the National Natural Science Foundation of China(62273340)the Natural Science Foundation of China Liaoning Province(2021-MS-031).
文摘Generating efficient locomotion in granular media is important,although it is difficult for robots.Inspired by the fact that sand vipers usually have saw-like scales,in this study,we design a soft undulation robot with tangential anisotropic friction to enhance the undulation performance of soft robots in granular media.A mathematical model was derived and numerical simulations were conducted accordingly to investigate the effectiveness of tangential friction anisotropy for undulation gait generation in granular media.In particular,we introduce a pseudo-rigid-body dynamics model consisting of links and joints while simulating the pneumatic actuation method to more closely approximate the response of soft robots.Moreover,a soft snake-like robot was fabricated,and its forward and reverse undulations were compared in two sets of controlled experiments.The consistency between the experimental results and the numerical simulations confirms that tangential anisotropic friction induces a propulsive effect in undulation,thereby increasing the robot's locomotion speed.This discovery provides new insights into the design of undulation robots in granular environments.2024 The Author(s).Published by Elsevier B.V.on behalf of Shandong University.This is an open access articleunder the CCBY license(http://creativecommons.org/licenses/by/4.0/).
基金funded by the International Cooperation Program of the Natural Science Foundation of China(No.52261135542)Zhejiang Provincial Natural Science Foundation of China(No.LD22E050002)the Russian Science Foundation(No.23-43-00057)for financial support。
文摘Integrated printing of magnetic soft robots with complex structures using recyclable materials to achieve sustainability of the soft robots remains a persistent challenge.Here,we propose a kind of ferromagnetic fibers that can be used to print soft robots with complex structures.These ferromagnetic fibers are recyclable and can make soft robots sustainable.The ferromagnetic fibers based on thermoplastic polyurethane(TPU)/NdFeB hybrid particles are extruded by an extruder.We use a desktop three-dimensional(3D)printer to demonstrate the feasibility of printing two-dimensional(2D)and complex 3D soft robots.These printed soft robots can be recycled and reprinted into new robots once their tasks are completed.Moreover,these robots show almost no difference in actuation capability compared to prior versions and have new functions.Successful applications include lifting,grasping,and moving objects,and these functions can be operated untethered wirelessly.In addition,the locomotion of the magnetic soft robot in a human stomach model shows the prospect of medical applications.Overall,these fully recyclable ferromagnetic fibers pave the way for printing and reprinting sustainable soft robots while also effectively reducing e-waste and robotics waste materials,which is important for resource conservation and environmental protection.
基金supported in part by the National Natural Science Foundation of China under Grant 62104034the Natural Science Foundation of Hebei Province under Grant F2020501033Fundamental Research Fund for Central University under grant N2223032.
文摘The soft robotics field is on the rise. The highly adaptive robots provide the opportunity to bridge the gap between machines and people. However, their elastomeric nature poses significant challenges to the perception, control, and signal processing. Hydrogels and machine learning provide promising solutions to the problems above. This review aims to summarize this recent trend by first assessing the current hydrogel-based sensing and actuation methods applied to soft robots. We outlined the mechanisms of perception in response to various external stimuli. Next, recent achievements of machine learning for soft robots’ sensing data processing and optimization are evaluated. Here we list the strategies for implementing machine learning models from the perspective of applications. Last, we discuss the challenges and future opportunities in perception data processing and soft robots’ high level tasks.
基金supported by the National Natural Science Foundation of China(Grant No.52205073)Zhejiang Provincial Natural Science Foundation of China(Grant No.LD22E050002)+1 种基金China National Postdoctoral Program for Innovative Talents(Grant No.BX2021258)China Postdoctoral Science Foundation(Grant No.2022M710125)。
文摘Designing soft robots that are able to perceive unstructured,dynamic environments and their deformations has been a long-term goal.Previously reported self-sensing soft actuators were mostly constructed via integrating separate actuators and sensors.The actuation performances and the sensing reliability are affected owing to the unmatched materials and weak connections.Realizing a seamless integration of soft actuators and sensors remains a grand challenge.Here,we report a fabrication strategy to endow soft actuators with sensing capability and programmable actuation performances.The foam inside the actuator functions as actuator and sensor simultaneously,effectively addressing the conformability and connection reliability issues that existed in current self-sensing actuators.The actuators are lightweight(a decrease of 58%in weight),powerful(lifting a load of 433 times of its own weight),and versatile(coupling twisting and contraction motions).Furthermore,the actuators are able to detect multiple physical stimuli with high reliability,demonstrating their exteroception and proprioception capability.Two self-sensing soft robotic prototypes,including a bionic bicep and a bionic neck,are constructed to illustrate their multifunctionality.Our study opens up new possibilities for the design of soft actuators and has promising potential in a variety of applications,ranging from human-robot interaction,soft orthotics,to wearable robotics.
文摘Soft actuators have garnered substantial attention in current years in view of their potential appliances in diverse domains like robotics,biomedical devices,and biomimetic systems.These actuators mimic the natural movements of living organisms,aiming to attain enhanced flexibility,adaptability,and versatility.On the other hand,angle-independent structural color has been achieved through innovative design strategies and engineering approaches.By carefully controlling the size,shape,and arrangement of nanostructures,researchers have been able to create materials exhibiting consistent colors regardless of the viewing angle.One promising class of materials that holds great potential for bioinspired soft actuators is MXenes in view of their exceptional mechanical,electrical,and optical properties.The integration of MXenes for bioinspired soft actuators with angle-independent structural color offers exciting possibilities.Overcoming material compatibility issues,improving color reproducibility,scalability,durability,power supply efficiency,and cost-effectiveness will play vital roles in advancing these technologies.This perspective appraises the development of bioinspired MXene-centered soft actuators with angleindependent structural color in soft robotics.
基金supported by the National Natural Science Foundation of China(Nos.51973155,52173181,and 52173262)Jiangsu Innovation Team Program,Natural Science Foundation of Tianjin(20JCYBJC00810).
文摘In nature,many living organisms exhibiting unique structural coloration and soft-bodied actuation have inspired scientists to develop advanced structural colored soft actuators toward biomimetic soft robots.However,it is challenging to simultaneously biomimic the angle-independent structural color and shape-morphing capabilities found in the plum-throated cotinga flying bird.Herein,we report biomimetic MXene-based soft actuators with angle-independent structural color that are fabricated through controlled self-assembly of colloidal SiO_(2) nanoparticles onto highly aligned MXene films followed by vacuum-assisted infiltration of polyvinylidene fluoride into the interstices.The resulting soft actuators are found to exhibit brilliant,angle-independent structural color,as well as ultrafast actuation and recovery speeds(a maximum curvature of 0.52 mm−1 can be achieved within 1.16 s,and a recovery time of~0.24 s)in response to acetone vapor.As proof-of-concept illustrations,structural colored soft actuators are applied to demonstrate a blue gripper-like bird’s claw that can capture the target,artificial green tendrils that can twine around tree branches,and an artificial multicolored butterfly that can flutter its wings upon cyclic exposure to acetone vapor.The strategy is expected to offer new insights into the development of biomimetic multifunctional soft actuators for somatosensory soft robotics and next-generation intelligent machines.
基金supported by the National Natural Science Foundation of China(62103039,62073030)the Scientific and Technological Innovation Foundation of Shunde Graduate School+8 种基金University of Science and Technology Beijing(USTB)(BK21BF003)the Korea Institute of Energy Technology Evaluation and Planning through the Auspices of the Ministry of TradeIndustry and EnergyRepublic of Korea(20213030020160)the Science and Technology Planning Project of Guangzhou City(202102010398,202201010758)the Guangzhou University-Hong Kong University of Science and Technology Joint Research Collaboration Fund(YH202205)Beijing Top Discipline for Artificial Intelligent Science and EngineeringUniversity of Science and Technology Beijing。
文摘This paper presents a dynamic model and performance constraint control of a line-driven soft robotic arm.The dynamics model of the soft robotic arm is established by combining the screw theory and the Cosserat theory.The unmodeled dynamics of the system are considered,and an adaptive neural network controller is designed using the backstepping method and radial basis function neural network.The stability of the closed-loop system and the boundedness of the tracking error are verified using Lyapunov theory.The simulation results show that our approach is a good solution to the motion constraint problem of the line-driven soft robotic arm.
基金This work is supported by National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(Grant no.52025054)National Natural Science Foundation of China(Grant no.U1713201).
文摘General,high-precision theoretical modeling method is not well developed in the field of soft robotics,which holds back motion control and practical application of soft robots.The concept of modularization brings novel structure,novel locomotion patterns as well as novel control method for soft robots.This paper presents the concept of hierarchical control method for modular soft robot system and a H-configuration pneumatic modular soft robot is designed as the control object.The H-configuration modular soft robot is composed of two basic motion units that take worm-like locomotion principle.The locomotion principle of the basic motion unit is analyzed and the actuation sequence is optimized by evolution strategy in VOXCAD simulation software.The differential drive method is applied to the H-configuration modular soft robot with multi motion modes and vision sensor is used to control the motion mode of the robot.The H-configuration modular soft robot and the basic motion unit are assembled by a cubic soft module made of silicone rubber.Also,connection mechanism is designed to ensure that the soft modules can be assembled in any direction and posture.Experiments are conducted to verify the effect of the hierarchical control method of the modular soft robots.
基金National Natural Science Foundation of China(Grant No.U2013212)Key Research and Development Program of Zhejiang(Grant No.2021C04015)Fundamental Research Funds for the Provincial Universities of Zhejiang(Grant No.RF-C2019004)。
文摘Actuator plays a significant role in soft robotics.This paper proposed an ultralong stretchable soft actuator(US2A)with a variable and sizeable maximum elongation.The US2A is composed of a silicone rubber tube and a bellows woven sleeve.The maximal extension can be conveniently regulated by just adjusting the wrinkles’initial angle of the bellows woven sleeve.The kinematics of US2A could be obtained by geometrically analyzing the structure of the bellows woven sleeve when the silicone rubber tube is inflated.Based on the principle of virtual work,the actuating models have been established:the pressure-elongation model and the pressure-force model.These models reflect the influence of the silicone tube’s shell thickness and material properties on the pneumatic muscle’s performance,which facilitates the optimal design of US2A for various working conditions.The experimental results showed that the maximum elongation of the US2A prototype is 257%,and the effective elongation could be variably regulated in the range of 0 and 257%.The proposed models were also verified by pressure-elongation and pressure-force experiments,with an average error of 5%and 2.5%,respectively.Finally,based on the US2A,we designed a pneumatic rehabilitation glove,soft arm robot,and rigid-soft coupling continuous robot,which further verified the feasibility of US2A as a soft driving component.
文摘Compared to traditional rigid robots, soft robots, primarily made of deformable, or less rigid materials, have good adaptability, conformability and safety in interacting with the environment. Although soft robots have shown great potentials for extended applications and possibilities that are impossible or difficult for rigid body robots, it is of great importance for them to have the capability of controllable stiffness modulation. Stiffness modulation allows soft robots to have reversible change between the compliant, or flexible state and the rigid state. In this paper, we summarize existing principles and methods for stiffness modulation in soft robotic development and divide them into four groups based on their working principles. Acoustic-based methods have been proposed as the potential fifth group in stiffness modulation of soft robots. Initial design proposals based on the proposed acoustic method are presented, and challenges in further development are highlighted.
基金support from the National Natural Science Foundation of China(Grant No.51525301)the Talent Cultivation of State Key Laboratory of Organic-Inorganic Composites(No.OIC-D2021002).
文摘Dielectric elastomer actuators (DEAs) artificial muscle is a typical interdisciplinary research category, which has developed by leaps and bounds in the past 20 years, showing great application prospects in various fields. Upon external electrical stimulation, dielectric elastomers (DEs) display large deformation, high energy density and fast response, affording a promising material candidate for soft robotics. Herein, the working mechanisms, commonly used materials as well as the concepts for improving the performance of DEA materials are introduced. Various DEA driven soft robots, including soft grippers, bioinspired artificial arms, crawling/walking/underwater/flying/jumping soft robots and tunable lenses, are then described in detail. Finally, the main challenges of DEA driven soft robots are summarized, and some perspectives for promoting the practical application of DEAs are also proposed.
基金supported in part by the National Natural Science Foundation of China (Grants 11290150 and 11290151)
文摘Soft machine refers to a kind of mechanical system made of soft materials to complete sophisticated missions, such as handling a fragile object and crawling along a narrow tunnel corner, under low cost control and actuation. Hence, soft machines have raised great challenges to computational dynamics. In this review article, recent studies of the authors on the dynamic modeling, numerical simulation, and experimental validation of soft machines are summarized in the framework of multibody system dynamics. The dynamic modeling approaches are presented first for the geometric nonlinearities of coupled overall motions and large deformations of a soft component, the physical nonlinearities of a soft component made of hyperelastic or elastoplastic materials, and the frictional contacts/impacts of soft components, respectively. Then the computation approach is outlined for the dynamic simulation of soft machines governed by a set of differential-algebraic equations of very high dimensions, with an emphasis on the efficient computations of the nonlinear elastic force vector of finite elements. The validations of the proposed approaches are given via three case studies, including the locomotion of a soft quadrupedal robot, the spinning deployment of a solar sail of a spacecraft, and the deployment of a mesh reflector of a satellite antenna, as well as the corresponding experimental studies. Finally, some remarks are made for future studies.
文摘Robotics has aroused huge attention since the 1950s.Irrespective of the uniqueness that industrial applications exhibit,conventional rigid robots have displayed noticeable limitations,particularly in safe cooperation as well as with environmental adaption.Accordingly,scientists have shifted their focus on soft robotics to apply this type of robots more effectively in unstructured environments.For decades,they have been committed to exploring sub-fields of soft robotics(e.g.,cutting-edge techniques in design and fabrication,accurate modeling,as well as advanced control algorithms).Although scientists have made many different efforts,they share the common goal of enhancing applicability.The presented paper aims to brief the progress of soft robotic research for readers interested in this field,and clarify how an appropriate control algorithm can be produced for soft robots with specific morphologies.This paper,instead of enumerating existing modeling or control methods of a certain soft robot prototype,interprets for the relationship between morphology and morphology-dependent motion strategy,attempts to delve into the common issues in a particular class of soft robots,and elucidates a generic solution to enhance their performance.
基金Supported by National Key Research and Development Program of China(Grant No.2019YFB 1309800)National Natural Science Foundation of China(Grant Nos.62173197,91848206)Beijing Science&Technology Project(Grant No.Z191100008019008).
文摘With the advance of smart material science,robotics is evolving from rigid robots to soft robots.Compared to rigid robots,soft robots can safely interact with the environment,easily navigate in unstructured fields,and be minimized to operate in narrow spaces,owning to the new actuation and sensing technologies developed by the smart materials.In the review,different actuation and sensing technologies based on different smart materials are analyzed and summarized.According to the driving or feedback signals,actuators are categorized into electrically responsive actuators,thermally responsive actuators,magnetically responsive actuators,and photoresponsive actuators;sensors are categorized into resistive sensors,capacitive sensors,magnetic sensors,and optical waveguide sensors.After introducing the principle and several robotic prototypes of some typical materials in each category of the actuators and sensors.The advantages and disadvantages of the actuators and sensors are compared based on the categories,and their potential applications in robotics are also presented.