期刊文献+
共找到302篇文章
< 1 2 16 >
每页显示 20 50 100
Modeling and identification for soft sensor systems based on the separation of multi-dynamic and static characteristics 被引量:1
1
作者 Pengfei Cao Xionglin Luo Xiaohong Song 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第1期137-143,共7页
Data-driven soft sensor is an effective solution to provide rapid and reliable estimations for key quality variables online. The secondary variables affect the primary variable in considerably different speed, and sof... Data-driven soft sensor is an effective solution to provide rapid and reliable estimations for key quality variables online. The secondary variables affect the primary variable in considerably different speed, and soft sensor systems exhibit multi-dynamic characteristics. Thus, the first contribution is improving the model in the previous study with multi-time-constant. The characteristics-separation-based model will be identified in substep way,and the stochastic Newton recursive(SNR) algorithm is adopted. Considering the dual-rate characteristics of soft sensor systems, the proposed model cannot be identified directly. Thus, two auxiliary models are first proposed to offer the intersample estimations at each update period, based on which the improved algorithm(DAM-SNR) is derived. These two auxiliary models function in switching mechanism which has been illustrated in detail. This algorithm serves for the identification of the proposed model together with the SNR algorithm, and the identification procedure is then presented. Finally, the laboratorial case confirms the effectiveness of the proposed soft sensor model and the algorithms. 展开更多
关键词 soft sensor modeling Characteristics separation System identification Double auxiliary models
下载PDF
Method of Soft-Sensor Modeling for Fermentation Process Based on Geometric Support Vector Regression 被引量:1
2
作者 吴佳欢 王晓琨 +2 位作者 王建林 赵利强 于涛 《Journal of Donghua University(English Edition)》 EI CAS 2013年第1期1-6,共6页
The soft-sensor modeling for fermentation process based on standard support vector regression(SVR) needs to solve the quadratic programming problem(QPP) which will often lead to large computational burdens, slow conve... The soft-sensor modeling for fermentation process based on standard support vector regression(SVR) needs to solve the quadratic programming problem(QPP) which will often lead to large computational burdens, slow convergence rate, low solving efficiency, and etc. In order to overcome these problems, a method of soft-sensor modeling for fermentation process based on geometric SVR is presented. In the method, the problem of solving the SVR soft-sensor model is converted into the problem of finding the nearest points between two convex hulls (CHs) or reduced convex hulls (RCHs) in geometry. Then a geometric algorithm is adopted to generate soft-sensor models of fermentation process efficiently. Furthermore, a swarm energy conservation particle swarm optimization (SEC-PSO) algorithm is proposed to seek the optimal parameters of the augmented training sample sets, the RCH size, and the kernel function which are involved in geometric SVR modeling. The method is applied to the soft-sensor modeling for a penicillin fermentation process. The experimental results show that, compared with the method based on the standard SVR, the proposed method of soft-sensor modeling based on geometric SVR for fermentation process can generate accurate soft-sensor models and has much less amount of computation, faster convergence rate, and higher efficiency. 展开更多
关键词 fermentation process soft-sensor modeling geometric SVR swarm energy conservation particle swarm optimization (SEC-PSO)
下载PDF
Component Content Soft-Sensor Based on Hybrid Models in Countercurrent Rare Earth Extraction Process 被引量:3
3
作者 杨辉 王欣 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第S1期86-91,共6页
In consideration of the online measurement of the component content in rare earth countercurrent extraction separation process, the soft sensor method based on hybrid modeling was proposed to measure the rare earth co... In consideration of the online measurement of the component content in rare earth countercurrent extraction separation process, the soft sensor method based on hybrid modeling was proposed to measure the rare earth component content. The hybrid models were composed of the extraction equilibrium calculation model and the Radial Basis Function (RBF) Neural Network (NN) error compensation model; the parameters of compensation model were optimized by the hierarchical genetic algorithms (HGA). In addition, application experiment research of this proposed method was carried out in the rare earth separation production process of a corporation. The result shows that this method is effective and can realize online measurement for the component content of rare earth in the countercurrent extraction. 展开更多
关键词 countercurrent extraction soft-sensor equilibrium calculation model RBF neural networks hierarchical genetic algorithms rare earths
下载PDF
Feasibility analysis and online adjustment of constraints in model predictive control integrated with soft sensor
4
作者 Pengfei Cao Xionglin Luo Xiaohong Song 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第9期1230-1237,共8页
Feasibility analysis of soft constraints for input and output variables is critical for model predictive control(MPC).When encountering the infeasible situation, some way should be found to adjust the constraints to g... Feasibility analysis of soft constraints for input and output variables is critical for model predictive control(MPC).When encountering the infeasible situation, some way should be found to adjust the constraints to guarantee that the optimal control law exists. For MPC integrated with soft sensor, considering the soft constraints for critical variables additionally makes it more complicated and difficult for feasibility analysis and constraint adjustment. Therefore, the main contributions are that a linear programming approach is proposed for feasibility analysis, and the corresponding constraint adjustment method and procedure are given as well. The feasibility analysis gives considerations to the manipulated, secondary and critical variables, and the increment of manipulated variables as well. The feasibility analysis and the constraint adjustment are conducted in the entire control process and guarantee the existence of optimal control. In final, a simulation case confirms the contributions in this paper. 展开更多
关键词 soft sensor model predictive control Variable constraints Feasibility analysis
下载PDF
Forward heuristic breadth-first reasoning based on rule match for biomass hybrid soft-sensor modeling in fermentation process
5
作者 安莉 王建林 《Journal of Beijing Institute of Technology》 EI CAS 2012年第1期128-133,共6页
Biomass is a key parameter in fermentation process, directly influencing the performance of the fermentation system as well as the quality and yield of the targeted product. Hybrid soft-sensor modeling is a good metho... Biomass is a key parameter in fermentation process, directly influencing the performance of the fermentation system as well as the quality and yield of the targeted product. Hybrid soft-sensor modeling is a good method for on-line estimation of biomass. Structure of hybrid soft-sensor model is a key to improve the estimating accuracy. In this paper, a forward heuristic breadth-first reasoning approach based on rule match is proposed for constructing structure of hybrid model. First, strategy of forward heuristic reasoning about facts is introduced, which can reason complex hybrid model structure in the event of few known facts. Second, rule match degree is defined to obtain higher esti- mating accuracy. The experiment results of Nosiheptide fermentation process show that the hybrid modeling process can estimate biomass with higher accuracy by adding transcendental knowledge and partial mechanism to the process. 展开更多
关键词 fermentation process BIOMASS soft-sensor modeling rule match
下载PDF
SOFT SENSING MODEL BASED ON SUPPORT VECTOR MACHINE AND ITS APPLICATION 被引量:3
6
作者 YanWeiwu ShaoHuihe WangXiaofan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第1期55-58,共4页
Soft sensor is widely used in industrial process control. It plays animportant role to improve the quality of product and assure safety in production. The core of softsensor is to construct soft sensing model. A new s... Soft sensor is widely used in industrial process control. It plays animportant role to improve the quality of product and assure safety in production. The core of softsensor is to construct soft sensing model. A new soft sensing modeling method based on supportvector machine (SVM) is proposed. SVM is a new machine learning method based on statistical learningtheory and is powerful for the problem characterized by small sample, nonlinearity, high dimensionand local minima. The proposed methods are applied to the estimation of frozen point of light dieseloil in distillation column. The estimated outputs of soft sensing model based on SVM match the realvalues of frozen point and follow varying trend of frozen point very well. Experiment results showthat SVM provides a new effective method for soft sensing modeling and has promising application inindustrial process applications. 展开更多
关键词 soft sensor soft sensing modelING Support vector machine
下载PDF
Neural Networks Based Component Content Soft-Sensor in Countercurrent Rare-Earth Extraction 被引量:2
7
作者 杨辉 谭明皓 柴天佑 《Journal of Rare Earths》 SCIE EI CAS CSCD 2003年第6期691-696,共6页
The equilibrium model for multicomponent rare earth extraction is developed using neural networks, which combined with the material balance model could give online prediction of component content in countercurrent rar... The equilibrium model for multicomponent rare earth extraction is developed using neural networks, which combined with the material balance model could give online prediction of component content in countercurrent rare earth (extraction) production. Simulation experiments with industrial operation data prove the effectiveness of the hybrid soft-(sensor). 展开更多
关键词 countercurrent extraction first principle model soft-sensor model neural networks rare earths
下载PDF
Component Content Soft-sensor Based on Neural Networks in Rare-earth Countercurrent Extraction Process 被引量:13
8
作者 YANG Hui CHAI Tian-You 《自动化学报》 EI CSCD 北大核心 2006年第4期489-495,共7页
Throught fusion of the mechanism modeling and the neural networks modeling,a compo- nent content soft-sensor,which is composed of the equilibrium calculation model for multi-component rare earth extraction and the err... Throught fusion of the mechanism modeling and the neural networks modeling,a compo- nent content soft-sensor,which is composed of the equilibrium calculation model for multi-component rare earth extraction and the error compensation model of fuzzy system,is proposed to solve the prob- lem that the component content in countercurrent rare-earth extraction process is hardly measured on-line.An industry experiment in the extraction Y process by HAB using this hybrid soft-sensor proves its effectiveness. 展开更多
关键词 RARE-EARTH countercurrent extraction soft-sensor equilibrium calculation model neural networks
下载PDF
Software sensor for slab reheating furnace 被引量:2
9
作者 ZhihuaXiong GuohongHuang HuiheShao 《Journal of University of Science and Technology Beijing》 CSCD 2005年第2期123-127,共5页
It has long been thought that a reheating furnace, with its inherent measurement difficulties and complex dynamics, posed almost insurmountable problems to engineers in steel plants. A novel software sensor is propos... It has long been thought that a reheating furnace, with its inherent measurement difficulties and complex dynamics, posed almost insurmountable problems to engineers in steel plants. A novel software sensor is proposed to make more effective use of those measurements that are already available, which has great importance both to slab quality and energy saving. The proposed method is based on the mixtures of Gaussian processes (GP) with the expectation maximization (EM) algorithm employed for parameter esti- mation of the mixture of models. The mixture model can alleviate the computational complexity of GP and also accords with the changes of operating condition in practical processes. It is demonstrated by on-line estimation of the furnace gas temperature in 1580 reheating furnace in Baosteel Corporation (Group). 展开更多
关键词 Gaussian processes expectation maximization multiple models soft sensor reheating furnace
下载PDF
基于沙地猫群优化–最小二乘支持向量机的动态NOx排放预测 被引量:4
10
作者 金秀章 史德金 乔鹏 《中国电机工程学报》 EI CSCD 北大核心 2024年第1期182-190,I0015,共10页
针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。... 针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。首先利用k近邻互信息计算时间延迟的同时筛选辅助变量。然后,基于SCSO算法进行输入变量阶次的选择。使用包含辅助变量时间延迟和阶次的信息作为模型的输入,SCSO算法优化最小二乘支持向量机参数,建立动态NOx排放最小二乘支持向量机预测模型(SCSO-LSSVM动态软测量模型)。最后将模型与未加入迟延的LSSVM模型,加入迟延的LSSVM模型和粒子群优化算法(particle swarm optimization,PSO)优化最小二乘支持向量机参数的动态软测量模型进行对比验证。结果表明,相较于其他模型,该文建立SCSO-LSSVM动态软测量模型均方根误差、平均绝对误差、平均绝对误差最小,预测精度最高,而且在NOx浓度剧烈波动时也能够较好地预测NOx浓度,具有很好的动态特性。 展开更多
关键词 NOx浓度 k近邻互信息 沙地猫群优化算法 最小二乘支持向量机 软测量模型
原文传递
基于GAN的软测量缺失数据生成方法研究
11
作者 蒋栋年 王仁杰 《西北工业大学学报》 EI CAS CSCD 北大核心 2024年第2期344-352,共9页
针对工业过程中传感器数据缺失造成软测量模型精度低的问题,提出一种基于生成对抗网络(generative adversarial nets,GAN)的传感器缺失数据生成方法。利用孤立森林算法检测出传感器数据的缺失区域;利用缺失数据属性特征训练条件生成对... 针对工业过程中传感器数据缺失造成软测量模型精度低的问题,提出一种基于生成对抗网络(generative adversarial nets,GAN)的传感器缺失数据生成方法。利用孤立森林算法检测出传感器数据的缺失区域;利用缺失数据属性特征训练条件生成对抗网络(conditional generative adversarial nets,CGAN),在CGAN的输入条件中添加随机序列作为附加信息迭代送入CGAN中生成数据,并借助WGAN-GP(wasserstein generative adversarial nets gradient penalty)成本函数提高网络训练的稳定性;针对缺失区域检测结果引入采样器,将采样的数据填补进缺失区域,形成完整数据集,以提高软测量模型精度。以镍闪速炉温度传感器数据为目标变量进行软测量建模,验证所提出的提高软测量模型精度方法的可行性与有效性。 展开更多
关键词 数据缺失 孤立森林 生成对抗网络 软测量模型
下载PDF
助训练策略下的多模型软测量建模
12
作者 何罗苏阳 熊伟丽 《系统仿真学报》 CAS CSCD 北大核心 2024年第1期249-259,共11页
由于复杂工业过程中存在强非线性、多阶段耦合以及有标签样本数量偏少的情况,传统的全局软测量模型难以精确描述整个过程。为此,提出一种助训练策略下的多模型软测量建模方法。该方法采用模糊C均值聚类算法挖掘样本集中的相似性样本并... 由于复杂工业过程中存在强非线性、多阶段耦合以及有标签样本数量偏少的情况,传统的全局软测量模型难以精确描述整个过程。为此,提出一种助训练策略下的多模型软测量建模方法。该方法采用模糊C均值聚类算法挖掘样本集中的相似性样本并建立若干子模型;通过引入助训练策略,形成基于主、辅学习器的协同训练框架,并设计置信度评估机制淘汰误差样本的同时扩充子模型的建模空间;进而将模糊隶属度作为D-S证据理论的概率分配函数计算出子模型权重,对子模型的输出进行融合以得到最终的模型预测结果。通过对脱丁烷塔工业过程的实际数据进行建模仿真,结果表明此模型具有良好的预测性能。 展开更多
关键词 软测量建模 多模型 助训练 学习器 脱丁烷塔
原文传递
带FIR滤波的非线性滑动平均动态软测量模型
13
作者 孙文心 马君霞 熊伟丽 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第4期609-618,共10页
非线性滑动平均(NMA)模型能有效描述工业过程的动态特性,是一种典型的动态软测量模型.而受限于模型复杂度,NMA模型的输入时序边界相对较窄,难以适应带有大滞后或强测量噪声的动态工业过程.针对该问题,本文将NMA模型与结构简单、输入时... 非线性滑动平均(NMA)模型能有效描述工业过程的动态特性,是一种典型的动态软测量模型.而受限于模型复杂度,NMA模型的输入时序边界相对较窄,难以适应带有大滞后或强测量噪声的动态工业过程.针对该问题,本文将NMA模型与结构简单、输入时序边界宽的FIR滤波器相结合,构造一种非线性、强抗干扰的软测量建模策略.并设计层白化结构来避免二者间的参数耦合现象,采用Adam算法进行同步优化,提高模型的预测精度及训练效率.最后,利用数值仿真和硫回收过程建模实验,验证所提模型的预测精度以及模型设计的合理性. 展开更多
关键词 动态软测量 NMA模型 FIR滤波 参数解耦
下载PDF
融合深度学习与过程机理的FCC装置关键参数软测量模型
14
作者 魏彬 谭硕 周华 《石油学报(石油加工)》 EI CAS CSCD 北大核心 2024年第6期1624-1634,共11页
产品产率作为催化裂化(FCC)装置的关键参数,构造其软测量模型对提升装置效益具有重要的现实意义,而原料与催化剂性质的缺失往往使得产率软测量模型性能迅速恶化。为此,以基于半监督学习的深度置信网络-极限学习机(DBN-ELM)算法为基础,... 产品产率作为催化裂化(FCC)装置的关键参数,构造其软测量模型对提升装置效益具有重要的现实意义,而原料与催化剂性质的缺失往往使得产率软测量模型性能迅速恶化。为此,以基于半监督学习的深度置信网络-极限学习机(DBN-ELM)算法为基础,将工艺过程机理模型与数据驱动模型集成,提出了可用于预测商业催化裂化装置产品产率的软测量混合建模方法。此外,还提出基于流程模拟的灵敏度分析-相关系数矩阵(SA-CCM)策略用于软测量模型主要输入变量的选择。结果表明,混合模型相比于数据驱动模型具有更优的模型性能,即预测精度提升43.9%、数据相关性(皮尔森系数)提升29.3%。这说明所提出的产率软测量混合建模方法使得模型的预测性能提高,能较好地适应原料与催化剂性质的变化。 展开更多
关键词 软测量 催化裂化 深度学习 产率预测 混合模型 先进控制
下载PDF
Predictive Model for Cement Clinker Quality Parameters 被引量:1
15
作者 Nsidibe-Obong Ekpe Moses Sunday Boladale Alabi 《Journal of Materials Science and Chemical Engineering》 2016年第7期84-100,共17页
Managers of cement plants are gradually becoming aware of the need for soft sensors in product quality assessment. Cement clinker quality parameters are mostly measured by offline laboratory analysis or by the use of ... Managers of cement plants are gradually becoming aware of the need for soft sensors in product quality assessment. Cement clinker quality parameters are mostly measured by offline laboratory analysis or by the use of online analyzers. The measurement delay and cost, associated with these methods, are a concern in the cement industry. In this study, a regression-based model was developed to predict the clinker quality parameters as a function of the raw meal quality and the kiln operating variables. This model has mean squared error, coefficient of determination, worst case relative error and variance account for (in external data) given as 8.96 × 10<sup>–7</sup>, 0.9999, 2.17% and above 97%, respectively. Thus, it is concluded that the developed model can provide real time estimates of the clinker quality parameters and capture wider ranges of real plant operating conditions from first principle-based cement rotary kiln models. Also, the model developed can be utilized online as soft sensor since they contain only variables that are easily measured online. 展开更多
关键词 Clinker Quality Parameters Online Estimation Cement Rotary Kiln model soft sensor
下载PDF
基于分布式贝叶斯隐马尔可夫回归的动态软测量建模方法 被引量:1
16
作者 邵伟明 韩文学 +3 位作者 宋伟 杨勇 陈灿 赵东亚 《化工学报》 EI CSCD 北大核心 2023年第6期2495-2502,共8页
利用软测量技术实时预测化工过程中的关键参数对生产过程的在线监测、自动控制、实时优化具有十分重要的意义。为此,提出了一种基于隐马尔可夫模型的动态软测量建模方法。首先,针对数据规模大导致模型计算效率低和数据缺失导致数据无法... 利用软测量技术实时预测化工过程中的关键参数对生产过程的在线监测、自动控制、实时优化具有十分重要的意义。为此,提出了一种基于隐马尔可夫模型的动态软测量建模方法。首先,针对数据规模大导致模型计算效率低和数据缺失导致数据无法充分利用的问题,提出了一种基于分布式贝叶斯隐马尔可夫回归的预测模型;其次,针对该模型进一步提出了一种能够获得精确后验分布的分布式训练方法。最后,利用蜡油加氢过程对所提方法的有效性进行了验证。 展开更多
关键词 化工过程 动态建模 贝叶斯隐马尔可夫回归 软测量 分布式计算
下载PDF
基于非负绞杀与长短期记忆神经网络的动态软测量算法 被引量:4
17
作者 孙凯 隋璘 +1 位作者 张芳芳 杨根科 《控制理论与应用》 EI CAS CSCD 北大核心 2023年第1期83-93,共11页
现代工业过程建模中,生产过程的多变量、非线性及动态性会导致模型复杂度增高且建模精度降低.针对这一问题,将非负绞杀算法(NNG)嵌入长短期记忆(LSTM)神经网络,提出一种基于LSTM神经网络及其输入变量选择的动态软测量算法.首先,通过参... 现代工业过程建模中,生产过程的多变量、非线性及动态性会导致模型复杂度增高且建模精度降低.针对这一问题,将非负绞杀算法(NNG)嵌入长短期记忆(LSTM)神经网络,提出一种基于LSTM神经网络及其输入变量选择的动态软测量算法.首先,通过参数优化生成训练好的LSTM神经网络,利用其出色的历史信息记忆能力处理工业过程中的动态、时滞等问题;其次,采用NNG算法对LSTM网络输入权重进行压缩,剔除冗余变量,提高模型精度,并采用网格搜索法与分块交叉验证对其超参数寻优;最后,将算法应用于某火电厂脱硫过程排放烟气SO_(2)浓度软测量建模,并与其它先进算法进行性能比较.实验结果表明所提算法能有效剔除冗余变量,降低模型复杂度并提高其预测性能. 展开更多
关键词 神经网络 软测量 长短期记忆 动态建模 变量选择 模型简化
下载PDF
助训练框架下的半监督软测量建模方法
18
作者 何罗苏阳 熊伟丽 《智能系统学报》 CSCD 北大核心 2023年第2期231-239,共9页
为了充分利用工业过程中大量无标签样本信息,并减少过程的不确定因素对无标签样本质量的影响,提出一种助训练框架下的半监督孪生支持向量回归软测量建模方法。采用孪生支持向量回归机构建主学习器,对高置信度无标签样本添加伪标签;同时... 为了充分利用工业过程中大量无标签样本信息,并减少过程的不确定因素对无标签样本质量的影响,提出一种助训练框架下的半监督孪生支持向量回归软测量建模方法。采用孪生支持向量回归机构建主学习器,对高置信度无标签样本添加伪标签;同时,基于K近邻算法构建辅学习器,最大化学习器在近邻样本集上的均方误差,经过此项指标筛选后的待处理样本集包含了更多的数据信息;主、辅学习器二者相辅相成,一定程度上提高了模型的泛化性;再利用所构建的助训练框架提高样本利用率后得到预测模型,实现对无标签样本信息的充分挖掘。通过对脱丁烷塔工业过程中的实际数据进行建模仿真,所得结果表明此模型具有良好的预测性能。 展开更多
关键词 软测量建模 半监督 助训练 孪生支持向量回归 K近邻 置信度 学习器 脱丁烷塔
下载PDF
基于敏感性分析的区间二型模糊神经网络出水总氮软测量
19
作者 杨文琚 孙晨暄 伍小龙 《水利水电技术(中英文)》 北大核心 2023年第4期120-130,共11页
【目的】出水总氮检测在监测污水处理厂超标排放和预防水质富营养化中发挥了重要的作用,但仍存在精度低,实时性不强的问题。为解决城市污水处理过程出水总氮难以在线精准检测的问题,提出了一种基于敏感性分析的区间二型模糊神经网络(SA-... 【目的】出水总氮检测在监测污水处理厂超标排放和预防水质富营养化中发挥了重要的作用,但仍存在精度低,实时性不强的问题。为解决城市污水处理过程出水总氮难以在线精准检测的问题,提出了一种基于敏感性分析的区间二型模糊神经网络(SA-IT2FNN)出水总氮软测量方法。【方法】采用敏感性分析法(Sensitivity Analysis,SA),选取与污水处理过程出水总氮关联性较强的主元变量。然后,将所选的关键主元变量作为IT2FNN的输入变量,通过训练模型参数建立出水总氮软测量模型。【结果】仿真结果显示:对于冬季数据集,SA-IT2FNN选取6个、8个、10个主元变量进行预测时,训练时间分别为6.2 s、7.8 s、9.7 s;均方根误差(Root Mean Square Error,RMSE)分别为0.44、0.35、0.33。另外,SA-IT2FNN选择8主元变量预测时,夏季和冬季对应的测试RMSE分别为0.38和0.39。【结论】结果表明:SA通过对模型的输入变量降维,有效提高了模型的预测效果;基于IT2FNN的总氮软测量模型在不同工况下都能够保证预测精度,具有较好的学习和预测能力。研究成果展示了人工智能在总氮检测中的独特作用,为污水处理出水指标高精度检测提供了有效的方法。 展开更多
关键词 城市污水处理过程 出水总氮 区间二型模糊神经网络 敏感性分析法 软测量模型
下载PDF
基于图卷积网络的柴油加氢生产软测量建模
20
作者 冯子昊 梁晨 +2 位作者 谢忻南 唐正 薛美盛 《化工自动化及仪表》 CAS 2023年第1期10-19,73,共11页
精制柴油闪点和石脑油终馏点是柴油加氢生产最重要的质量指标,但目前缺乏测量这两种指标的在线分析仪表,软测量是可行的替代方案。为完成这两种指标的软测量建模,分析柴油加氢生产过程的工艺机理和过程数据特征,完成了辅助变量的重构和... 精制柴油闪点和石脑油终馏点是柴油加氢生产最重要的质量指标,但目前缺乏测量这两种指标的在线分析仪表,软测量是可行的替代方案。为完成这两种指标的软测量建模,分析柴油加氢生产过程的工艺机理和过程数据特征,完成了辅助变量的重构和筛选,确定了两个软测量对象的辅助变量集,基于图卷积网络建立闪点和终馏点的软测量模型进行仿真研究。仿真研究结果表明:相比于目前应用广泛的软测量模型,所提出的软测量方法具有更高的精度,可以提升柴油加氢生产软测量建模的有效性和准确性。 展开更多
关键词 软测量建模 图卷积网络 辅助变量 柴油加氢 闪点 终馏点
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部