期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Triangle Method for Estimating Soil Surface Wetness from Satellite Imagery in Allahabad District, Uttar Pradesh, India
1
作者 Abba Aliyu Kasim Abubakar Aminu Usman 《Journal of Geoscience and Environment Protection》 2016年第1期84-92,共9页
Soil surface wetness is indispensable land surface parameter in agriculture, hydrology and environmental engineering. This paper explores the relationship between surface radiant temperature and fractional vegetation ... Soil surface wetness is indispensable land surface parameter in agriculture, hydrology and environmental engineering. This paper explores the relationship between surface radiant temperature and fractional vegetation cover derived from satellite imagery to estimate soil surface wetness (triangle method) in Allahabad district. The pixel distributions create triangular shapes because the range of surface radiant temperature decreases as the amount of vegetation cover increases and sufficient number of pixels exists. A very weak correlation is found between the simulated soil surface wetness and ground measured soil moisture at deeper soil layers (R<sup>2</sup> < 0.15) on all the dates under investigation. This is because the drying rates at the surface discontinue to be linearly correlated to that at lower levels (depths). The standing water pixels distort the shape of the triangle especially at lower left edge of the triangle. This distortion is removable. The spatial and temporal inhomogeneity of soil surface wetness is examined. 展开更多
关键词 Triangle Method soil surface Wetness surface Radiant Temperature Fractional Vegetation Cover
下载PDF
Effect of soil surface roughness on emergence rate and yield of mechanized direct-seeded rapeseed based on 3D laser scanning
2
作者 Hui Chen Liping Gao +2 位作者 Mengcheng Li Yitao Liao Qingxi Liao 《International Journal of Agricultural and Biological Engineering》 SCIE 2023年第3期110-119,共10页
The quality of seedbed after sowing such as soil surface roughness is one of the key factors affecting the seedling emergence of rapeseed,which ultimately affected crop yield.However,the effect of soil surface roughne... The quality of seedbed after sowing such as soil surface roughness is one of the key factors affecting the seedling emergence of rapeseed,which ultimately affected crop yield.However,the effect of soil surface roughness on seedling emergence and yield of rapeseed is still unclear.In this study,field experiments at the experimental site of Jianli and Shayang were carried out.Three treatments were designed:relative slow(M1),medium(M2),and fast(M3)forward speed of the unit.Soil surface roughness measured by a 3D laser scanner,seed quantity of the seeder,emergence rate and yield of rapeseed were determined to investigate the soil surface roughness effect on emergence rate and yield of rapeseed.The results showed that as the forward speed of the unit increased,the compartment surface became rougher.Compared with the M1 and M2 treatments,soil surface roughness under the M3 treatment increased by 36.5%and 9.8%,respectively.The actual seed quantity of the seeder under different treatments ranged from 3806.56 to 4158.18 g/hm2.The average error rate of the actual and theoretical seed quantity was less than 5%,which met the operational quality requirements for seeding rapeseed crops.As the forward speed of the unit increased,the actual seed quantity of the seeder gradually increased while the emergence rate and yield of rapeseed decreased.The seed quantity under the M3 treatment increased by 6.9%and 4.7%,while the emergence rate of rapeseed decreased by 3.3%and 2.0%,and the yield decreased by 23.2%and 13.1%,compared with the M1 and M2 treatments,respectively.Correlation analysis indicated that emergence rate and yield of rapeseed were negatively influenced by soil surface roughness.Considering rapeseed emergence rate,seed yield,and economic benefits,the M1 treatment was recommended.But considering the factor that the M1 treatment may reduce the unit operation efficiency,and thus resulting in lower cost of production,M2 could be recommended in actual farming.The results of this study laid a theoretical foundation for analyzing the relationship between the seedbed surface quality and seedling emergence and yield. 展开更多
关键词 mechanized direct-seeder soil surface roughness RAPESEED seed emergence rate YIELD
原文传递
Information acquisition system of multipoint soil surface height variation for profiling mechanism of seeding unit of precision corn planter 被引量:5
3
作者 Bo Zhang Wei Zhang +5 位作者 Liqiang Qi Haiba Fu Lijuan Yu Rui Li Yue Zhao Xinxian Ma 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2018年第6期58-64,共7页
The emergence rate and vitality of maize are directly affected by the sowing depth,and the uniformity of this depth is an important performance indicator of a planter,while the effective soil surface height informatio... The emergence rate and vitality of maize are directly affected by the sowing depth,and the uniformity of this depth is an important performance indicator of a planter,while the effective soil surface height information acquisition is the prerequisite for ensuring the accuracy of sowing depth control.The soil surface height variation acquisition system of a precision corn planter often produces profiling errors when performing active profiling due to interference from ground debris.In this study,a multipoint soil surface height variation information acquisition system was investigated,which consists of a ranging sensor group and a microcontroller unit(MCU)using a data comparison and screening method.The structure and specifications of the ranging sensors were determined according to the soil surface height variation and debris size,and a nonessential profiling control program was developed.Performed tests on the information acquisition system indicated that the measurement accuracy of the system was 3 mm,and when advancing at a speed of 8 km/h,the accuracy of the profiling decision and the system stability were 97.1%and 94.1%,respectively,indicating that the system was capable of nonessential profile control.The designed ranging system could provide a reference for the design of a ground information acquisition system of precision planters with an active profiling mechanism. 展开更多
关键词 corn precision planter information acquisition system seeding unit profiling mechanism active profiling soil surface height variation
原文传递
Centrifuge experiment on the penetration test for evaluating undrained strength of deep-sea surface soils 被引量:3
4
作者 Xingsen Guo Tingkai Nian +4 位作者 Wei Zhao Zhongde Gu Chunpeng Liu Xiaolei Liu Yonggang Jia 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第2期363-373,共11页
Rapid advances in deep-sea mining engineering have created an urgent need for the accurate evaluation of the undrained strength of marine soils,especially surface soils.Significant achievements have been made using fu... Rapid advances in deep-sea mining engineering have created an urgent need for the accurate evaluation of the undrained strength of marine soils,especially surface soils.Significant achievements have been made using full-flow penetration penetrometers to evaluate marine soil strength in the deep penetration;however,a method considering the effect of ambient water on the surface penetration needs to be established urgently.In this study,penetrometers with multiple probes were developed and used to conduct centrifuge experiments on South China Sea soil and kaolin clay.First,the forces on the probes throughout the penetration process were systematically analyzed and quantified.Second,the spatial influence zone was determined by capturing the resistance changes and sample crack development,and the penetration depth for a sample to reach a stable failure mode was given.Third,the vane shear strength was used to invert the penetration resistance factor of the ball and determine the range of the penetration resistance factor values.Furthermore,a methodology to determine the penetration resistance factors for surface marine soils was established.Finally,the effect of the water cavity above various probes in the surface penetration was used to formulate an internal mechanism for variations in the penetration resistance factor. 展开更多
关键词 Static penetrometer Centrifuge experiment Deep-sea surface soil Undrained shear strength Penetration resistance factor Water cavity
下载PDF
A Modified Temperature-Vegetation Dryness Index(MTVDI)for Assessment of Surface Soil Moisture Based on MODIS Data 被引量:1
5
作者 WANG Hao LI Zongshan +2 位作者 ZHANG Weijuan YE Xin LIU Xianfeng 《Chinese Geographical Science》 SCIE CSCD 2022年第4期592-605,共14页
Spatio-temporal dynamic monitoring of soil moisture is highly important to management of agricultural and vegetation eco-systems.The temperature-vegetation dryness index based on the triangle or trapezoid method has b... Spatio-temporal dynamic monitoring of soil moisture is highly important to management of agricultural and vegetation eco-systems.The temperature-vegetation dryness index based on the triangle or trapezoid method has been used widely in previous studies.However,most existing studies simply used linear regression to construct empirical models to fit the edges of the feature space.This requires extensive data from a vast study area,and may lead to subjective results.In this study,a Modified Temperature-Vegetation Dryness Index(MTVDI)was used to monitor surface soil moisture status using MODIS(Moderate-resolution Imaging Spectroradiometer)remote sensing data,in which the dry edge conditions were determined at the pixel scale based on surface energy balance.The MTVDI was validated by field measurements at 30 sites for 10 d and compared with the Temperature-Vegetation Dryness Index(TVDI).The results showed that the R^(2) for MTVDI and soil moisture obviously improved(0.45 for TVDI,0.69 for MTVDI).As for spatial changes,MTVDI can also better reflect the actual soil moisture condition than TVDI.As a result,MTVDI can be considered an effective method to monitor the spatio-temporal changes in surface soil moisture on a regional scale. 展开更多
关键词 surface soil moisture Temperature-Vegetation Dryness Index(TVDI) vegetation index MODIS Modified Temperature-Vegetation Dryness Index(MTVDI)
下载PDF
Influence of Vegetation Cover on the Oh Soil Moisture Retrieval Model: A Case Study of the Malinda Wetland, Tanzania 被引量:1
6
作者 Fridah Kirimi David N. Kuria +4 位作者 Frank Thonfeld Esther Amler Kenneth Mubea Salome Misana Gunter Menz 《Advances in Remote Sensing》 2016年第1期28-42,共15页
Soil moisture is an important parameter that drives agriculture, climate and hydrological systems. In addition, retrieval of soil moisture is important in the analysis as well as its influence on these systems. Radar ... Soil moisture is an important parameter that drives agriculture, climate and hydrological systems. In addition, retrieval of soil moisture is important in the analysis as well as its influence on these systems. Radar imagery is best suited for this retrieval due to its all-weather capability and independence from solar irradiation. Soil moisture retrieval was done for the Malinda Wetland, Tanzania, during two time periods, March and September 2013. The aim of this paper was to analyze soil moisture retrieval performance when vegetation contribution is taken into account. Backscatter values were obtained from TerraSAR-X Spotlight mode imagery taken in March and September 2013. The backscatter values recorded by SAR imagery are influenced by vegetation, soil roughness and soil moisture. Thus, in order to obtain the backscatter due to soil moisture, the roughness and vegetation contribution are determined and decoupled from total backscatter. The roughness parameters were obtained from a Digital Surface Model (DSM) from Unmanned Aerial Vehicle (UAV) photographs whereas the vegetation parameter was obtained by inverting the Water Cloud Model (WCM). Lastly, soil moisture was retrieved using the Oh Model. The coefficient of correlation between the observed and retrieved was 0.39 for the month of March and 0.65 in the month of August. When the vegetation contribution was considered, the r2 for March was 0.64 and that in August was 0.74. The results revealed that accounting for vegetation improved soil moisture retrieval. 展开更多
关键词 surface soil Moisture Oh Model Water Cloud Model WETLAND TERRASAR-X
下载PDF
Soil Geochemical Background Value and Environmental Quality Assessment in Jinan City
7
作者 Hongjin WANG Chao YU +1 位作者 Wenkai REN Yan GUO 《Agricultural Biotechnology》 CAS 2022年第5期72-75,79,共5页
[Objectives]This study was conducted to accurately assess soil and environmental quality in Jinan City. [Methods] Based on the multipurpose regional geochemical survey data of 1∶250 000 in Shandong Province, the diff... [Objectives]This study was conducted to accurately assess soil and environmental quality in Jinan City. [Methods] Based on the multipurpose regional geochemical survey data of 1∶250 000 in Shandong Province, the differences between the soil geochemical background values of 54 indexes in Jinan City and the soil in the whole province and the comprehensive geochemical class of soil quality were studied. [Results] The contents of C and Cao in Jinan soil was significantly higher than the background values of Shandong Province. The Cd, Cr, Cu, F, Ni, Sn, MgO, Cao and Na_(2)O contents and pH value were higher than the abundance of the A soil layer in China, but the nutrient index contents of Se, I and OrgC were lower than the national background values. The surface soil quality in the study area was generally good, with the sum of superior, good and medium accounting for 99.76% of the total area of the study area. The distribution area of poor soil was the least, accounting for only 0.24%, and it was scattered near industrial and mining enterprises in the urban area of Jinan City, Laiwu District, Gangcheng District and Zhangqiu District, which was closely related to human activities. [Conclusions] This study has practical guiding significance for improving land use efficiency. 展开更多
关键词 surface soil Background value GEOCHEMISTRY Land quality Assessment Jinan city
下载PDF
Application of the Reciprocal Analysis for Sensible and Latent Heat Fluxes with Evapotranspiration at a Humid Region 被引量:2
8
作者 Toshisuke Maruyama Manabu Segawa 《Open Journal of Modern Hydrology》 2016年第4期230-252,共23页
Evapotranspiration acts an important role in hydrologic cycle and water resources planning. But the estimation issue still remains until nowadays. This research attempts to make clear this problem by the following way... Evapotranspiration acts an important role in hydrologic cycle and water resources planning. But the estimation issue still remains until nowadays. This research attempts to make clear this problem by the following way. In a humid region, by applying the Bowen ratio concept and optimum procedure on the soil surface, sensible and latent heat fluxes are estimated using net radiation (Rn) and heat flux into the ground (G). The method uses air temperature and humidity at a single height by reciprocally determining the soil surface temperature (Ts) and the relative humidity (rehs). This feature can be remarkably extended to the utilization. The validity of the method is confirmed by comparing of observed and estimated latent (lE) and sensible heat flux (H) using the eddy covariance method. The hourly change of the lE, H, Ts and rehs on the soil surface, yearly change of lE and H and relationship of estimated lE and H versus observed are clarified. Furthermore, monthly evapotranspiration is estimated from the lE. The research was conducted using hourly data of FLUXNET at a site of Japan, three sites of the United States and two sites of Europe in humid regions having over 1000 mm of annual precipitation. 展开更多
关键词 Bowen Ratio Eddy Covariance Reciprocal Determination Estimation of Sensible and Latent Heat Fluxes soil surface Temperature and Humidity
下载PDF
In-situ soil texture classification and physical clay content measurement based on multi-source information fusion
9
作者 Chao Meng Wei Yang +2 位作者 Xinjian Ren Dong Wang Minzan Li 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2023年第1期203-211,共9页
Soil texture is one of the most important soil characteristics that affect soil properties.Rapid acquisition of soil texture information is of great significance for accurate farmland management.Traditional soil textu... Soil texture is one of the most important soil characteristics that affect soil properties.Rapid acquisition of soil texture information is of great significance for accurate farmland management.Traditional soil texture analysis methods are relatively complicated and cannot meet the requirements of temporal and spatial resolution.This research introduced a self-developed vehicle-mounted in-situ soil texture detection system,which can predict the type of soil texture and the particle composition of the texture,and obtain real-time data during the measurement process without preprocessing the soil samples.The detection system is mainly composed of a conductivity measuring device,a camera,an auxiliary mechanical structure,and a control system.The soil electrical conductivity(ECa)and the texture features extracted from the surface image were input into the embedded model to realize real-time texture analysis.In order to find the best model suitable for the detection system,measurements were carried out in three test fields in Northeast and North China to compare the performance of different models applied to the detection system.The results showed that for soil texture classification,ExtraTrees performed best,with Precision,Recall,and F1 all being 0.82.For particle content of soil texture prediction,the R2 of ExtraTrees was 0.77,and RMSE and MAPE were 74.72 and 39.58.It was observed that ECa,Moment of inertia,and Entropy had larger weights in the drawn model influence weight map,and they are the main contributors to predicting soil texture.These results showed the potential of the vehicle-mounted in-situ soil texture detection system,which can provide a basis for fast,cost-effective,and efficient soil texture analysis. 展开更多
关键词 soil texture soil sensor electrical conductivity soil surface image
原文传递
Parasitic contamination of surface and deep soil in different areas of Sari in north of Iran
10
作者 Hajar Ziaei Hezarjaribi Ahmad Daryani +5 位作者 Nastaran Amani Kelarijani Mina Eskandari Shahraki Beheshteh Haghparast Kenari Mohammad Saaid Dayer Najla Hamidianfar Fatemeh Ghaffarifar 《Journal of Coastal Life Medicine》 2016年第11期861-864,共4页
Objective:To study the parasitic contamination of soil in selected areas of Sari,north of Iran.Methods:A cross-sectional study was conducted to identify all available parasites in surface and deep soil.In this study 5... Objective:To study the parasitic contamination of soil in selected areas of Sari,north of Iran.Methods:A cross-sectional study was conducted to identify all available parasites in surface and deep soil.In this study 580 soil samples(278 deep soil and 302 topsoil samples)from 21 different locations were collected from pathways,parks,greenhouses,estates around the city,cemetery,main squares,farmlands,fenced gardens and seashores.Depending on the soil type,two samples were prepared,from surface and deep soil at the depth of 3 to 5 cm.After performing various stages of preparation,including cleaning and washing,smoothing and flotation,parasitic elements were examined microscopically and quantitative parasite counting was done using a McMaster slide.Results:The results showed that the highest rate of parasitic contamination was related to nematodes larvae(26.11%).Other contaminants such as Entamoeba and Acanthamoeba cysts,vacuolization Blastocystis hominis form,oocyte containing sporocysts,Toxascaris eggs,nematoda larvae,Hymenolepis eggs,Ascaris eggs,Fasciola eggs,hookworm eggs,Toxocara eggs,insects'larvae and other ciliated and flagellated organisms were also observed.The results of this study showed that the highest contamination was found in public garden(25.80%)both in surface(29.30%)and in deep soil(21.12%),while the lowest level of contamination was observed in seashore surface soil(4.90%).Conclusions:The results showed that soil can provide a potential medium for the spread of soil transmitted parasitic diseases in the environment;therefore,preventive programs are needed. 展开更多
关键词 Parasitic contamination surface and deep soil Different areas North of Iran
原文传递
Land surface roughness impacted by typical vegetation restoration projects on aeolian sandy lands in the Yarlung Zangbo River valley,southern Tibetan plateau 被引量:1
11
作者 Baojun Zhang Donghong Xiong +1 位作者 Yongfa Tang Lin Liu 《International Soil and Water Conservation Research》 SCIE CSCD 2022年第1期109-118,共10页
Aeolian sandy lands are widespread and desertification is recognized as one of the main environmental issues in the Yarlung Zangbo River valley,southern Tibetan plateau.The surface microtopographic var-iations induced... Aeolian sandy lands are widespread and desertification is recognized as one of the main environmental issues in the Yarlung Zangbo River valley,southern Tibetan plateau.The surface microtopographic var-iations induced by the near soil surface characteristics of plant communities are important compositions of land surface roughness,which likely influence wind erosion.This study was conducted to quantify the effects of typical vegetation restoration on land surface roughness on the aeolian sandy lands,and to identify the main influencing factors of land surface roughness in the Yarlung Zangbo River valley.Two bare sandy lands(as controls)and eight vegetated sandy lands with different restoration communities and ages were selected,and land surface roughness(LSR),as represented by surface microtopographic variations in this study,was measured by photogrammetric surveys.The results showed that LSR significantly increased by 7.9-16.8 times after vegetation restoration on the aeolian sandy lands,and varied among different restoration communities and ages.The mostly restored communities of Sophora moorcroftiana and Populus L.had greater LSR as compared to Artemisia wellbyi and Hedysarum scoparium.With succession from 6 to over 30 years,LSR gradually increased in the Sophora moorcroftiana restored sandy lands,but decreased in the Populus L restored sandy lands.The variations of LSR were mainly attributed to the differences in near soil surface characteristics of vegetation(plant stem diameter and coverage,and plant residue density)and biological soil crusts(coverage and thickness).Mixed plantation of Populus L and Sophora moorcroftiana was considered as the best restoration communities because of their effectiveness in increasing land surface roughness on the aeolian sandy lands in the Yarlung Zangbo River valley.The results would facilitate the understanding of the benefits of vegetation restoration in controlling wind erosion on the aeolian sandy lands. 展开更多
关键词 Aeolian desertification surface microtopographic variation Near soil surface characteristics Plant communities Yarlung Zangbo River valley
原文传递
Digitizing the thermal and hydrological parameters of land surface in subtropical China using AMSR-E brightness temperatures
12
作者 Yongxian Su Xiuzhi Chen +2 位作者 Hua Su Liyang Liu Jishan Liao 《International Journal of Digital Earth》 SCIE EI 2017年第7期687-700,共14页
Digitizing the land surface temperature(T_(s))and surface soil moisture(m _(v))is essential for developing the intelligent Digital Earth.Here,we developed a two parameter physical-based passive microwave remote sensin... Digitizing the land surface temperature(T_(s))and surface soil moisture(m _(v))is essential for developing the intelligent Digital Earth.Here,we developed a two parameter physical-based passive microwave remote sensing model for jointly retrieving T_(s) and m_(v) using the dual-polarized T_(b) of Aqua satellite advanced microwave scanning radiometer(AMSR-E)C-band(6.9 GHz)based on the simplified radiative transfer equation.Validation using in situ T_(s) and m_(v) in southern China showed the average root mean square errors(RMSE)of T s and m_(v) retrievals reach 2.42 K(R^(2)=0.61,n=351)and 0.025 g cm^(−3)(R^(2)=0.68,n=663),respectively.The results were also validated using global in situ T_(s)(n=2362)and m_(v)(n=1657)of International Soil Moisture Network.The corresponding RMSE are 3.44 k(R 2=0.86)and 0.039 g cm^(−3)(R^(2)=0.83),respectively.The monthly variations of model-derived Ts and mv are highly consistent with those of the Moderate Resolution Imaging Spectroradiometer T_(s)(R^(2)=0.57;RMSE=2.91 k)and ECV_SM m_(v)(R^(2)=0.51;RMSE=0.045 g cm^(−3)),respectively.Overall,this paper indicates an effective way to jointly modeling T_(s) and m_(v) using passive microwave remote sensing. 展开更多
关键词 surface soil moisture land surface temperature physical-based radiative transfer model AMSR-E brightness temperatures
原文传递
Optimization of nitrogen fertilizer rate under integrated rice management in a hilly area of Southwest China 被引量:2
13
作者 Yujiao DONG Jiang YUAN +4 位作者 Guangbin ZHANG Jing MA Padilla HILARIO Xuejun LIU Shihua LU 《Pedosphere》 SCIE CAS CSCD 2020年第6期759-768,共10页
China has the world’s highest nitrogen(N)application rate,and the lowest N use efficiency(NUE).With the crop yield increasing,serious N pollution is also caused.An in-situ field experiment(2011–2015)was conducted to... China has the world’s highest nitrogen(N)application rate,and the lowest N use efficiency(NUE).With the crop yield increasing,serious N pollution is also caused.An in-situ field experiment(2011–2015)was conducted to examine the effects of three N levels,0(i.e.,no fertilizer N addition to soil),120,and 180 kg N ha-1,using integrated rice management(IRM).We investigated rice yield,aboveground N uptake,and soil surface N budget in a hilly region of Southwest China.Compared to traditional rice management(TRM),IRM integrated raised beds,plastic mulch,furrow irrigation,and triangular transplanting,which significantly improved rice grain yield,straw biomass,aboveground N uptake,and NUE.Integrated rice management significantly improved 15N recovery efficiency(by 10%)and significantly reduced the ratio of potential15N loss(by 8%–12%).Among all treatments,the 120 kg N ha-1 level under IRM achieved the highest 15N recovery efficiency(32%)and 15N residual efficiency(29%),with the lowest 15N loss ratio(39%).After rice harvest,the residual N fertilizer did not achieve a full replenishment of soil N consumption,as the replenishing effect was insufficient(ranging from-31 to-49 kg N ha-1).Furthermore,soil surface N budget showed a surplus(69–146 kg N ha-1)under all treatments,and the N surplus was lower under IRM than TRM.These results indicate IRM as a reliable and stable method for high rice yield and high NUE,while exerting a minor risk of N loss.In the hilly area of Southwest China,the optimized N fertilizer application rate under IRM was found to be 100–150 kg N ha-1. 展开更多
关键词 N input N output ^(15)N recovery efficiency N surplus N use efficiency plastic mulch soil surface N budget
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部