Polycyclic aromatic hydrocarbons(PAHs)/heavy metals/fluorine(F) mixed-contaminated sites caused by abandoned metallurgic plants are receiving wide attention. To address the associated environmental problems,this s...Polycyclic aromatic hydrocarbons(PAHs)/heavy metals/fluorine(F) mixed-contaminated sites caused by abandoned metallurgic plants are receiving wide attention. To address the associated environmental problems,this study was initiated to investigate the feasibility of using carboxymethyl-β-cyclodextrin(CMCD) and carboxymethyl chitosan(CMC) solution to enhance ex situ soil washing for extracting mixed contaminants. Further,Tenax extraction method was combined with a first-three-compartment model to evaluate the environmental risk of residual PAHs in washed soil. In addition,the redistribution of heavy metals/F after decontamination was also estimated using a sequential extraction procedure. Three successive washing cycles using50 g/L CMCD and 5 g/L CMC solution were effective to remove 94.3% of total PAHs,93.2% of Pb,85.8% of Cd,93.4% of Cr,83.2% of Ni and 97.3% of F simultaneously. After the 3rd washing,the residual PAHs mainly existed as very slowly desorbing fractions,which were in the form of well-aged,well-sequestered compounds; while the remaining Pb,Cd,Cr,Ni and F mainly existed as Fe–Mn oxide and residual fractions,which were always present in stable mineral forms or bound to non-labile soil fractions. Therefore,this combined cleanup strategy proved to be effective and environmentally friendly.展开更多
Potentially toxic metals,Cd and Pb in paddy soil,have important meanings for safety of rice.A comparison extraction of Cd and Pb with EDTA,DTPA,citric acid,and FeCl3 and effects on soil fertility was studied.Results i...Potentially toxic metals,Cd and Pb in paddy soil,have important meanings for safety of rice.A comparison extraction of Cd and Pb with EDTA,DTPA,citric acid,and FeCl3 and effects on soil fertility was studied.Results indicate that about 59%and 63%of soil Cd and Pb were simultaneously removed by 10 g/L EDTA at pH 5 with a soil/extractant ratio of 1:10(W/V)for 30 min while 52%and 51%by 5 g/L DTPA.Acid extractable and reducible Cd by EDTA and DTPA contributed 58%and 53%of the removals and acid extractable and reducible Pb were about 49%and 41%,respectively.Slight changes of soil fertility,including pH,cation exchange capacity,organic matter,and soil extractable phosphorus,were observed.Extractions of citric acid and ferric chloride,however,were only efficient for Cd and the soil pH was decreased significantly.This study suggests that EDTA and DTPA can be considered as suitable agents to clean up the paddy soils contaminated with potentially toxic metals.展开更多
This study explores the possible application of a biodegradable plant based surfactant, obtained from Sapindus mukorossi, for washing low levels of arsenic (As) from an iron (Fe) rich soil. Natural association of...This study explores the possible application of a biodegradable plant based surfactant, obtained from Sapindus mukorossi, for washing low levels of arsenic (As) from an iron (Fe) rich soil. Natural association of As(Ⅴ) with Fe(Ⅲ) makes the process difficult. Soapnut solution was compared to anionic surfactant sodium dodecyl sulfate (SDS) in down-flow and a newly introduced suction mode for soil column washing. It was observed that soapnut attained up to 86% efficiency with respect to SDS in removing As. Full factorial design of experiment revealed a very good fit of data. The suction mode generated up to 83 kPa pressure inside column whilst down-flow mode generated a much higher pressure of 214 kPa, thus making the suction mode more efficient. Micellar solubilisation was found to be responsible for As desorption from the soil and it followed 1st order kinetics. Desorption rate coefficient of suction mode was found to be in the range of 0.005 to 0.01, much higher than down-flow mode values. Analysis of the PT-IR data suggested that the soapnut solution did not interact chemically with As, offering an option for reusing the surfactant. Soapnut can be considered as a soil washing agent for removing As even from soil with high Fe content.展开更多
Cadmium“Cd”is a toxic pollutant that may present in soil and water.This work evaluates:i)the use of non-steroidal anti-inflammatory drugs“NSAIDs”-bearing water for washing soil containing Cd(Ⅱ),ii)removal of Cd(...Cadmium“Cd”is a toxic pollutant that may present in soil and water.This work evaluates:i)the use of non-steroidal anti-inflammatory drugs“NSAIDs”-bearing water for washing soil containing Cd(Ⅱ),ii)removal of Cd(Ⅱ)from NSAID-bearing water by adsorption onto magnetic graphene oxide which can be easily separated by strong magnet.The studied NSAIDs are aspirin,ketoprofen,ibuprofern and diclofenac.The Cd(Ⅱ)-NSAIDs complexes were synthesized and characterized by FT-IR.Graphene was initially oxidized by either nitric acid,or ammonium persulphate method,or Hummer's method.Magnetite was then deposited on graphene oxide to give the corresponding magnetic graphene oxides(NA-MGO,APSMGO and Hum-MGO,respectively).The effect of the following factors on Cd(Ⅱ)uptake was investigated:NSAIDs type,pH,graphene oxidation method,magnetite:graphene oxide mass ratio in the adsorbent,(Cd(Ⅱ):NSAID)molar ratio.Maximum Cd(Ⅱ)uptake was achieved using“magnetic graphene oxidized with ammonium persulphate where the mass ratio of magnetite to graphene oxide was 2:1”in the presence of diclofenac at pH6.The best Cd(Ⅱ):diclofenac molar ratio was 1:3.The maximum adsorption capacity of Cd(Ⅱ)was found to be 83 mg L1.The regeneration of the adsorbent was possible by 0.3 M HNO3 solution and 80%of adsorption efficiency was maintained after five cycles.Upon presence of coexisting ions,80%of the adsorption efficiency was maintained.Various NSAIDs-containing waters were used for washing Cd-containing soil;the maximum removal efficiencies of Cd were 18%and 16%using 5 mM diclofenac or 10 mM aspirin,respectively.Using diclofenac or aspirin-spiked real pharmaceutical wastewater gave 28%removal of Cd.The optimum adsorption method was used for removal of Cd(Ⅱ)from diclofenac-containing soil-washing water,where two successive adsorptions were needed for complete Cd uptake.展开更多
Wastewater produced from the soil washing process contains heavy metals, which limits its reuse for washing. So it is necessary to develop an efficient and economical way to recycle it, and this study presented a bios...Wastewater produced from the soil washing process contains heavy metals, which limits its reuse for washing. So it is necessary to develop an efficient and economical way to recycle it, and this study presented a biosorption method to realize this goal. A typical soil sample contaminated by lead was taken from the real field near a lead smelting factory, used for the toxic metals extraction with dilute citric acid. A leach liquor was obtained with lead ions at the level of 12.35 mg/L, Cd 1.2 mg/L, Cu 1.5 mg/L, Zn 2.6 mg/L, as well as the coexisting anions, such as sulphate, silicate, chloride at the concentration of several hundred miligram per liter. The garlic peel was modified by a simple chemical saponification process and used as the biosorbent for toxic metal removal. Firstly, the adsorp- tion behavior of lead ions on the saponified garlic peel was systematically investigated using the synthetic solutions, and then the adsorption mechanisms were explored by detailed experhnents combining with the thermodynamic calculation reuslts of the aqueous system of Pb(II)-citrate-H2O. It was found that in artificial solution containing 0.01 mol/L citrate, the maximum adsorption capacity of 261.0 mg/g was reached at pH near 3.0, and also at this very pH value the Pb^2+ and Pb(H2Cit)+ were the dominant lead species, which are favorable for adsorption due to its easier approaching to the --COO^- ligands in the saponified garlic peel partilces via charge attraction, and the appearance of Pb(HCit); and Pb(Cit)- at pH above 3.0 inhibits the adsorption. Secondly, the real leach liquor was used for adsorption tests, and twice adsorption under the optimal conditons would decrease the residual concentrations of Pb, Cd, Cu and Zn to zero. After elution by using 0.1 mol/L nitric acid, the adsorbed metals can be recovered and garlic peel can be reused for at least 10 cycles effectively. This study presents a prospective biosorption method for economical and efficient removal of the lead ions from soil washing wastewater with citric acid as the leaching reagent.展开更多
Washing is a promising method for separating contaminants bound to the particles of soil ex-situ by chemical mobilization. Laboratory batch washing experi- ments were conducted using deionized water and varying concen...Washing is a promising method for separating contaminants bound to the particles of soil ex-situ by chemical mobilization. Laboratory batch washing experi- ments were conducted using deionized water and varying concentrations of oxalic acid, citric acid, tartaric acid, acetic acid, hydrochloric acid and ethylenediaminetetra acetic acid (EDTA) to assess the efficiency of using these chemicals as washing agents and to clean up heavy metals from two heavily polluted soils from an iron and streel smelting site. The toxicity reduction index and remediation costs were analyzed, and the results showed that the soils were polluted with Cd, Pb and Zn. Hydrochloric acid and EDTA were more efficient than the other washing agents in the remediation of the test soils. The maximum total toxicity reduction index showed that 0.5 mol·L^-1 hydro- chloric acid could achieve the remediation with the lowest costs.展开更多
Biologically produced surfactants (SACs) can mobilize and solubilize non-aqueous phase liquids (NAPL) adsorbed onto soil constituents. The interest in microbial surfactants has increased during recent years due to...Biologically produced surfactants (SACs) can mobilize and solubilize non-aqueous phase liquids (NAPL) adsorbed onto soil constituents. The interest in microbial surfactants has increased during recent years due to their lower toxicity, higher biodegradability, selectivity and specific activity under extreme conditions than synthetic SACs. Main output of the project represents preparation of this yeast biosurfactant intended for washing of matrices contaminated by NAPL. The influence of cultivation media composition on biosurfactant production was studied and basic properties (critical micelle concentration (CMC), minimum surface tension) of isolated biosurfactants were compared with properties of synthetic surfactant with surface tension measurement. The interracial tension of the systems containing aqueous solutions of different concentrations and non-polar substances was measured with petroleum compounds (kerosene Jet A-l), aromatic and aliphatic hydrocarbons (represented by toluene and hexane). The solution of biosurfactant Yarrowia lipolytica (YAR) in the concentration range of 0-500 mg/L reduced interracial tension by 80% in all representative systems with model contaminants; biosurfactant Candida bombicola (CAN) was less efficient. Solubilization properties were proved with toluene and hexachlorocyclohexane (HCH) isomers alpha and gamma, and effective concentration of biosurfactants was determined as 100 mg/L for toluene and HCH. SACs produced by lipophilic yeast with non-toxic and non-pathogenic status (Yarrowia lipolytica, Candida sp., etc.) seem to be very promising. The results obtained will be used for the application of biosurfactants in the clean-up technologies as agents for the mobilization of non-polar contaminants as well as for stimulation of bioremediation processes.展开更多
Batch experiments were conducted with a heavy metals and arsenic co-contaminated soil from an abandoned mine to evaluate the feasibility of a remediation technology that combines sieving with soil washing.Leaching of ...Batch experiments were conducted with a heavy metals and arsenic co-contaminated soil from an abandoned mine to evaluate the feasibility of a remediation technology that combines sieving with soil washing.Leaching of the arsenic and heavy metals from the different particle size fractions was found to decrease in the order:〈 0.1,2–0.1,and 〉 2 mm.With increased contact time,the concentration of heavy metals in the leachate was significantly decreased for small particles,probably because of adsorption by the clay soil component.For the different particle sizes,the removal efficiencies for Pb and Cd were75%–87%,and 61%–77% for Zn and Cu,although the extent of removal was decreased for As and Cr at 〈 45%.The highest efficiency by washing for Pb,Cd,Zn,and As was from the soil particles 〉 2 mm,although good metal removal efficiencies were also achieved in the small particle size fractions.Through SEM-EDS observations and correlation analysis,the leaching regularity of the heavy metals and arsenic was found to be closely related to Fe,Mn,and Ca contents of the soil fractions.The remediation of heavy metal-contaminated soil by sieving combined with soil washing was proven to be efficient,and practical remediation parameters were also recommended.展开更多
Environmental contamination due to uncontrolled e-waste recycling activities is drawing increasing attention in the world. Extraction of these metals with biodegradable chelant [S,S]-ethylenediaminedisuccinic acid (E...Environmental contamination due to uncontrolled e-waste recycling activities is drawing increasing attention in the world. Extraction of these metals with biodegradable chelant [S,S]-ethylenediaminedisuccinic acid (EDDS) and the factors influencing extraction efficacy were investigated in the present study. Results showed that the addition of EDDS at low pH (5.5) produced higher metal extraction than that at high pH (8.0) solution. Metal speciation analysis indicated that Cu was completely complexed with EDDS at different pH conditions with various amounts of EDDS applied. For Pb and Zn, at low EDDS dose of 0.304 mol/kg soil, they were present as Pb- and Zn-EDDS. However, at high EDDS dose of 1.26 mol/kg soil, most of Pb was bound with dissolved organic matter. Ca and A1 were found to be strong competitors for trace metals to EDDS at low application dose and low pH condition.展开更多
Problems associated with organochlorine pesticide (OCP)-contaminated sites in China have received wide attention. To solve such problems, innovative ex-situ methods of site remediation are urgently needed. We invest...Problems associated with organochlorine pesticide (OCP)-contaminated sites in China have received wide attention. To solve such problems, innovative ex-situ methods of site remediation are urgently needed. We investigated the feasibility of the extraction method with different organic solvents, ethanol, 1-propanol, and three fractions of petroleum ether, using a soil collected from Wujiang (W J), China, a region with long-term contamination of dichlorodiphenyltrichloroethanes (DDTs). We evaluated different influential factors, including organic solvent concentration, washing time, mixing speed, solutiomto-soil ratio, and washing temperature, on the removal of DDTs from the WJ soil. A set of relatively better parameters were selected for extraction with 100 mL L-1 petroleum ether (60-90 ℃): washing time of 180 min, mixing speed of 100 r min-I, solution-to-soil ratio of 10:1, and washing temperature of 50 ℃. These selected parameters were also applied on three other seriously OCP-polluted soils. Results demonstrated their broad-spectrum effectiveness and excellent OCP extraction performance on the contaminated soils with different characteristics.展开更多
Surfactant enhanced remediation is thought to be an effective method for the remediation of soils polluted with hydrophoblc organic compounds. Desorption of polycyclic aromatic hydrocarbons (PAHs) from an abandoned ...Surfactant enhanced remediation is thought to be an effective method for the remediation of soils polluted with hydrophoblc organic compounds. Desorption of polycyclic aromatic hydrocarbons (PAHs) from an abandoned manufactured gas plant (MGP) soil was evaluated using four eluting agents including Triton X-100 (TX100), sodium dodecylbenzene sulfonate (SDBS), rhamnolipid water solution (RWS) and rhamnolipid fermentation broth (RFB). The weight solubilization ratios for acenaphthene and fluorene were in the order of TX100 〉 SDBS 〉 RWS 〉 RFB. The Sm value, which indicates the maximum amounts of surfactants adsorbed in the soil, was in the order of RWS 〉 RFB 〉 SDBS 〉 TX100. By using 8 g L-1 of TX100, SDBS and RWS and 100% of RFB, the T-PAHs removal for the MGP soil contaminated with 207.86 mg T-PAHs kg-1 dry soil was 48.0%, 45.7%, 1.9%, and 8.6%, respectively, while that decreased to 41.6%, 37%, 0.38%, and 1.3% for the soil contaminated with 3494.78 mg T-PAHs kg-1 dry soil. Only 8 g L-1 TX100 could remove all types of the 16 PAHs partly in the MGP soil, and the removal efficiencies of different PAHs ranged from 13% to 77.8%. The results of this study herein provide valuable information for the selection of TX100 surfactant for remediating PAH-contaminated soils in MGP.展开更多
Plant biosurfactants were used for the first time to remove As and co-existing metals from brownfield soils. Tannic acid (TA), a polyphenol, and saponin (SAP), a glycoside were tested. The soil washing experiments...Plant biosurfactants were used for the first time to remove As and co-existing metals from brownfield soils. Tannic acid (TA), a polyphenol, and saponin (SAP), a glycoside were tested. The soil washing experiments were performed in batch conditions at constant biosurfactant concentration (3%). Both biosurfactants differed in natural pH, surface tension, critical micelle concentration and content of functional groups. After a single washing, TA (pH 3.44) more efficiently mobilized As than SAP (pH 5.44). When both biosurfactants were used at the same pH (SAP adjusted to 3.44), arsenic mobilization was improved by triple washing. The process efficiency for TA and SAP was similar, and depending on the soil sample, ranged between 50%-64%. Arsenic mobilization by TA and SAP resulted mainly from decomposition of Fe arsenates, followed by Fe3+ complexation with biosurfactants. Arsenic was efficiently released from reducible and partially from residual fractions. In all soils, As(V) was almost completely removed, whereas content of As(III) was decreased by 37%-73%. SAP and TA might be used potentially to remove As from contaminated soils.展开更多
Soil pollution by diesel fuels is a worldwide environmental problem,but little research has been carried out into on-site techniques for remediation of soil polluted by waste solvents.This study compared chemical oxid...Soil pollution by diesel fuels is a worldwide environmental problem,but little research has been carried out into on-site techniques for remediation of soil polluted by waste solvents.This study compared chemical oxidation and soil washing methods for their efficiency and environmental and economic impacts.Soil was spiked with 0#diesel to simulate an actual pollution level of about 1260 mg/kg total petroleum hydrocarbon(TPH).Fenton-like oxidation eliminated 90.4%of the TPH with a Fe2+׃H2O2 ratio of 1:10 in 5 d compared with 25.8%removal by the activated persulfate method under the same conditions.In washing tests,sodium dodecylbenzenesulfonate and Tween 80 were both unsuitable for TPH washing,while ultrapure water removed 36.1%of TPH in 75 min.Only the Fenton-like oxidation technique met remediation goals based on the screening values of the Guideline for Risk Assessment of Contaminated Sites.The environmental impact and economic assessment of techniques demonstrated the superiority of water washing for dealing with low-degree TPH contamination.展开更多
This paper investigates a treated fly ash to act as a synthetic zeolite to remediate soils polluted with heavy metals and metalloids (As, Pb, Cu, Zn, Fe, Cd and Mn). Four types of such 'zeolites' were synthesized ...This paper investigates a treated fly ash to act as a synthetic zeolite to remediate soils polluted with heavy metals and metalloids (As, Pb, Cu, Zn, Fe, Cd and Mn). Four types of such 'zeolites' were synthesized by hydrothermal treatment of a calcareous fly ash derived from Greek lignite-fired power plants: two with excess of sodium hydroxide in a solid/liquid ratio of 50 g·L^-1, and two with excess of fly ash in a solid/liquid ratio of 100g·L^-1. Soil samples were obtained from a former mining site at Lavrion, Greece. Mobilization and transfer of metals to the retention agents was effected by using HCI aq 1M, with satisfactory results with respect to As, Pb, Cu, Mn and Cd. The great variety of metal complexes in soil was found to be of major importance for the effectiveness of the overall process. The final products were solidified either on their own, or by using additives such as lime and cement.展开更多
基金supported by the National Natural Science Foundation of China (Nos.41030531,41001335G,21377138 and 41271464b)
文摘Polycyclic aromatic hydrocarbons(PAHs)/heavy metals/fluorine(F) mixed-contaminated sites caused by abandoned metallurgic plants are receiving wide attention. To address the associated environmental problems,this study was initiated to investigate the feasibility of using carboxymethyl-β-cyclodextrin(CMCD) and carboxymethyl chitosan(CMC) solution to enhance ex situ soil washing for extracting mixed contaminants. Further,Tenax extraction method was combined with a first-three-compartment model to evaluate the environmental risk of residual PAHs in washed soil. In addition,the redistribution of heavy metals/F after decontamination was also estimated using a sequential extraction procedure. Three successive washing cycles using50 g/L CMCD and 5 g/L CMC solution were effective to remove 94.3% of total PAHs,93.2% of Pb,85.8% of Cd,93.4% of Cr,83.2% of Ni and 97.3% of F simultaneously. After the 3rd washing,the residual PAHs mainly existed as very slowly desorbing fractions,which were in the form of well-aged,well-sequestered compounds; while the remaining Pb,Cd,Cr,Ni and F mainly existed as Fe–Mn oxide and residual fractions,which were always present in stable mineral forms or bound to non-labile soil fractions. Therefore,this combined cleanup strategy proved to be effective and environmentally friendly.
基金Project(2015BAD05B02)supported by the National Science and Technology Support Program,China
文摘Potentially toxic metals,Cd and Pb in paddy soil,have important meanings for safety of rice.A comparison extraction of Cd and Pb with EDTA,DTPA,citric acid,and FeCl3 and effects on soil fertility was studied.Results indicate that about 59%and 63%of soil Cd and Pb were simultaneously removed by 10 g/L EDTA at pH 5 with a soil/extractant ratio of 1:10(W/V)for 30 min while 52%and 51%by 5 g/L DTPA.Acid extractable and reducible Cd by EDTA and DTPA contributed 58%and 53%of the removals and acid extractable and reducible Pb were about 49%and 41%,respectively.Slight changes of soil fertility,including pH,cation exchange capacity,organic matter,and soil extractable phosphorus,were observed.Extractions of citric acid and ferric chloride,however,were only efficient for Cd and the soil pH was decreased significantly.This study suggests that EDTA and DTPA can be considered as suitable agents to clean up the paddy soils contaminated with potentially toxic metals.
基金funding provided by University of Malaya, Kuala Lumpur (No. PV102-2011A, UM-QUB6A-2011) for carrying out this research
文摘This study explores the possible application of a biodegradable plant based surfactant, obtained from Sapindus mukorossi, for washing low levels of arsenic (As) from an iron (Fe) rich soil. Natural association of As(Ⅴ) with Fe(Ⅲ) makes the process difficult. Soapnut solution was compared to anionic surfactant sodium dodecyl sulfate (SDS) in down-flow and a newly introduced suction mode for soil column washing. It was observed that soapnut attained up to 86% efficiency with respect to SDS in removing As. Full factorial design of experiment revealed a very good fit of data. The suction mode generated up to 83 kPa pressure inside column whilst down-flow mode generated a much higher pressure of 214 kPa, thus making the suction mode more efficient. Micellar solubilisation was found to be responsible for As desorption from the soil and it followed 1st order kinetics. Desorption rate coefficient of suction mode was found to be in the range of 0.005 to 0.01, much higher than down-flow mode values. Analysis of the PT-IR data suggested that the soapnut solution did not interact chemically with As, offering an option for reusing the surfactant. Soapnut can be considered as a soil washing agent for removing As even from soil with high Fe content.
文摘Cadmium“Cd”is a toxic pollutant that may present in soil and water.This work evaluates:i)the use of non-steroidal anti-inflammatory drugs“NSAIDs”-bearing water for washing soil containing Cd(Ⅱ),ii)removal of Cd(Ⅱ)from NSAID-bearing water by adsorption onto magnetic graphene oxide which can be easily separated by strong magnet.The studied NSAIDs are aspirin,ketoprofen,ibuprofern and diclofenac.The Cd(Ⅱ)-NSAIDs complexes were synthesized and characterized by FT-IR.Graphene was initially oxidized by either nitric acid,or ammonium persulphate method,or Hummer's method.Magnetite was then deposited on graphene oxide to give the corresponding magnetic graphene oxides(NA-MGO,APSMGO and Hum-MGO,respectively).The effect of the following factors on Cd(Ⅱ)uptake was investigated:NSAIDs type,pH,graphene oxidation method,magnetite:graphene oxide mass ratio in the adsorbent,(Cd(Ⅱ):NSAID)molar ratio.Maximum Cd(Ⅱ)uptake was achieved using“magnetic graphene oxidized with ammonium persulphate where the mass ratio of magnetite to graphene oxide was 2:1”in the presence of diclofenac at pH6.The best Cd(Ⅱ):diclofenac molar ratio was 1:3.The maximum adsorption capacity of Cd(Ⅱ)was found to be 83 mg L1.The regeneration of the adsorbent was possible by 0.3 M HNO3 solution and 80%of adsorption efficiency was maintained after five cycles.Upon presence of coexisting ions,80%of the adsorption efficiency was maintained.Various NSAIDs-containing waters were used for washing Cd-containing soil;the maximum removal efficiencies of Cd were 18%and 16%using 5 mM diclofenac or 10 mM aspirin,respectively.Using diclofenac or aspirin-spiked real pharmaceutical wastewater gave 28%removal of Cd.The optimum adsorption method was used for removal of Cd(Ⅱ)from diclofenac-containing soil-washing water,where two successive adsorptions were needed for complete Cd uptake.
文摘Wastewater produced from the soil washing process contains heavy metals, which limits its reuse for washing. So it is necessary to develop an efficient and economical way to recycle it, and this study presented a biosorption method to realize this goal. A typical soil sample contaminated by lead was taken from the real field near a lead smelting factory, used for the toxic metals extraction with dilute citric acid. A leach liquor was obtained with lead ions at the level of 12.35 mg/L, Cd 1.2 mg/L, Cu 1.5 mg/L, Zn 2.6 mg/L, as well as the coexisting anions, such as sulphate, silicate, chloride at the concentration of several hundred miligram per liter. The garlic peel was modified by a simple chemical saponification process and used as the biosorbent for toxic metal removal. Firstly, the adsorp- tion behavior of lead ions on the saponified garlic peel was systematically investigated using the synthetic solutions, and then the adsorption mechanisms were explored by detailed experhnents combining with the thermodynamic calculation reuslts of the aqueous system of Pb(II)-citrate-H2O. It was found that in artificial solution containing 0.01 mol/L citrate, the maximum adsorption capacity of 261.0 mg/g was reached at pH near 3.0, and also at this very pH value the Pb^2+ and Pb(H2Cit)+ were the dominant lead species, which are favorable for adsorption due to its easier approaching to the --COO^- ligands in the saponified garlic peel partilces via charge attraction, and the appearance of Pb(HCit); and Pb(Cit)- at pH above 3.0 inhibits the adsorption. Secondly, the real leach liquor was used for adsorption tests, and twice adsorption under the optimal conditons would decrease the residual concentrations of Pb, Cd, Cu and Zn to zero. After elution by using 0.1 mol/L nitric acid, the adsorbed metals can be recovered and garlic peel can be reused for at least 10 cycles effectively. This study presents a prospective biosorption method for economical and efficient removal of the lead ions from soil washing wastewater with citric acid as the leaching reagent.
文摘Washing is a promising method for separating contaminants bound to the particles of soil ex-situ by chemical mobilization. Laboratory batch washing experi- ments were conducted using deionized water and varying concentrations of oxalic acid, citric acid, tartaric acid, acetic acid, hydrochloric acid and ethylenediaminetetra acetic acid (EDTA) to assess the efficiency of using these chemicals as washing agents and to clean up heavy metals from two heavily polluted soils from an iron and streel smelting site. The toxicity reduction index and remediation costs were analyzed, and the results showed that the soils were polluted with Cd, Pb and Zn. Hydrochloric acid and EDTA were more efficient than the other washing agents in the remediation of the test soils. The maximum total toxicity reduction index showed that 0.5 mol·L^-1 hydro- chloric acid could achieve the remediation with the lowest costs.
文摘Biologically produced surfactants (SACs) can mobilize and solubilize non-aqueous phase liquids (NAPL) adsorbed onto soil constituents. The interest in microbial surfactants has increased during recent years due to their lower toxicity, higher biodegradability, selectivity and specific activity under extreme conditions than synthetic SACs. Main output of the project represents preparation of this yeast biosurfactant intended for washing of matrices contaminated by NAPL. The influence of cultivation media composition on biosurfactant production was studied and basic properties (critical micelle concentration (CMC), minimum surface tension) of isolated biosurfactants were compared with properties of synthetic surfactant with surface tension measurement. The interracial tension of the systems containing aqueous solutions of different concentrations and non-polar substances was measured with petroleum compounds (kerosene Jet A-l), aromatic and aliphatic hydrocarbons (represented by toluene and hexane). The solution of biosurfactant Yarrowia lipolytica (YAR) in the concentration range of 0-500 mg/L reduced interracial tension by 80% in all representative systems with model contaminants; biosurfactant Candida bombicola (CAN) was less efficient. Solubilization properties were proved with toluene and hexachlorocyclohexane (HCH) isomers alpha and gamma, and effective concentration of biosurfactants was determined as 100 mg/L for toluene and HCH. SACs produced by lipophilic yeast with non-toxic and non-pathogenic status (Yarrowia lipolytica, Candida sp., etc.) seem to be very promising. The results obtained will be used for the application of biosurfactants in the clean-up technologies as agents for the mobilization of non-polar contaminants as well as for stimulation of bioremediation processes.
基金supported by the National High Technology Research and Development Program of China(863 Program)(No.2012AA06A201)the Science and Technology Project of Beijing(No.Z141100000914011)
文摘Batch experiments were conducted with a heavy metals and arsenic co-contaminated soil from an abandoned mine to evaluate the feasibility of a remediation technology that combines sieving with soil washing.Leaching of the arsenic and heavy metals from the different particle size fractions was found to decrease in the order:〈 0.1,2–0.1,and 〉 2 mm.With increased contact time,the concentration of heavy metals in the leachate was significantly decreased for small particles,probably because of adsorption by the clay soil component.For the different particle sizes,the removal efficiencies for Pb and Cd were75%–87%,and 61%–77% for Zn and Cu,although the extent of removal was decreased for As and Cr at 〈 45%.The highest efficiency by washing for Pb,Cd,Zn,and As was from the soil particles 〉 2 mm,although good metal removal efficiencies were also achieved in the small particle size fractions.Through SEM-EDS observations and correlation analysis,the leaching regularity of the heavy metals and arsenic was found to be closely related to Fe,Mn,and Ca contents of the soil fractions.The remediation of heavy metal-contaminated soil by sieving combined with soil washing was proven to be efficient,and practical remediation parameters were also recommended.
基金supported by the Research Grants Council of the Hong Kong SAR Government (No.PolyU5212/08E)the Natural Science Foundation of Jiangsu Province (No.BK2010064)+1 种基金the Social Development Foundation of Jiangsu Province (No.BE2011781)Joint Funds of the National Natural Science Foundation of China and the Natural Science Foundation of Guangdong Province, China (No.NSFC-GDNSF, U1133004)
文摘Environmental contamination due to uncontrolled e-waste recycling activities is drawing increasing attention in the world. Extraction of these metals with biodegradable chelant [S,S]-ethylenediaminedisuccinic acid (EDDS) and the factors influencing extraction efficacy were investigated in the present study. Results showed that the addition of EDDS at low pH (5.5) produced higher metal extraction than that at high pH (8.0) solution. Metal speciation analysis indicated that Cu was completely complexed with EDDS at different pH conditions with various amounts of EDDS applied. For Pb and Zn, at low EDDS dose of 0.304 mol/kg soil, they were present as Pb- and Zn-EDDS. However, at high EDDS dose of 1.26 mol/kg soil, most of Pb was bound with dissolved organic matter. Ca and A1 were found to be strong competitors for trace metals to EDDS at low application dose and low pH condition.
基金Supported by the National High Technology Research and Development Program of China (No. 2009AA063103)the National Natural Science Foundation of China (No. 41030531)
文摘Problems associated with organochlorine pesticide (OCP)-contaminated sites in China have received wide attention. To solve such problems, innovative ex-situ methods of site remediation are urgently needed. We investigated the feasibility of the extraction method with different organic solvents, ethanol, 1-propanol, and three fractions of petroleum ether, using a soil collected from Wujiang (W J), China, a region with long-term contamination of dichlorodiphenyltrichloroethanes (DDTs). We evaluated different influential factors, including organic solvent concentration, washing time, mixing speed, solutiomto-soil ratio, and washing temperature, on the removal of DDTs from the WJ soil. A set of relatively better parameters were selected for extraction with 100 mL L-1 petroleum ether (60-90 ℃): washing time of 180 min, mixing speed of 100 r min-I, solution-to-soil ratio of 10:1, and washing temperature of 50 ℃. These selected parameters were also applied on three other seriously OCP-polluted soils. Results demonstrated their broad-spectrum effectiveness and excellent OCP extraction performance on the contaminated soils with different characteristics.
基金Supported by the National High Technology Research and Development Program(863 Program)of China(No.2012AA06A201)the Cooperation Program of the Beijing Branch of Chinese Academy of Sciences and the Beijing Academy of Science and Technology of China(No.PXM2010-178203-096006)
文摘Surfactant enhanced remediation is thought to be an effective method for the remediation of soils polluted with hydrophoblc organic compounds. Desorption of polycyclic aromatic hydrocarbons (PAHs) from an abandoned manufactured gas plant (MGP) soil was evaluated using four eluting agents including Triton X-100 (TX100), sodium dodecylbenzene sulfonate (SDBS), rhamnolipid water solution (RWS) and rhamnolipid fermentation broth (RFB). The weight solubilization ratios for acenaphthene and fluorene were in the order of TX100 〉 SDBS 〉 RWS 〉 RFB. The Sm value, which indicates the maximum amounts of surfactants adsorbed in the soil, was in the order of RWS 〉 RFB 〉 SDBS 〉 TX100. By using 8 g L-1 of TX100, SDBS and RWS and 100% of RFB, the T-PAHs removal for the MGP soil contaminated with 207.86 mg T-PAHs kg-1 dry soil was 48.0%, 45.7%, 1.9%, and 8.6%, respectively, while that decreased to 41.6%, 37%, 0.38%, and 1.3% for the soil contaminated with 3494.78 mg T-PAHs kg-1 dry soil. Only 8 g L-1 TX100 could remove all types of the 16 PAHs partly in the MGP soil, and the removal efficiencies of different PAHs ranged from 13% to 77.8%. The results of this study herein provide valuable information for the selection of TX100 surfactant for remediating PAH-contaminated soils in MGP.
基金supported by the Faculty of Environmental Sciences,University of Warmia and Mazury in Olsztyn,Poland(No.GW/2013/24)
文摘Plant biosurfactants were used for the first time to remove As and co-existing metals from brownfield soils. Tannic acid (TA), a polyphenol, and saponin (SAP), a glycoside were tested. The soil washing experiments were performed in batch conditions at constant biosurfactant concentration (3%). Both biosurfactants differed in natural pH, surface tension, critical micelle concentration and content of functional groups. After a single washing, TA (pH 3.44) more efficiently mobilized As than SAP (pH 5.44). When both biosurfactants were used at the same pH (SAP adjusted to 3.44), arsenic mobilization was improved by triple washing. The process efficiency for TA and SAP was similar, and depending on the soil sample, ranged between 50%-64%. Arsenic mobilization by TA and SAP resulted mainly from decomposition of Fe arsenates, followed by Fe3+ complexation with biosurfactants. Arsenic was efficiently released from reducible and partially from residual fractions. In all soils, As(V) was almost completely removed, whereas content of As(III) was decreased by 37%-73%. SAP and TA might be used potentially to remove As from contaminated soils.
基金Project supported by the Science and Technology Research Program of Zhejiang Province(No.2020C03011)the National Natural Science Foundation of China(No.21621005)the National Key Research and Development Program of China(No.2017YFA0207003)。
文摘Soil pollution by diesel fuels is a worldwide environmental problem,but little research has been carried out into on-site techniques for remediation of soil polluted by waste solvents.This study compared chemical oxidation and soil washing methods for their efficiency and environmental and economic impacts.Soil was spiked with 0#diesel to simulate an actual pollution level of about 1260 mg/kg total petroleum hydrocarbon(TPH).Fenton-like oxidation eliminated 90.4%of the TPH with a Fe2+׃H2O2 ratio of 1:10 in 5 d compared with 25.8%removal by the activated persulfate method under the same conditions.In washing tests,sodium dodecylbenzenesulfonate and Tween 80 were both unsuitable for TPH washing,while ultrapure water removed 36.1%of TPH in 75 min.Only the Fenton-like oxidation technique met remediation goals based on the screening values of the Guideline for Risk Assessment of Contaminated Sites.The environmental impact and economic assessment of techniques demonstrated the superiority of water washing for dealing with low-degree TPH contamination.
文摘This paper investigates a treated fly ash to act as a synthetic zeolite to remediate soils polluted with heavy metals and metalloids (As, Pb, Cu, Zn, Fe, Cd and Mn). Four types of such 'zeolites' were synthesized by hydrothermal treatment of a calcareous fly ash derived from Greek lignite-fired power plants: two with excess of sodium hydroxide in a solid/liquid ratio of 50 g·L^-1, and two with excess of fly ash in a solid/liquid ratio of 100g·L^-1. Soil samples were obtained from a former mining site at Lavrion, Greece. Mobilization and transfer of metals to the retention agents was effected by using HCI aq 1M, with satisfactory results with respect to As, Pb, Cu, Mn and Cd. The great variety of metal complexes in soil was found to be of major importance for the effectiveness of the overall process. The final products were solidified either on their own, or by using additives such as lime and cement.