期刊文献+
共找到214,522篇文章
< 1 2 250 >
每页显示 20 50 100
Recent Advance on Torrefaction Valorization and Application of Biochar from Agricultural Waste for Soil Remediation
1
作者 Kai Su Qirui Qin +1 位作者 Jingyu Yang Linxiao Li and Shaoqi Deng 《Journal of Renewable Materials》 SCIE EI 2022年第2期247-261,共15页
With the increase of global proportion of soil pollution and the number of areas at risk,researchers have sought to develop various pathways to repair or relieve the pollutants in soil.Among them,biochar represents on... With the increase of global proportion of soil pollution and the number of areas at risk,researchers have sought to develop various pathways to repair or relieve the pollutants in soil.Among them,biochar represents one multi-dimensional soil amendment which has got great deal of attention on its physicochemical properties towards the removal or mitigation of contaminants in soil.A variety of agricultural wastes like straw and manure prepared from different torrefaction process have been employed as feedstock for the production of biochar,which can be applied to the contaminated soil to facilitate the growing environment for crops,and to improve soil fertility and microbial environment.In addition,the utilization of biochar for soil remediation is also considered as a pro-cess of carbon sequestration.The purpose of this review is to summarize the latest research progress in torrefac-tion processes and mechanism of agricultural waste,the effects of different torrefaction methods on the formation and properties of biochar were explained,coupled with the effects of process parameters.Especially,the conver-sion and mechanisms of biochar prepared from agricultural wastes composed mainly with lignocellulosic material were discussed,and the characteristics of biochar prepared for improving soil physical and chemical character-istics,microbial community characteristics,nutrients,and the stability and relief of soil pollutants,especially heavy metals,are compared.Finally,this work discussed the application and future technical challenges of soil remediation based on agricultural waste derived biochar. 展开更多
关键词 TORREFACTION BIOCHAR soil remediation agricultural waste
下载PDF
The application and progress of bioelectrochemical systems (BESs) in soil remediation: A review 被引量:4
2
作者 Tian Li Ruixiang Li Qixing Zhou 《Green Energy & Environment》 SCIE CSCD 2021年第1期50-65,共16页
Soil pollution endangers human health and ecological balance,which is why finding a highly efficient way to deal with pollutants is necessary.Biological method is an environmentally friendly treatment method.Bioelectr... Soil pollution endangers human health and ecological balance,which is why finding a highly efficient way to deal with pollutants is necessary.Biological method is an environmentally friendly treatment method.Bioelectrochemical systems(BESs),which combine electrochemistry with biological methods,have been widely used to remediate polluted environments,including wastewater,sludge,sediment,and soil.In BESs,redox reactions occur on electrodes with electroactive bacteria,which convert pollutants into low-polluting or nonpolluting substances.With BESs being a promising technology in the remediation field,the decontamination mechanisms and applications in soil conducted by BESs have attracted much attention.Therefore,to better understand the research progress of BESs,this paper mainly summarizes the mechanism of different classified BESs.The applications of microbial fuel cells(MFCs)in four pollutants(petroleum,heavy metals,pesticides,antibiotics)and the possible applications of microbial electrolysis cells(MECs)in soil are discussed.The main problems in BESs and possible future development directions are also evaluated. 展开更多
关键词 Polluted soil Bioelectrochemical systems remediation Application
下载PDF
Study on Obstacles to Continuous Cropping of Vegetables and Soil Remediation Technology 被引量:1
3
作者 Pingsheng FAN Gang CHEN +3 位作者 Deli XU Weimin FENG Yuyu LU Anqin GUAN 《Asian Agricultural Research》 2016年第2期64-65,72,共3页
Firstly,this paper analyzes the cause of obstacles to continuous cropping of vegetables,and then introduces the soil ecological remediation technology used for overcoming obstacles to continuous cropping of vegetables... Firstly,this paper analyzes the cause of obstacles to continuous cropping of vegetables,and then introduces the soil ecological remediation technology used for overcoming obstacles to continuous cropping of vegetables. Finally,this paper analyzes the effect of applying soil ecological remediation technology in overcoming obstacles to continuous cropping of vegetables. 展开更多
关键词 Obstacles to CONTINUOUS CROPPING of VEGETABLES soil ECOLOGICAL remediation technology AUTOTOXINS Application
下载PDF
Layered double hydroxides:Scale production and application in soil remediation as super-stable mineralizer 被引量:2
4
作者 Fangqi Mao Peipei Hao +2 位作者 Yuquan Zhu Xianggui Kong Xue Duan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第1期42-48,共7页
Soil contamination by heavy metals has presented severe risks to human health through food chain.As one of the most promising remediation technologies,in-situ immobilization strategy has been widely adopted in practic... Soil contamination by heavy metals has presented severe risks to human health through food chain.As one of the most promising remediation technologies,in-situ immobilization strategy has been widely adopted in practice.However,considering the large quantities of contaminated soil,it is still a huge challenge to design low-cost amendments with strong and long-term immobilization ability.Layered double hydroxides(LDHs)have drawn tremendous attention in fundamental research and practical application because of their unique properties.Moreover,owing to its super-stable mineralization effect to heavy metal ions,LDHs have exhibited great potential in the field of soil remediation.In this work,we mainly focused on the scale production strategy of LDHs with low-cost,and its application in soil remediation.Besides,several key challenges in using LDHs as amendments for immobilization of heavy metal ions are presented.We hope that this mini-review could shed light on the sustainable development of LDHs as amendment for heavy metals in future research directions. 展开更多
关键词 Heavy metals POLLUTION remediation Layered double hydroxides Scale-up Super-stable mineralization effect
下载PDF
Study of polluted soil remediation based on freezing and thawing cycles 被引量:3
5
作者 DaHu Rui BaiYang Song +1 位作者 Yuzuru Ito Li Wang 《Research in Cold and Arid Regions》 CSCD 2014年第4期322-330,共9页
It is generally known that soil pollution poses a terrible hazard to the environment, but the present techniques of contaminated soil remediation cannot control this growing threat. This paper compares the pollutant e... It is generally known that soil pollution poses a terrible hazard to the environment, but the present techniques of contaminated soil remediation cannot control this growing threat. This paper compares the pollutant extraction efficiency of traditional pumping and treating, which is a typical washing technology for the remediation of contaminated soils, with methods that utilize freeze-thaw cycles. In the soil freezing process, water shifts from unfrozen soils to the freezing front, and the permeability of soil will be enhanced under certain temperature gradients and water conditions. Therefore, this paper discusses the purification of contaminated soil through freeze-thaw action. We conducted a cleansing experiment on clay and silica sand infused with NaCl(simulation of heavy metals) and found that the efficiency of purification was enhanced remarkably in the latter by the freeze-thaw action. To assess the effective extraction of DNAPLs in soil, we conducted an experiment on suction by freezing, predicated on the different freezing points of moisture and pollutants. We found that the permeability coefficient was significantly increased by the freezing-thawing action, enabling the DNAPL contaminants to be extracted selectively and effectively. 展开更多
关键词 污染土壤修复 冻融循环 提取效率 冻融作用 洗涤技术 污染物 土壤污染 冻结过程
下载PDF
Interstate Comparison of Soil Remediation Standards among Six Mid-Atlantic States, USA
6
作者 Robert P. Blauvelt Mathew Sweet 《Journal of Environmental Protection》 2014年第10期811-818,共8页
To address and help mitigate potential public health and ecological impacts associated with contaminated soil, most state environmental agencies have promulgated cleanup standards or action level criteria that are bas... To address and help mitigate potential public health and ecological impacts associated with contaminated soil, most state environmental agencies have promulgated cleanup standards or action level criteria that are based broadly on US Environmental Protection Agency risk assessment methodologies. These standards or criteria often are assembled into easy-to-use look-up tables that allow responsible parties (RPs) to determine quickly the extent of remediation that could be required simply by comparing site investigation data to the listed cleanup goal or standard. This paper compares and contrasts soil remediation standards and criteria for 20 common soil pollutants taken from state environmental agency look-up tables for five Middle Atlantic States: New York, Connecticut, New Jersey, Delaware, Pennsylvania, and Maryland. We examine the differences between numeric remedial goals for these pollutants and propose a relative rank for each state based on the overall degree of soil cleanup standard or criterion stringency. In order to identify and rank the stringency of the residential cleanup goals or standards published by the six Mid-Atlantic States, a three-step process was used that included compiling in one data set, the numerical (mg/kg), residential or unrestricted use look-up values published by state for each of the 20 contaminants;organizing and grouping those values in numerical sequence into one of three categories ranging from lowest (Most Restrictive) to highest (Least Restrictive);and then ranking each state by the number of first place finishes in each stringency category: Most Restrictive, Moderately Restrictive, and Least Restrictive. The socioeconomic consequences of these ranks were examined relative to their effects on gross state product, unemployment, and health. 展开更多
关键词 REGULATORY STANDARDS soil remediation Look-Up Tables RANKING SOCIOECONOMIC Consequences
下载PDF
Analysis of Soil Remediation Technology for Heavy Metalcontaminated Sites in Electroplating Enterprises
7
作者 Minmin ZHOU Chuanjun FU Xiaojun FAN 《Meteorological and Environmental Research》 CAS 2020年第2期73-75,共3页
The advantages and disadvantages of chemical leaching,phytoremediation,in-situ/ex-situ solidification and stabilization,cement kiln co-disposal and safe landfill remediation are analyzed.In addition,the application of... The advantages and disadvantages of chemical leaching,phytoremediation,in-situ/ex-situ solidification and stabilization,cement kiln co-disposal and safe landfill remediation are analyzed.In addition,the application of chemical leaching and in-situ/ex-situ solidification and stabilization technology in the treatment of heavy metal-contaminated soil in electroplating enterprises in China is introduced in detail to provide reference for the remediation of heavy metal-contaminated soil around electroplating enterprises in China. 展开更多
关键词 ELECTROPLATING ENTERPRISES HEAVY metal POLLUTION soil remediation technology
下载PDF
Study on Soil Remediation Technology of Cadmium Contaminated Site
8
作者 Baofu Han 《Open Journal of Applied Sciences》 2019年第3期115-120,共6页
This paper focuses on the status quo of heavy metal cadmium pollution sites, analyzes and summarizes the physical, chemical and bioremediation technologies of cadmium contaminated soil, and carefully analyzes the adva... This paper focuses on the status quo of heavy metal cadmium pollution sites, analyzes and summarizes the physical, chemical and bioremediation technologies of cadmium contaminated soil, and carefully analyzes the advantages and disadvantages of each repair technology. It pointed out the need to develop scientific, efficient and comprehensive restoration management techniques. 展开更多
关键词 CADMIUM POLLUTION soil REPAIR TECHNOLOGY
下载PDF
Soil remediation of degraded coastal saline wetlands by irrigation with paper mill effluent and plowing
9
作者 XIAMeng-jing LIU Zhi-mei LU Zhao-hua 《Journal of Forestry Research》 SCIE CAS CSCD 2012年第2期267-274,共8页
Combined with anti-waterlogging ditches, irrigation with treated paper mill effluent (TPME) and plowing were applied in this study to investigate the effects of remediation of degraded coastal saline-alkaline wetlands... Combined with anti-waterlogging ditches, irrigation with treated paper mill effluent (TPME) and plowing were applied in this study to investigate the effects of remediation of degraded coastal saline-alkaline wetlands. Three treatments were employed, viz., control (CK), irrigated with 10 cm depth of TPME (I), and plowing to 20 cm deep before irrigating 10 cm depth of TPME (IP). Results show that both I-treatment and IP-treatment could improve soil structure by decreasing bulk density by 5% and 8%. Irrigation with TPME containing low salinity stimulated salts leaching instead of accumulating. With anti-waterlogging ditches, salts were drained out of soil. Irrigation with 10 cm depth of TPME lowered total soluble salts in soil and sodium adsorption ration by 33% and 8%, respectively, but there was no significant difference compared with CK, indicating that this irrigation rate was not heavy enough to remarkably reduce soil salinity and sodicity. Thus, irrigation rate should be enhanced in order to reach better effects of desalinization and desodication. Irrigation with TPME significantly increased soil organic matter, alkali-hydrolyzable nitrogen and available phosphorus due to the abundant organic matter in TPME. Plowing increased soil air circulation, so as to enhance mineralization of organic matter and lead to the loss of organic matter; however, plowing significantly improved soil alkali-hydrolyzable nitrogen and available phosphorus. Improvements of physicochemical properties in I-treatment and IP-treatment both boosted soil microbial population and activity. Microbial biomass carbon increased significantly by 327% (I-treatment) and 451% (IP-treatment), while soil respiration increased significantly by 316% (I-treatment) and 386% (IP-treatment). Urease and dehydrogenase activities in both I-treatment and IP-treatment were significantly higher than that in CK. Phosphatase in IP-treatment was significantly higher than that in CK. Compared to I-treatment, IP-treatment improved all of the soil properties except for soil organic matter. The key to remediation of degraded saline-alkaline wetlands is to decrease soil salinity and sodicity; thus, irrigation plus plowing could be an ideal method of soil remediation. 展开更多
关键词 灌溉处理 土壤结构 海涂湿地 造纸厂 退化 污水 整治 土壤有机质
下载PDF
Analysis of the Fertilizing and Bioremediation Potential of Leaf Litter Compost Amendment in Different Soils through Indexing Method
10
作者 Sophayo Mahongnao Pooja Sharma +1 位作者 Arif Ahamad Sarita Nanda 《Journal of Environmental Protection》 2024年第3期265-297,共33页
This research study explored the efficacy of leaf litter compost as a sustainable soil amendment with the objective of promoting soil health and mitigating the accumulation of potentially toxic elements. The investiga... This research study explored the efficacy of leaf litter compost as a sustainable soil amendment with the objective of promoting soil health and mitigating the accumulation of potentially toxic elements. The investigation encompassed the impact of various organic compost amendments, including leaf compost, cow dung manure, kitchen waste compost, municipal organic waste compost, and vermicompost. The study employed Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to evaluate soil nutrient levels and concentrations of Potentially Toxic Elements (PTEs) such as arsenic, chromium, cadmium, mercury, lead, nickel, and lithium. The fertilization and bioremediation potential of these compost amendments are quantified using an indexing method. Results indicated a substantial increase in overall nutrient levels (carbon, nitrogen, phosphorus, potassium, and sulfur) in soils treated with leaf compost and other organic composts. Fertility indices (FI) are notably higher in compost-amended soils (ranging from 2.667 to 3.938) compared to those amended with chemical fertilizers (ranging from 2.250 to 2.813) across all soil samples. Furthermore, the mean concentrations of PTEs were significantly lower in soils treated with leaf compost and other organic compost amendments compared to those treated with chemical fertilizers amendments. The assessment through the indexing method revealed a high clean index (CI) for leaf compost amendment (ranging from 3.407 to 3.58), whereas the chemical fertilizer amendment exhibits a relatively lower CI (ranging from 2.78 to 3.20). Consequently, leaf compost and other organic composts exhibit the potential to enhance sustainable productivity, promoting soil health and environmental safety by improving nutrient levels and remediating potentially toxic elements in the soil. 展开更多
关键词 Bio-Compost soil Fertility Potentially Toxic Elements BIOremediation
下载PDF
Heavy Metal Remediation in AgoèNyivéLandfill Soils: Enhancing Stability through Organic Amendments
11
作者 Bassaï Magnoudéwa Bodjona Diyakadola Dihéénane Bafai Gado Tchangbedji 《Open Journal of Applied Sciences》 2024年第4期961-975,共15页
The burial of waste in developing countries, which is often carried out without respect for environmental standards, constitutes a risk of contamination of soils and even groundwater given the toxic elements they cont... The burial of waste in developing countries, which is often carried out without respect for environmental standards, constitutes a risk of contamination of soils and even groundwater given the toxic elements they contain. The objective of this work is to carry out a study of the retention of heavy metals through the contribution of cattle manure to soil samples from the final Agoè Nyivé landfill in Lomé, Togo. Soil samples from the final landfill were taken from the surface and depth at several locations to form a composite sample. The amendment of the composite sample was carried out with bovine manure on the mock-up in the Laboratory for six months. The determination of the total contents of heavy metals by the atomic absorption spectrophotometer (SAA) on the composite sample showed high contents exceeding the thresholds recommended by the AFNOR NF U 44-041 standard. Sequential extraction on these composite samples showed that the mobile portions of lead, cadmium, copper and zinc are respectively estimated at 78.06%, 50%, 28.89% and 91.59%. The bovine manure used to amend the landfill samples presents physicochemical parameters that can contribute to rendering heavy metals immobile in the soil matrix under natural conditions. The addition of manure initially made it possible to increase the values of pH, electrical conductivity, cation exchange capacity and organic matter, which promote the retention of heavy metals. Secondly, the addition of manure made it possible to reduce the mobile portion of the heavy metals studied;from 78.06% to 14.39% for lead, from 50% to 11.52% for cadmium, from 28.89% to almost 0% for copper and from 91.15% to 80.58% for zinc. The use of cattle manure as an amendment on the composite sample was decisive in reducing the mobility of heavy metals in the polluted soils of the final landfill. 展开更多
关键词 POLLUTION Heavy Metals soil Sequential Extraction DISCHARGE
下载PDF
Technique of Earthworms Restoring Soil in Greenhouse Cultivation
12
作者 Yanjiao LI Jiafei SU +7 位作者 Zhiu ZHANG Guang QI Jianhua CHEN Lixuan KOU Limin WANG Wenxian LIU Junyi ZHANG Libing QIU 《Asian Agricultural Research》 2024年第1期40-43,共4页
The production environment of greenhouse cultivation is relatively closed,the multiple cropping index is high,the management of fertilizationwatering and pesticideapplication isblindtosomeextent,andthe phenomenonofcon... The production environment of greenhouse cultivation is relatively closed,the multiple cropping index is high,the management of fertilizationwatering and pesticideapplication isblindtosomeextent,andthe phenomenonofcontinuous cropping isalsocommonSoilquali-ty affects the sustainable development of greenhouse cultivation.Earthworm is a ubiquitous invertebrate organism in soil,an important part of soil system,a link between terrestrial organisms and soil organisms,an important link in the small cycle of soil material organisms,and plays an important role in maintaining the structure and function of soil ecosystem.Different ecotypes of earthworms are closely related to their habi-tats(soil layers)and food resource preferences,and then affect their ecological functions.The principle of earthworm regulating soil function is essentially the close connection and interaction between earthworm and soil microorganism.Using different ecotypes of earthworms and bio-logical agents to carry out combined remediation of greenhouse cultivation soil is a technical model to realize sustainable development of green-house cultivation. 展开更多
关键词 Earthworms Greenhouse cultivation soil remediation Biological agent
下载PDF
Adsorption, separation and recovery properties of blocky zeolite-biochar composites for remediation of cadmium contaminated soil
13
作者 Miaomiao Zhao Degang Ma Yu Ye 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期272-279,共8页
Cadmium(Cd) contamination in soils is a global ecological threat. Conventional powdered biochar added to soil can temporarily immobilize Cd but is difficult to separate from soil, leading to secondary release of Cd an... Cadmium(Cd) contamination in soils is a global ecological threat. Conventional powdered biochar added to soil can temporarily immobilize Cd but is difficult to separate from soil, leading to secondary release of Cd and posing potential ecological and human health risks. The blocky biochar is also difficult to separate from the soil due to its fragile nature. One of the keys to overcome the difficulties in separating biochar from soil is to improve its mechanical strength. Blocky zeolite-biochar composites(ZBC) that have good mechanical strength were obtained after pyrolyzing the mixture of 50% feedstock and 50% zeolite powder at 400 ℃. ZBC and NaOH-activated ZBC(ZBC_a) were applied to remove Cd from soil. After sieving Cd-loaded ZBC and ZBC_a from soil, the bioavailable Cd content in the soil decreased by 59.70% and 68.54%,respectively. Zeolite contributed to improving both adsorption performance and mechanical properties of the composites. After repeating the process of “remediation-sieving-desorption-regeneration” three times, the recoveries of ZBC and ZBC_a were above 97.00%, and regeneration rates were 48.70-83.26%,respectively. Under simulated mechanical sieving conditions, ZBC and ZBC_a lost only 4.06% and 5.40%of their mass and retained their integrity. Remediation of Cd-contaminated soil with blocky zeolitebiochar composite is sustainable and safe because the removal of bioavailable Cd from soil is permanent rather than a temporary decrease of bioavailability. This study provides a reference for the preparation of separable and recyclable adsorbents for the removal of contaminants from soil. 展开更多
关键词 Zeolite-biochar composite ADSORPTION SEPARATION Recycling Cd-contaminated soil
下载PDF
Combined effects of earthworms and biochar on PAHs-contaminated soil remediation:A review
14
作者 Shuyu Hou Jue Wang +2 位作者 Jun Dai Mohammed Boussafir Chi Zhang 《Soil Ecology Letters》 CSCD 2023年第2期3-26,共24页
Polycyclic aromatic hydrocarbons(PAHs)in soil pose a threat to the health of humans and other organisms due to their persistence.The remediation method of combined application of biochar and earthworms has received gr... Polycyclic aromatic hydrocarbons(PAHs)in soil pose a threat to the health of humans and other organisms due to their persistence.The remediation method of combined application of biochar and earthworms has received growing attention owing to its effectiveness in PAHs removal.However,the earthworm-biochar interaction and its influence on PAHs in soil has not been systematically reviewed.This review focuses on the effectiveness of combined application of earthworms and biochar in the remediation of PAHs-contaminated soils and the underlying mechanisms,including adsorption,bioaccumulation,and biodegradation.Earthworm-biochar interaction activates the functional microorganisms in soil and the PAHs-degrading microorganisms in earthworm guts,promoting PAHs biodegradation.This review provides a theoretical support for the combined application of biochar and earthworms in the remediation of PAHs-contaminated soils,points out the limitations of this remediation method,and finally shows the prospects for future research. 展开更多
关键词 EARTHWORM BIOCHAR soil PAHS combined effect
原文传递
Natural siderite derivatives activated peroxydisulfate toward oxidation of organic contaminant: A green soil remediation strategy
15
作者 Chengwei Zhong Yinying Jiang +2 位作者 Quanfeng Liu Xiaoshuang Sun Jiang Yu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第5期615-627,共13页
Natural siderite(FeCO_(3)),simulated synthetic siderite and nZVI/FeCO_(3) composite were used as green and easily available iron-based catalysts in peroxydisulfate activation for remediating 2-chlorophenol as the targ... Natural siderite(FeCO_(3)),simulated synthetic siderite and nZVI/FeCO_(3) composite were used as green and easily available iron-based catalysts in peroxydisulfate activation for remediating 2-chlorophenol as the target contaminant and this technique can effectively degrade organic pollutants in the soil.The key reaction parameters such as catalysts dosage,oxidant concentration and pH,were investigated to evaluate the catalytic performance of different materials in catalytic systems.The buffering property of natural soil conduced satisfactory degradation performance in a wide pH range(3-10).Both the main non-radical of ^(1)O_(2) and free radicals of SO_(4)^(-) and OH·were evidenced by quenching experiment and electron paramagnetic resonance.The reduction of nZVI on FFC surface not only has the advantage for electronic transfer to promote the circulation of Fe(Ⅲ)to Fe(Ⅱ),but also can directly dechlorinate.Furthermore,the intermediates were comprehensively analyzed by GC-MS and a potential removal mechanism of three oxidant system for 2-CP soil degradation was obtained.Briefly,this research provides a new perspective for organic contaminate soil treatment using natural siderite or simulated synthetic siderite as efficient and environmental catalytic material. 展开更多
关键词 Natural siderite 2-CHLOROPHENOL soil PEROXYDISULFATE Reactive radicals
原文传递
Remediation of Cu Contaminated Soil by Fe_(78)Si_(9)B_(13)^(AP)Permeability Reaction Barrier Combined with Electrokinetic Method
16
作者 Liefei Pei Xiangyun Zhang Zizhou Yuan 《Journal of Renewable Materials》 SCIE EI 2023年第6期2969-2983,共15页
Iron-based amorphous crystalline powder Fe_(78)Si_(9)B_(13)^(AP)is used as a permeability reaction barrier(PRB)combined with an electrokinetic method(EK-PRB)to study the removal rate of Cu in contaminated soil.After t... Iron-based amorphous crystalline powder Fe_(78)Si_(9)B_(13)^(AP)is used as a permeability reaction barrier(PRB)combined with an electrokinetic method(EK-PRB)to study the removal rate of Cu in contaminated soil.After treating Cucontaminated soil for 5 days under different voltage gradients and soil water content,the soil pH is between 3.1 and 7.2.The increase of voltage gradient and soil water content can effectively promote the movement of Cu^(2+) to the cathode.The voltage gradient is 3 V/cm,and the water content of 40%is considered to be an optional experimental condition.Therefore,under this condition,the effects of Fe_(78)Si_(9)B_(13)^(AP)and zero-valent iron(ZVI)as PRB on the removal rate of total Cu in soil and the transformation of chemical forms of Cu are studied.Compared with ZVI,Fe_(78)Si_(9)B_(13)^(AP)as PRB has a better remediation effect.EK-Fe_(78)Si_(9)B_(13)^(AP)can remove 80.3%of total Cu in soil,and the biologically available Cu is reduced to 3.6%,which effectively reduces the environmental risk of contaminated soil. 展开更多
关键词 soil contamination amorphous alloy electrokinetic method IMMOBILIZATION
下载PDF
Laboratory Design Criteria for Monitoring Biostimulated Bioremediation of a Crude Oil Contaminated Soil in Niger Delta Using Total Petroleum Hydrocarbon
17
作者 Justin Nnaemeka Okorondu 《Journal of Geoscience and Environment Protection》 2023年第1期139-149,共11页
The remediation of crude oil-impacted soil has always been a challenge in different soil environments and climatic conditions. Bioremediation technology has offered a breakthrough in restoring crude oil-impacted soil/... The remediation of crude oil-impacted soil has always been a challenge in different soil environments and climatic conditions. Bioremediation technology has offered a breakthrough in restoring crude oil-impacted soil/sediment in muddy, dry soil and wetlands. Though, there have been varied environmental conditions that have hampered the success of the bioremediation process. This study has evaluated the effectiveness of a biostimulated bioremediation of crude oil-impacted soil using some design criteria—nutrient amendment (NPK fertilizer) and moisture content. Soil sample sets—A, B, C, D, E, F, and G were impacted with crude oil at a ratio of 10 g/kg and amended with varying amounts of nutrient 30, 60, and 80 g of N.P.K fertilizer. The medium for the inoculation of the nutrient was water and the volume of water applied varied from 30% to 80% saturation. The soil sample sets were harvested at an interval of 3 months for 180 days to determine the concentration of total petroleum hydrocarbon left in the soil. The analysis of the total petroleum hydrocarbon was achieved using a GC-FID with a capillary column and autosampler. Soil samples were extracted with mixed solvent dichloromethane and acetone at a 1:1 ratio. The total petroleum hydrocarbon results show that biostimulated bioremediation achieved better results in soil sample sets with low moisture content (30% water saturation) and moderate nutrient amendment. The biodegradation of the sample sets with high water saturation and a high nutrient amendment was slow with a higher amount of total hydrocarbon content at the end of the 180 days. The variability in the hydrocarbon degradation pattern of contaminated soil shows that biostimulated bioremediation achieved better results in soils with low moisture content than in soil environments with high water content (saturation). More so, nutrient overdosing of the substrate hampered the effectiveness of the remediation process. 展开更多
关键词 BIOremediation soil NUTRIENT Moisture Content Total Petroleum Hydrocarbon Crude Oil
下载PDF
Remediation of oily soil using acidic sophorolipids micro-emulsion
18
作者 Huie Liu Hongjian Chen +3 位作者 Guanghui Huang Yunfei Yu Rujie Li Shuang Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第7期270-278,共9页
A sophorolipids(SLs)micro-emulsion in Winsor type Ⅰ form was used for crude oil contaminated soil washing treatment.The micro-emulsion shows higher oil removal rate than SLs aqueous solution and diesel oil.The type ... A sophorolipids(SLs)micro-emulsion in Winsor type Ⅰ form was used for crude oil contaminated soil washing treatment.The micro-emulsion shows higher oil removal rate than SLs aqueous solution and diesel oil.The type Ⅰ micro-emulsion with w(SLs)=6%,w(NaCl)=1%,w(diesel)=13.36% gave a high oil removal rate of 95.6% and the eluate remained in type Ⅰ state.The recovered oil showed lower viscosity,mainly caused by the entering of diesel from the micro-emulsion phase into the oil phase and the lower removal rate of the heavier components,such as the resin and asphaltene.The initial heavily saline-alkaline soil changed into mildly saline-alkaline state after washing treatment,favoring the germination and growth of plants,with ryegrass showing better germination and growth effect than alfalfa.The ryegrass showed good phytoremediation effect on the contaminated soil after SLs micro-emulsion washing.The combination process of SL micro-emulsion washing and ryegrass phytoremediation is prospective for oily soil treatment. 展开更多
关键词 SOPHOROLIPIDS Winsor typeⅠmicro-emulsion WASHING Saline-alkaline soil Plant germination and growth
下载PDF
Impact of Initial Soil Conditions on Soil Hydrothermal and Surface Energy Fluxes in the Permafrost Region of the Tibetan Plateau
19
作者 Siqiong LUO Zihang CHEN +3 位作者 Jingyuan WANG Tonghua WU Yao XIAO Yongping QIAO 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第4期717-736,共20页
Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)an... Accurate initial soil conditions play a crucial role in simulating soil hydrothermal and surface energy fluxes in land surface process modeling.This study emphasized the influence of the initial soil temperature(ST)and soil moisture(SM)conditions on a land surface energy and water simulation in the permafrost region in the Tibetan Plateau(TP)using the Community Land Model version 5.0(CLM5.0).The results indicate that the default initial schemes for ST and SM in CLM5.0 were simplistic,and inaccurately represented the soil characteristics of permafrost in the TP which led to underestimating ST during the freezing period while overestimating ST and underestimating SLW during the thawing period at the XDT site.Applying the long-term spin-up method to obtain initial soil conditions has only led to limited improvement in simulating soil hydrothermal and surface energy fluxes.The modified initial soil schemes proposed in this study comprehensively incorporate the characteristics of permafrost,which coexists with soil liquid water(SLW),and soil ice(SI)when the ST is below freezing temperature,effectively enhancing the accuracy of the simulated soil hydrothermal and surface energy fluxes.Consequently,the modified initial soil schemes greatly improved upon the results achieved through the long-term spin-up method.Three modified initial soil schemes experiments resulted in a 64%,88%,and 77%reduction in the average mean bias error(MBE)of ST,and a 13%,21%,and 19%reduction in the average root-mean-square error(RMSE)of SLW compared to the default simulation results.Also,the average MBE of net radiation was reduced by 7%,22%,and 21%. 展开更多
关键词 initial soil conditions soil temperature soil liquid water soil ice surface energy fluxes PERMAFROST
下载PDF
The competition between Bidens pilosa and Setaria viridis alters soil microbial composition and soil ecological function
20
作者 Qiao Li Jianying Guo +1 位作者 Han Zhang Mengxin Zhao 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期267-282,共16页
Bidens pilosa is recognized as one of the major invasive plants in China.Its invasion has been associated with significant losses in agriculture,forestry,husbandry,and biodiversity.Soil ecosystems play an important ro... Bidens pilosa is recognized as one of the major invasive plants in China.Its invasion has been associated with significant losses in agriculture,forestry,husbandry,and biodiversity.Soil ecosystems play an important role in alien plant invasion.Microorganisms within the soil act as intermediaries between plants and soil ecological functions,playing a role in regulating soil enzyme activities and nutrient dynamics.Understanding the interactions between invasive plants,soil microorganisms,and soil ecological processes is vital for managing and mitigating the impacts of invasive species on the environment.In this study,we conducted a systematic analysis focusing on B.pilosa and Setaria viridis,a common native companion plant in the invaded area.To simulate the invasion process of B.pilosa,we constructed homogeneous plots consisting of B.pilosa and S.viridis grown separately as monocultures,as well as in mixtures.The rhizosphere and bulk soils were collected from the alien plant B.pilosa and the native plant S.viridis.In order to focus on the soil ecological functional mechanisms that contribute to the successful invasion of B.pilosa,we analyzed the effects of B.pilosa on the composition of soil microbial communities and soil ecological functions.The results showed that the biomass of B.pilosa increased by 27.51% and that of S.viridis was significantly reduced by 66.56%.The organic matter contents in the bulk and rhizosphere soils of B.pilosa were approximately 1.30 times those in the native plant soils.The TN and NO_(3)^(-)contents in the rhizosphere soil of B.pilosa were 1.30 to 2.71 times those in the native plant soils.The activities of acid phosphatase,alkaline phosphatase,and urease in the rhizosphere soil of B.pilosa were 1.98-2.25 times higher than in the native plant soils.Using high-throughput sequencing of the16S rRNA gene,we found that B.pilosa altered the composition of the soil microbial community.Specifically,many genera in Actinobacteria and Proteobacteria were enriched in B.pilosa soils.Further correlation analyses verified that these genera had significantly positive relationships with soil nutrients and enzyme activities.Plant biomass,soil p H,and the contents of organic matter,TN,NO_(3)^(-),TP,AP,TK,and AK were the main factors affecting soil microbial communities.This study showed that the invasion of B.pilosa led to significant alterations in the composition of the soil microbial communities.These changes were closely linked to modifications in plant traits as well as soil physical and chemical properties.Some microbial species related to C,N and P cycling were enriched in the soil invaded by B.pilosa.These findings provide additional support for the hypothesis of soil-microbe feedback in the successful invasion of alien plants.They also offer insights into the ecological mechanism by which soil microbes contribute to the successful invasion of B.pilosa.Overall,our research contributes to a better understanding of the complex interactions between invasive plants,soil microbial communities,and ecosystem dynamics. 展开更多
关键词 plant invasion Bidens pilosa soil microbial composition soil properties soil enzyme activities
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部