期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
Effects of Straw and Biochar Returned to the Soil on Soil Physical Properties and pH Value in Cold Rice Region 被引量:1
1
作者 Yuefeng CUI Hongru SHI +5 位作者 Aonan GUO Guocai SUN Guiyan WANG Jian WANG Wenjia HUANG Tiegang LU 《Asian Agricultural Research》 2021年第2期27-32,共6页
[Objectives]In order to explore the feasibility of using straw and biochar returned to the soil to improve soil physical properties and pH value in cold rice regions of China.[Methods]the effects of straw directly ret... [Objectives]In order to explore the feasibility of using straw and biochar returned to the soil to improve soil physical properties and pH value in cold rice regions of China.[Methods]the effects of straw directly returned to the soil and charred straw(biochar)returned to the soil on soil bulk density,porosity,temperature and pH value of cold paddy soil were studied in this paper.[Results]The results showed that compared with conventional production,straw(6 t/ha),a small amount of biochar(2 t/ha)and a large amount of biochar(40 t/ha)returned to the soil reduced paddy soil bulk density at different growth stages by 6.02%-11.86%,2.69%-6.67%and 8.58%-11.32%,respectively,increased total porosity by 7.41%-14.93%,3.19%-8.38%and 9.81%-14.27%,respectively,and increased aeration porosity by 22.28%-192.11%,17.80%-92.11%and 52.44%-157.11%,respectively.Straw and a small amount of biochar returned to the soil had no significant effect on soil temperature and pH value of paddy field,but a large amount of biochar returned to the soil could significantly increase soil temperature by 5.13%-8.79%and pH value by 3.15%-5.96%in the later stage of rice growth.[Conclusions]The straw and biochar returned to the soil could reduce soil bulk density,increase total porosity and aeration porosity,and only a large amount of biochar returned to the soil could significantly increase soil temperature and pH value. 展开更多
关键词 STRAW BIOCHAR Cold rice region soil physical properties soil pH value
下载PDF
Effects of restoration modes on the spatial distribution of soil physical properties after land consolidation: a multifractal analysis
2
作者 KE Zengming LIU Xiaoli +4 位作者 MA Lihui TU Wen FENG Zhe JIAO Feng WANG Zhanli 《Journal of Arid Land》 SCIE CSCD 2021年第12期1201-1214,共14页
Soil physical properties(SPP)are considered to be important indices that reflect soil structure,hydrological conditions and soil quality.It is of substantial interest to study the spatial distribution of SPP owing to ... Soil physical properties(SPP)are considered to be important indices that reflect soil structure,hydrological conditions and soil quality.It is of substantial interest to study the spatial distribution of SPP owing to the high spatial variability caused by land consolidation under various land restoration modes in excavated farmland in the loess hilly area of China.In our study,three land restoration modes were selected including natural restoration land(NR),alfalfa land(AL)and maize land(ML).Soil texture composition,including the contents of clay,silt and sand,field capacity(FC),saturated conductivity(Ks)and bulk density(BD)were determined using a multifractal analysis.SPP were found to possess variable characteristics,although land consolidation destroyed the soil structure and decreased the spatial autocorrelation.Furthermore,SPP varied with land restoration and could be illustrated by the multifractal parameters of D1,ΔD,ΔαandΔf in different modes of land restoration.Owing to multiple compaction from large machinery in the surface soil,soil particles were fine-grained and increased the spatial variability in soil texture composition under all the land restoration modes.Plough numbers and vegetative root characteristics had the most significant impacts on the improvement in SPP,which resulted in the best spatial distribution characteristics of SPP found in ML compared with those in AL and NR.In addition,compared with ML,Δαvalues of NR and AL were 4.9-and 3.0-fold that of FC,respectively,andΔαvalues of NR and AL were 2.3-and 1.5-fold higher than those of Ks,respectively.These results indicate that SPP can be rapidly improved by increasing plough numbers and planting vegetation types after land consolidation.Thus,we conclude that ML is an optimal land restoration mode that results in favorable conditions to rapidly improve SPP. 展开更多
关键词 land consolidation land restoration multifractal analysis spatial distribution soil physical properties
下载PDF
Digital mapping of soil physical and mechanical properties using machine learning at the watershed scale
3
作者 Mohammad Sajjad GHAVAMI Shamsollah AYOUBI +1 位作者 Mohammad Reza MOSADDEGHI Salman Naimi 《Journal of Mountain Science》 SCIE CSCD 2023年第10期2975-2992,共18页
Knowledge about the spatial distribution of the soil physical and mechanical properties is crucial for soil management,water yield,and sustainability at the watershed scale;however,the lack of soil data hinders the ap... Knowledge about the spatial distribution of the soil physical and mechanical properties is crucial for soil management,water yield,and sustainability at the watershed scale;however,the lack of soil data hinders the application of this tool,thus urging the need to estimate soil properties and consequently,to perform the spatial distribution.This research attempted to examine the proficiency of three machine learning methods(RF:Random Forest;Cubist:Regression Tree;and SVM:Support Vector Machine)to predict soil physical and mechanical properties,saturated hydraulic conductivity(Ks),Cohesion measured by fall-cone at the saturated(Psat)and dry(Pdry)states,hardness index(HI)and dry shear strength(SS)by integrating environmental variables and soil features in the Zayandeh-Rood dam watershed,central Iran.To determine the best combination of input variables,three scenarios were examined as follows:scenarioⅠ,terrain attributes derivative from a digital elevation model(DEM)+remotely sensed data;scenarioⅡ,covariates of scenarioⅠ+selected climatic data and some thematic maps;scenarioⅢ,covariates in scenarioⅡ+intrinsic soil properties(Clay,Silt,Sand,bulk density(BD),soil organic matter(SOM),calcium carbonate equivalent(CCE),mean weight diameter(MWD)and geometric weight diameter(GWD)).The results showed that for Ks,Psat Pdry and SS,the best performance was found by the RF model in the third scenario,with R2=0.53,0.32,0.31 and 0.41,respectively,while for soil hardness index(HI),Cubist model in the third scenario with R2=0.25 showed the highest performance.For predicting Ks and Psat,soil characteristics(i.e.clay and soil SOM and BD),and land use were the most important variables.For predicting Pdry,HI,and SS,some topographical characteristics(Valley depth,catchment area,mltiresolution of ridge top flatness index),and some soil characteristics(i.e.clay,SOM and MWD)were the most important input variables.The results of this research present moderate accuracy,however,the methodology employed provides quick and costeffective information serving as the scientific basis for decision-making goals. 展开更多
关键词 Machine learning soil physical property soilmechanical property Saturatedhydraulic conductivity soil cohesion soil shear strength.
原文传递
GIS-Based Assessment of Soil Chemical and Physical Properties as a Basis for Land Reclamation in Toshka Area, Aswan, EGYPT
4
作者 Ahmed A. M. Awad Mostafa M. A. Al-Soghir 《Open Journal of Geology》 2023年第7期697-719,共23页
The accurate assessment of soil properties is a crucial factor for composing and implementing reclamation plans. The main objective of this study was to evaluate soil chemical and physical properties and calculate the... The accurate assessment of soil properties is a crucial factor for composing and implementing reclamation plans. The main objective of this study was to evaluate soil chemical and physical properties and calculate the chemical and fertility index for assisting land reclamation in Toshka area. The Toshka area is located between latitudes 31°32'N and 31°36'N and longitudes 32°40'E and 32°60'E. GIS was used to select 16 sites. The results revealed the soil has undesirable characteristics. The soil pH ranged from slightly alkaline to moderately alkaline. Furthermore, it was characterized as saline (with a ECe of 4.65 - 11.45 dS⋅m<sup>−1</sup>) and moderately calcareous soil (with CaCO<sub>3</sub> at 11.85% - 17.20%). The soil had a low soil organic matter content which did not exceed 0.18%. The soil was dominated by a sandy loam texture (62.50%) followed by a sandy clay loam texture (18.75%). The bulk density, total soil porosity and saturated hydraulic conductivity values varied with 1.38 - 1.55 Mg⋅cm<sup>−3</sup>, 41.85% - 48.45% and 1.20 - 3.34 cm⋅h<sup>−1</sup>, respectively. The chemical index ranged from low to moderate quality. The correlations between the parameters osculated between negative and positive. Therefore, the soil may be reclaimed if the soil properties are improved and crop selection is optimized for this soil. 展开更多
关键词 Land Reclamation soil Chemical and physical properties Chemical Quality Index Fertility Quality Index
下载PDF
Effects of irrigation water salinity on soil salt content distribution,soil physical properties and water use efficiency of maize for seed production in arid Northwest China 被引量:6
5
作者 Chengfu Yuan Shaoyuan Feng +2 位作者 Juan Wang Zailin Huo Quanyi Ji 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2018年第3期137-145,共9页
In order to explore the use of groundwater resources,field experiments were conducted for three consecutive years during 2012-2014 in the Shiyang River basin of Northwest China.Irrigation was conducted using four diff... In order to explore the use of groundwater resources,field experiments were conducted for three consecutive years during 2012-2014 in the Shiyang River basin of Northwest China.Irrigation was conducted using four different water salinity levels that were arranged in a split plot design.These four water salinity levels were s0,s3,s6 and s9(0.71,3,6 and 9 g/L,respectively).The soil salt content,soil bulk density,soil porosity,saturated hydraulic conductivity,plant height,leaf area index and yield of maize for seed production were measured for studying the effects of saline water irrigation on soil salt content distribution,soil physical properties and water use efficiency.It was observed that higher salinity level of irrigation water and long duration of saline water irrigation resulted in more salt accumulation.Compared to initial values,the soil salt accumulation in 0-100 cm soil layer after three years of experiments for s0,s3,s6 and s9 was 0.189 mg/cm3,0.654 mg/cm3,0.717 mg/cm3 and 1.135 mg/cm3,respectively.Both greater salt levels in the irrigation water and frequent saline water irrigation led to greater soil bulk density,but poorer soil porosity and less saturated hydraulic conductivity.The saturated hydraulic conductivity decreased with increase in soil bulk density,but increased with improvement in soil porosity.It was noted that the maize height,leaf area index and maize yield gradually decreased with increase in water salinity.The maize yield decreased over 25%and the water use efficiency also gradually declined when irrigated with water containing 6 g/L and 9 g/L salinity levels.However,maize yield following saline water irrigation with 3 g/L decreased less than 20%and the decline in water use efficiency was not significant during the three-year experiment period.The results demonstrate that irrigation with saline water at the level of 6 g/L and 9 g/L in the study area is not suitable,while saline water irrigation with 3 g/L would be acceptable for a short duration together with salt leaching through spring irrigation before sowing. 展开更多
关键词 saline water irrigation soil salt content distribution soil physical properties maize for seed production water use efficiency
原文传递
Shear resistance characteristics and influencing factors of root-soil composite on an alpine metal mine dump slope with different recovery periods
6
作者 PANG Jinghao LIANG Shen +5 位作者 LIU Yabin LI Shengwei WANG Shu ZHU Haili LI Guorong HU Xiasong 《Journal of Mountain Science》 SCIE CSCD 2024年第3期835-849,共15页
Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic cha... Artificial vegetation restoration is the main measure for vegetation restoration and soil and water conservation in alpine mine dumps on the Qinghai-Tibet Plateau,China.However,there are few reports on the dynamic changes and the influencing factors of the soil reinforcement effect of plant species after artificial vegetation restoration under different recovery periods.We selected dump areas of the Delni Copper Mine in Qinghai Province,China to study the relationship between the shear strength and the peak displacement of the root-soil composite on the slope during the recovery period,and the influence of the root traits and soil physical properties on the shear resistance characteristics of the root-soil composite via in situ direct shear tests.The results indicate that the shear strength and peak displacement of the rooted soil initially decreased and then increased with the increase of the recovery period.The shear strength of the rooted soil and the recovery period exhibited a quadratic function relationship.There is no significant function relationship between the peak displacement and the recovery period.Significant positive correlations(P<0.05)exists between the shear strength of the root-soil composite and the root biomass density,root volume density,and root area ratio,and they show significant linear correlations(P<0.05).There are no significant correlations(P>0.05)between the shear strength of the root-soil composite and the root length density,and the root volume ratio of the coarse roots to the fine roots.A significant negative linear correlation(P<0.05)exists between the peak displacement of the rooted soil and the coarse-grain content,but no significant correlations(P>0.05)with the root traits,other soil physical property indices(the moisture content and dry density of the soil),and slope gradient.The coarse-grain content is the main factor controlling the peak displacement of the rooted soil. 展开更多
关键词 Alpine mine dump Artificial vegetation restoration period Rooted soil Shear resistance characteristics Root traits soil physical properties
原文传递
Effects of soil physical properties on soil loss due to manual yam harvesting under a sandy loam environment
7
作者 Pius Olufemi Olusegun Dada Olusegun Rasheed Adeyanju +1 位作者 Olayemi Johnson Adeosun Johnson Kayode Adewumi 《International Soil and Water Conservation Research》 SCIE CSCD 2016年第2期121-125,共5页
Soil degradation is a growing problem worldwide because it reduces the fertile top layer of the soil available for food production and one such degradative action is soil erosion due to the harvesting of crops.Soil lo... Soil degradation is a growing problem worldwide because it reduces the fertile top layer of the soil available for food production and one such degradative action is soil erosion due to the harvesting of crops.Soil loss due to crop harvesting with particular reference to yam tubers has not been quantified globally despite the fact that yam is a major staple food consumed worldwide and it is prevalent in many parts of Nigeria.Harvesting yams in our environment is usually done with the soil attached to the yams due to the fact that farmers do not want additional work of removing soil attached to the yams.This study investigates the soil physical properties that influence soil loss due to yam harvesting in Abeokuta,South-Western Nigeria and to assess the quantity of soil loss due to yam harvesting.Based on representative sampling area per location,yam tubers were harvested manually within the entire yam farmland from October to December 2012.Gross weight,net weight and the amount of soil adhering to the yams were measured.Effects of soil physical properties such as soil moisture content,heap bulk density,inter-heap bulk density and soil texture were investigated with respect to soil losses.The results showed that moisture content ranged from 4%to 15%,heap bulk density ranged from 0.93 to 1.29 g cm^(-3) and inter-heap bulk density ranged from 1.03 to 1.50 g cm^(-3).They all had a positive correlation with soil loss.Soil particle size analysis for Federal University of Agricultural,Abeokuta(FUNAAB)and Alabata revealed that sand content was(86.78%and 88.32%),clay content(10.69%and 7.6%)and silt content,(2.53%and 4.08%)respectively.Study also revealed that clay content of the soil positively influenced the total soil loss during the yam harvesting.The mean soil losses in Federal University of Agriculture,Abeokuta(FUNAAB)and Alabata village yam farms were 4303 and 2125 kg/ha/harvest respectively.The study also revealed that soil moisture content at harvesting time and clay content are the key factors affecting soil loss due to yam harvesting.Consequently,soil loss due to crop harvesting should be considered in soil erosion control strategies,sediment budget and for better post harvest procedures. 展开更多
关键词 Heap bulk density Manual yam harvesting soil degradation soil loss soil physical properties
原文传递
Key Physical Factors Affecting Spatial-temporal Variation of Labile Organic Carbon Fractions by Biochar Driven in Mollisols Region of Northeast China
8
作者 Zhao Wei Liang Fangyuan +4 位作者 Liang Ying Zhao Hongrui Hao Shuai Wang Hongyan Wang Daqing 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第1期28-41,共14页
Biochar is widely used to improve soil physical properties and carbon sequestration. However, few studies focuse on the impact of maize stalk biochar on labile organic carbon(LOC) pool and the relationship between phy... Biochar is widely used to improve soil physical properties and carbon sequestration. However, few studies focuse on the impact of maize stalk biochar on labile organic carbon(LOC) pool and the relationship between physical properties and LOC fractions. A field positioning experiment was performed in Mollisols region of Northeast China to evaluate the influence of maize stalk biochar on the spatial distribution and temporal changes of physical properties and LOC fractions. Maize stalk biochar treatments included C1(1.5 kg·hm^(-2)), C2(3 kg·hm^(-2)), C3(15 kg·hm^(-2)), C4(30 kg·hm^(-2)), and CK(0). The results showed that maize stalk biochar increased soil water contents(SWC) and soil porosity(SP), but reduced bulk density(BD). Maize stalk biochar reduced dissolved organic carbon(DOC) contents in the 0-20 cm soil layer, ranging from 0.25 g·kg^(-1) to 0.31 g·kg^(-1) in harvest period, while increased in the 20-40 cm soil layer. In addition, the application of biochar had a significant impact on the spatial distribution and temporal change of SWC, BD, SP, DOC, hot-water extractable carbon(HWC), acid hydrolyzed organic carbon(AHC Ⅰ, Ⅱ), and readily oxidized organic carbon(ROC). High amounts of maize stalk biochar up-regulated the contents of soil organic carbon SOC, HWC, AHC Ⅰ, AHC Ⅱ, and ROC. In addition, SWC and SP were the key physical factors to affect LOC fractions. In conclusions, maize stalk biochar could improve physical properties, and then influence LOC fractions, and maize stalk biochar could be used as an organic amendment for restoring degraded soils governed by their rates of addition. 展开更多
关键词 maize stalk biochar labile organic carbon fraction Mollisols region soil physical property dissolved organic carbon
下载PDF
Review and prospect of the effects of freeze-thaw on soil geotechnical properties 被引量:1
9
作者 Tong Zhang HaiPeng Li +3 位作者 ChenChen Hu XinYu Zhen ZhenHao Xu Yang Xue 《Research in Cold and Arid Regions》 CSCD 2021年第5期349-356,共8页
Freeze-thaw hazard is one of the main problems in cold regions engineering and artificial ground freezing engineering.To mitigate freeze-thaw hazards,it is essential to investigate the effects of freeze-thaw on soils ... Freeze-thaw hazard is one of the main problems in cold regions engineering and artificial ground freezing engineering.To mitigate freeze-thaw hazards,it is essential to investigate the effects of freeze-thaw on soils engineering properties.This paper summarizes the effects of freeze-thaw on the physical and mechanical properties of soils reported in recent studies.The differences of freeze-thaw conditions between freezing shaft sinking and cold regions engineering are discussed.Based on the technological characteristics of freezing shaft sinking in deep alluvium,we further attempt to identify key research needs regarding the freeze-thaw effects on the engineering properties of deep soils. 展开更多
关键词 freeze-thaw effects soil physical and mechanical properties deep clay freezing shaft sinking
下载PDF
Soil Loss by Wind Erosion for Three Different Textured Soils Treated with Polyacrylamide and Crude Oil, Iraq 被引量:2
10
作者 Mushtak Talib Jabbar Faculty of Earth Resources, China University of Geosciences, Wuhan 430074 《Journal of China University of Geosciences》 SCIE CSCD 2001年第2期113-116,共4页
The study is conducted to estimate the resistance of three soils (EL Hartha clay loam, Barjisiya sandy loam and the soil near the sand dunes in Sheikh sa’ad area sandy soil) to wind erosion, it is also aimed at getti... The study is conducted to estimate the resistance of three soils (EL Hartha clay loam, Barjisiya sandy loam and the soil near the sand dunes in Sheikh sa’ad area sandy soil) to wind erosion, it is also aimed at getting full acquaintance of the relationship between the soil loss and the physical and chemical features of soil. In addition to the experiment of some soil stabilizers, polyacrylamide (PAM) concentration of 0.2 % and crude oil in concentration of 1 % in order to reduce or prevent wind erosion. The study shows that the amendment increased the dry soil aggregate >1 mm, mean weight diameter and soil moisture. It is clear that polyacrylamide had greater effect than that of crude oil, besides the great effectiveness of these amendments in decreasing bulk density and relations of soil loss. 展开更多
关键词 three location in Iraq STABILIZERS wind erosion soil physical properties.
下载PDF
Ecological effect of the plantation of Sabina vulgaris in the Mu Us Sandy Land,China
11
作者 NAN Weige DONG Zhibao +2 位作者 ZHOU Zhengchao LI Qiang CHEN Guoxiang 《Journal of Arid Land》 SCIE CSCD 2024年第1期14-28,共15页
Vegetation restoration through artificial plantation is an effective method to combat desertification,especially in arid and semi-arid areas.This study aimed to explore the ecological effect of the plantation of Sabin... Vegetation restoration through artificial plantation is an effective method to combat desertification,especially in arid and semi-arid areas.This study aimed to explore the ecological effect of the plantation of Sabina vulgaris on soil physical and chemical properties on the southeastern fringe of the Mu Us Sandy Land,China.We collected soil samples from five depth layers(0-20,20-40,40-60,60-80,and 80-100 cm)in the S.vulgaris plantation plots across four plantation ages(4,7,10,and 16 years)in November 2019,and assessed soil physical(soil bulk density,soil porosity,and soil particle size)and chemical(soil organic carbon(SOC),total nitrogen(TN),available nitrogen(AN),available phosphorus(AP),available potassium(AK),cation-exchange capacity(CEC),salinity,p H,and C/N ratio)properties.The results indicated that the soil predominantly consisted of sand particles(94.27%-99.67%),with the remainder being silt and clay.As plantation age increased,silt and very fine sand contents progressively rose.After 16 years of planting,there was a marked reduction in the mean soil particle size.The initial soil fertility was low and declined from 4 to 10 years of planting before witnessing an improvement.Significant positive correlations were observed for the clay,silt,and very fine sand(mean diameter of 0.000-0.100 mm)with SOC,AK,and p H.In contrast,fine sand and medium sand(mean diameter of 0.100-0.500 mm)showed significant negative correlations with these indicators.Our findings ascertain that the plantation of S.vulgaris requires 10 years to effectively act as a windbreak and contribute to sand fixation,and needs 16 years to improve soil physical and chemical properties.Importantly,these improvements were found to be highly beneficial for vegetation restoration in arid and semi-arid areas.This research can offer valuable insights for the protection and restoration of the vegetation ecosystem in the sandy lands in China. 展开更多
关键词 Sabina vulgaris plantation age soil physical and chemical properties soil particle size soil fertility vegetation restoration Mu Us Sandy Land
下载PDF
Biochar applications influence soil physical and chemical properties,microbial diversity,and crop productivity:a meta-analysis 被引量:3
12
作者 Hardeep Singh Brian K.Northup +1 位作者 Charles W.Rice P.V.Vara Prasad 《Biochar》 SCIE 2022年第1期1055-1071,共17页
Biochar is a widely known soil amendment.Here we synthesize the available information on influence of biochar application on different soil properties and crop productivity using meta-analysis.Global data on influence... Biochar is a widely known soil amendment.Here we synthesize the available information on influence of biochar application on different soil properties and crop productivity using meta-analysis.Global data on influence of biochar applications on different soil physical,chemical,microbial properties,and crop productivity were extracted from literature and statistically analyzed.Based on selection criteria,59 studies from the literature published between 2012 and 2021 were selected for the meta-analysis.Correlations were developed between effect size of biochar application on different soil properties and crop productivity.Application of biochar increased soil pH,cation exchange capacity,and organic carbon by 46%,20%,and 27%,respectively,with greater effects in coarse and fine-textured soils.Effects on chemical properties were variable among biochar prepared from different feedstocks.Among physical properties,biochar application reduced bulk densities by 29%and increased porosity by 59%.Biochar prepared at higher pyrolytic temperatures(>500℃)improved bulk density and porosity to greater extents(31%and 66%,respectively).Biochar prepared at lower pyrolytic temperatures(<500℃)had a greater effect on microbial diversity(both bacterial and fungal),with more diverse bacterial populations in medium and coarse textured soils,while fungal diversity increased in fine textured soils.Biochar applications increased crop productivity only in fine and coarse textured soil.The effect size of biochar application on crop productivity was correlated with responses to physical properties of soils.The meta-analysis highlighted the need to conduct long-term field experiments to provide better explanations for changes in biochar properties as it undergoes aging,its longer-term effects on soil properties,and timing of re-application of different biochars. 展开更多
关键词 BIOCHAR Crop productivity Microbial diversity soil physical properties soil chemical properties
原文传递
LINKING CROP WATER PRODUCTIVITY TO SOIL PHYSICAL,CHEMICAL AND MICROBIAL PROPERTIES
13
作者 Di WU Allan AANDALES +5 位作者 Hui YANG Qing SUN Shichao CHEN Xiuwei GUO Donghao LI Taisheng DU 《Frontiers of Agricultural Science and Engineering》 2021年第4期545-558,共14页
Agriculture uses a large proportion of global and regional water resources.Due to the rapid increase of population in the world,the increasing competition for water resources has led to an urgent need in increasing cr... Agriculture uses a large proportion of global and regional water resources.Due to the rapid increase of population in the world,the increasing competition for water resources has led to an urgent need in increasing crop water productivity for agricultural sustainability.As the medium for crop growth,soils and their properties are important in affecting crop water productivity.This review examines the effects of soil physical,chemical,and microbial properties on crop water productivity and the quantitative relationships between them.A comprehensive view of these relationships may provide important insights for soil and water management in arable land for agriculture in the future. 展开更多
关键词 crop water productivity crop yield soil chemical properties soil microbial properties soil physical properties water consumption
原文传递
Response of soil macrofauna to urban park reconstruction
14
作者 Olexander Zhukov Olga Kunakh +1 位作者 Nadiia Yorkina Anna Tutova 《Soil Ecology Letters》 CSCD 2023年第2期127-141,共15页
This study is based on a park in an industrial city in Ukraine.In 2019,a 2.8 ha area of the park was reconstructed.The park’s reconstruction aimed to create a comfortable environment for visitors and to improve the e... This study is based on a park in an industrial city in Ukraine.In 2019,a 2.8 ha area of the park was reconstructed.The park’s reconstruction aimed to create a comfortable environment for visitors and to improve the efficiency of ecosystem services,and thereby enhance the quality of life of citizens.The reconstruction of the park was found to cause changes in the physical properties of soils and the structure of the soil macrofauna community.The increases of soil compaction in the layers at depth 5-20 cm and the soil electrical conductivity were a consequence of technological operations during reconstruction.The park reconstruction activities can also explain 29% of the variation in the soil macrofauna community.Extracting the variation induced by the park reconstruction from the community variation induced by other causes was a major challenge.The specific changes in the community of soil macrofauna following the reconstruction of the park were revealed.The abundance of soil animal species A.rosea,A.trapezoides,H.affinis,H.rufipes,B.affinis was found to increase after the reconstruction.The earthworm A.trapezoides decreased in abundance due to the park reconstruction. 展开更多
关键词 ecosystem services soil physical properties community ordination urban park management variation partitioning
原文传递
Effects of porous clay ceramic rates on aeration porosity characteristics in a structurally degraded soil under greenhouse vegetable production 被引量:1
15
作者 Quanbo YU Meiyan WANG +6 位作者 Yutian TIAN Xuezheng SHI Xiangwei LI Lingying XU Xinqiao XIE Yijie SHI Yuncong ZHU 《Pedosphere》 SCIE CAS CSCD 2021年第4期606-614,共9页
Soil structure degradation in greenhouse vegetable fields reduces vegetable production. Increasing aeration porosity is the key to ameliorating soil structure degradation. Thus, we tested the effect of a porous materi... Soil structure degradation in greenhouse vegetable fields reduces vegetable production. Increasing aeration porosity is the key to ameliorating soil structure degradation. Thus, we tested the effect of a porous material, porous clay ceramic(PLC), on the amelioration of soil structure degradation under greenhouse vegetable production. A 6-month pot experiment was conducted with four PLC application levels based on volume, i.e., 0%(control), 5%(1 P), 10%(2 P), and15%(3 P) using Brassica chinensis as the test plant. At the end of the experiment, soil columns were sampled, and the aeration pore network was reconstructed using X-ray computed tomography(CT). The degree of anisotropy(DA), fractal dimension(FD), connectivity, aeration porosity, pores distribution, and shape of soil aeration pores and plant biomass were determined. The DA, FD, and connectivity did not significantly differ as the PLC application rate increased.Nonetheless, aeration porosity significantly linearly increased. The efficiency of PLC at enhancing soil aeration porosity was 0.18% per Mg ha^(-1). The increase in aeration porosity was mainly due to the increase in pores > 2 000 μm, which was characterized by irregular pores. Changes in aeration porosity enhanced the production of B. chinensis. The efficiency of PLC at increasing the plant fresh weight was 0.60%, 3.06%, and 2.12% per 1% application rate of PLC for the 1 P, 2 P, and 3 P treatments, respectively. These results indicated that PLC is a highly efficient soil amendment that improves soil structure degradation by improving soil aeration under greenhouse conditions. Based on vegetable biomass, a 10% application rate of PLC was recommended. 展开更多
关键词 aeration pore network mineral amendment pore size distribution soil physical property soil structure degradation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部