期刊文献+
共找到1,125篇文章
< 1 2 57 >
每页显示 20 50 100
Purification of solar cell silicon materials through filtration 被引量:5
1
作者 CIFTJA Arjan ENGH Thorvald Abel KVITHYLD Anne 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期180-185,共6页
Silicon is the material most commonly used in the manufacturing of photovoltaic (PV) cells. In the current study, laboratory experiments of purification of solar cell silicon materials through filtration are carried o... Silicon is the material most commonly used in the manufacturing of photovoltaic (PV) cells. In the current study, laboratory experiments of purification of solar cell silicon materials through filtration are carried out. Inclusion removal from silicon was investigated. The purpose is to achieve clean silicon materials for solar cells. Silicon samples and filter samples were analyzed using microscope observation, EPMA, and X-ray detection. Silicon nitride (Si3N4) and silicon carbide (SiC) particles are the main non-metallic inclusions present in top-cut silicon scrap. Almost all inclusions larger than 10 μm can be removed from silicon by the porous foam filter. In mass fraction, more than 90% inclusions are removed. Si3N4 particles are mainly removed on the top surface of the filter, and SiC particles are mainly removed by entering the pores and attaching to the filter material. SiC inclusions are not only simply attached on the surface of the filter material, but are found also inside the filter material. There are SiC bridges near the filter materials. These bridges may fill the spaces between filter material, and this will further retard inclusions passing through the filter. Three-dimensional turbulent fluid flow and inclusion motion in the filter was calculated. Both experimental observation and fluid flow simulation indicate that most of the inclusions are entrapped at the upper part of the filter. 展开更多
关键词 solar cell silicon INCLUSIONS FILTRATION nitrides carbides FLUID flow
下载PDF
Modeling and Simulation of Heterojunction Solar Cell with Mono Crystalline Silicon
2
作者 Sajid Ullah Ayesha Gulnaz Guangwei Wang 《Journal of Applied Mathematics and Physics》 2024年第3期997-1020,共24页
The monocrystalline silicon is a promising material that could be used in solar cells that convert light into electricity. Although the cost of ordinary silicon (Si) solar cells has decreased significantly over the pa... The monocrystalline silicon is a promising material that could be used in solar cells that convert light into electricity. Although the cost of ordinary silicon (Si) solar cells has decreased significantly over the past two decades, the conversion efficiency of these cells has remained relatively high. While solar cells have a great potential as a device of renewable energy, the high cost they incur per Watt continues to be a significant barrier to their widespread implementation. As a consequence, it is vital to conduct research into alternate materials that may be used in the construction of solar cells. The heterojunction solar cell (HJSC), which is based on n-type zinc oxide (n-ZnO) and p-type silicon (p-Si), is one of the numerous alternatives of the typical Si single homojunction solar cell. There are many deficiencies that can be found in the published research on n-ZnO/p-Si heterojunction solar cell. Inconsistencies in the stated value of open circuit voltage (V<sub>oc</sub>) of the solar cell are one example of deficiency. The absence of a full theoretical study to evaluate the potential of the solar cell structure is another deficiency that can be found in these researches. A lower value of experimentally obtained V<sub>OC</sub> in comparison to the theoretical prediction based on the band-gap between n-ZnO and p-Si. There needs to be more consensus among scientists regarding the optimal conditions for the growth of zinc oxide. Many software’s are available for simulating and optimizing the solar cells based on these parameters. For this purpose, in this dissertation, I provide computational results relevant to n-ZnO/p-Si HJSC to overcome deficiencies that have been identified. While modeling and simulating the potential of the solar cell structure with AFORS-HET, it is essential to consider the constraints that exist in the real world. AFORS-HET was explicitly designed to mimic the multilayer solar cell arrangement. In AFORS-HET, we can add up to seven layers for solar cell layout. By using this software, we can figure out the open circuit voltage (V<sub>OC</sub>), the short circuit current (J<sub>SC</sub>), the quantum efficiency (QE, %), the heterojunction energy band structure, and the power conversion efficiency (PCE). 展开更多
关键词 Heterojunction solar cell silicon Monocrystalline DEFICIENCIES AFORS-HET OPTIMIZATION Open Circuit Voltage Quantum Efficiency
下载PDF
Maskless fabrication of quasi-omnidirectional V-groove solar cells using an alkaline solution-based method
3
作者 陈兴谦 王燕 +6 位作者 陈伟 刘尧平 邢国光 冯博文 李昊臻 孙纵横 杜小龙 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期236-242,共7页
Silicon passivated emitter and rear contact(PERC) solar cells with V-groove texture were fabricated using maskless alkaline solution etching with in-house developed additive. Compared with the traditional pyramid text... Silicon passivated emitter and rear contact(PERC) solar cells with V-groove texture were fabricated using maskless alkaline solution etching with in-house developed additive. Compared with the traditional pyramid texture, the V-groove texture possesses superior effective minority carrier lifetime, enhanced p–n junction quality and better applied filling factor(FF). In addition, a V-groove texture can greatly reduce the shading area and edge damage of front Ag electrodes when the V-groove direction is parallel to the gridline electrodes. Due to these factors, the V-groove solar cells have a higher efficiency(21.78%) than pyramid solar cells(21.62%). Interestingly, external quantum efficiency(EQE) and reflectance of the V-groove solar cells exhibit a slight decrease when the incident light angle(θ) is increased from 0° to 75°, which confirms the excellent quasi omnidirectionality of the V-groove solar cells. The proposed V-groove solar cell design shows a 2.84% relative enhancement of energy output over traditional pyramid solar cells. 展开更多
关键词 V-groove alkaline etching quasi omnidirectionality silicon solar cell
原文传递
Improving the UV-light stability of silicon heterojunction solar cells through plasmon-enhanced luminescence downshifting of YVO_(4):Eu^(3+),Bi^(3+)nanophosphors decorated with Ag nanoparticles
4
作者 Cheng-Kun Wu Shuai Zou +6 位作者 Chen-Wei Peng Si-Wei Gu Meng-Fei Ni Yu-Lian Zeng Hua Sun Xiao-Hong Zhang Xiao-Dong Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期212-220,I0007,共10页
The ultraviolet(UV)light stability of silicon heterojunction(SHJ)solar cells should be addressed before large-scale production and applications.Introducing downshifting(DS)nanophosphors on top of solar cells that can ... The ultraviolet(UV)light stability of silicon heterojunction(SHJ)solar cells should be addressed before large-scale production and applications.Introducing downshifting(DS)nanophosphors on top of solar cells that can convert UV light to visible light may reduce UV-induced degradation(UVID)without sacrificing the power conversion efficiency(PCE).Herein,a novel composite DS nanomaterial composed of YVO_(4):Eu^(3+),Bi^(3+)nanoparticles(NPs)and AgNPs was synthesized and introduced onto the incident light side of industrial SHJ solar cells to achieve UV shielding.The YVO_(4):Eu^(3+),Bi^(3+)NPs and Ag NPs were synthesized via a sol-gel method and a wet chemical reduction method,respectively.Then,a composite structure of the YVO_(4):Eu^(3+),Bi^(3+)NPs decorated with Ag NPs was synthesized by an ultrasonic method.The emission intensities of the YVO_(4):Eu^(3+),Bi^(3+)nanophosphors were significantly enhanced upon decoration with an appropriate amount of~20 nm Ag NPs due to the localized surface plasmon resonance(LSPR)effect.Upon the introduction of LSPR-enhanced downshifting,the SHJ solar cells exhibited an~0.54%relative decrease in PCE degradation under UV irradiation with a cumulative dose of 45 k W h compared to their counterparts,suggesting excellent potential for application in UV-light stability enhancement of solar cells or modules. 展开更多
关键词 Downshifting Silver nanoparticles Localized surface plasmon resonance UV-light stability silicon heterojunction solar cells
下载PDF
Determination of the Base Optimum Thickness of Back Illuminated (n+/p/p+) Bifacial Silicon Solar Cell, by Help of Diffusion Coefficient at Resonance Frequency
5
作者 Mohamed Yaya Teya Ousmane Sow +5 位作者 Khady Loum Ibrahima Diatta Gora Diop Youssou Traore Mamadou Wade Gregoire Sissoko 《Journal of Electromagnetic Analysis and Applications》 CAS 2023年第2期13-24,共12页
The bifacial silicon solar cell subjected to a magnetic field, is illuminated by the back side by a monochromatic light in frequency modulation, with high absorption, At minority carriers diffusion coefficient resonan... The bifacial silicon solar cell subjected to a magnetic field, is illuminated by the back side by a monochromatic light in frequency modulation, with high absorption, At minority carriers diffusion coefficient resonance frequency, a graphical study of the expressions of recombination velocity on the rear side is carried out. The optimum thickness of the base of the bifacial solar cell is deduced for each resonance frequency. 展开更多
关键词 Bifacial silicon solar cell Frequency Magnetic Field Wavelength-Recombination Velocity Base Thickness
下载PDF
Efficiency-loss analysis of monolithic perovskite/silicon tandem solar cells by identifying the patterns of a dual two-diode model’s current-voltage curves
6
作者 Yuheng Zeng Zetao Ding +11 位作者 Zunke Liu Wei Liu Mingdun Liao Xi Yang Zhiqin Ying Jingsong Sun Jiang Sheng Baojie Yan Haiyan He Chunhui Shou Zhenhai Yang Jichun Ye 《Journal of Semiconductors》 EI CAS CSCD 2023年第8期68-77,共10页
In this work,we developed a simple and direct circuit model with a dual two-diode model that can be solved by a SPICE numerical simulation to comprehensively describe the monolithic perovskite/crystalline silicon(PVS/... In this work,we developed a simple and direct circuit model with a dual two-diode model that can be solved by a SPICE numerical simulation to comprehensively describe the monolithic perovskite/crystalline silicon(PVS/c-Si)tandem solar cells.We are able to reveal the effects of different efficiency-loss mechanisms based on the illuminated current density-voltage(J-V),semi-log dark J-V,and local ideality factor(m-V)curves.The effects of the individual efficiency-loss mechanism on the tandem cell’s efficiency are discussed,including the exp(V/VT)and exp(V/2VT)recombination,the whole cell’s and subcell’s shunts,and the Ohmic-contact or Schottky-contact of the intermediate junction.We can also fit a practical J-V curve and find a specific group of parameters by the trial-and-error method.Although the fitted parameters are not a unique solution,they are valuable clues for identifying the efficiency loss with the aid of the cell’s structure and experimental processes.This method can also serve as an open platform for analyzing other tandem solar cells by substituting the corresponding circuit models.In summary,we developed a simple and effective methodology to diagnose the efficiency-loss source of a monolithic PVS/c-Si tandem cell,which is helpful to researchers who wish to adopt the proper approaches to improve their solar cells. 展开更多
关键词 monolithic perovskite/silicon tandem solar cell efficiency-loss analysis dual two-diode model SPICE numerical simula-tion
下载PDF
AC Back Surface Recombination Velocity as Applied to Optimize the Base Thickness under Temperature of an (n+-p-p+) Bifacial Silicon Solar Cell, Back Illuminated by a Light with Long Wavelength
7
作者 Khady Loum Ousmane Sow +7 位作者 Gora Diop Richard Mane Ibrahima Diatta Malick Ndiaye Sega Gueye Moustapha Thiame Mamadou Wade Gregoire Sissoko 《World Journal of Condensed Matter Physics》 CAS 2023年第1期40-56,共17页
The bifacial silicon solar cell, placed at temperature (T) and illuminated from the back side by monochromatic light in frequency modulation (ω), is studied from the frequency dynamic diffusion equation, relative to ... The bifacial silicon solar cell, placed at temperature (T) and illuminated from the back side by monochromatic light in frequency modulation (ω), is studied from the frequency dynamic diffusion equation, relative to the density of excess minority carriers in the base. The expressions of the dynamic recombination velocities of the minority carriers on the rear side of the base Sb1(D(ω, T);H) and Sb2(α, D(ω, T);H), are analyzed as a function of the dynamic diffusion coefficient (D(ω, T)), the absorption coefficient (α(λ)) and the thickness of the base (H). Thus their graphic representation makes it possible to go up, to the base optimum thickness (Hopt(ω, T)), for different temperature values and frequency ranges of modulation of monochromatic light, of strong penetration. The base optimum thickness (Hopt(ω, T)) decreases with temperature, regardless of the frequency range and allows the realization of the solar cell with few material (Si). 展开更多
关键词 Bifacial silicon solar cell Absorption Coefficient FREQUENCY TEMPERATURE Recombination Velocity Optimum Thickness
下载PDF
Influence of texture feature size on spherical silicon solar cells 被引量:3
8
作者 HAYASHI Shota MINEMOTO Takashi +1 位作者 TAKAKURA Hideyuki HAMAKAWA Yoshihiro 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期115-120,共6页
The effects of surface texturing on spherical silicon solar cells were investigated. Surface texturing for spherical Si solar cells was prepared by immersing p-type spherical Si crystals in KOH solution with stirring.... The effects of surface texturing on spherical silicon solar cells were investigated. Surface texturing for spherical Si solar cells was prepared by immersing p-type spherical Si crystals in KOH solution with stirring. Two kinds of texture feature sizes (1 and 5 μm pyramids) were prepared by changing stirring speed. After fabrication through our baseline processes, these cells were evaluated by solar cell performance and external quantum efficiency. The cell with 1 and 5 μm pyramids shows the short circuit current density (Jsc) value of 31.9 and 33.2 mA·cm-2, which is 9% and 13% relative increase compared to the cell without texturing. Furthermore, the cell with 5 μm pyramids has a higher open-circuit voltage (0.589 V) than the cell with 1 μm pyramids (0.577 V). As a result, the conversion efficiency was improved from 11.4% for the cell without texturing to 12.1% for the cell with 5 μm pyramids. 展开更多
关键词 solar cell SPHERICAL silicon TEXTURING ALKALI ETCHING
下载PDF
Pulsed Laser Annealed Ga Hyperdoped Poly-Si/SiO_(x)Passivating Contacts for High-Efficiency Monocrystalline Si Solar Cells
9
作者 Kejun Chen Enrico Napolitani +9 位作者 Matteo De Tullio Chun-Sheng Jiang Harvey Guthrey Francesco Sgarbossa San Theingi William Nemeth Matthew Page Paul Stradins Sumit Agarwal David L.Young 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期388-399,共12页
Polycrystalline Si(poly-Si)-based passivating contacts are promising candidates for high-efficiency crystalline Si solar cells.We show that nanosecond-scale pulsed laser melting(PLM)is an industrially viable technique... Polycrystalline Si(poly-Si)-based passivating contacts are promising candidates for high-efficiency crystalline Si solar cells.We show that nanosecond-scale pulsed laser melting(PLM)is an industrially viable technique to fabricate such contacts with precisely controlled dopant concentration profiles that exceed the solid solubility limit.We demonstrate that conventionally doped,hole-selective poly-Si/SiO_(x)contacts that provide poor surface passivation of c-Si can be replaced with Ga-or B-doped contacts based on non-equilibrium doping.We overcome the solid solubility limit for both dopants in poly-Si by rapid cooling and recrystallization over a timescale of∼25 ns.We show an active Ga dopant concentration of∼3×10^(20)cm^(−3)in poly-Si which is six times higher than its solubility limit in c-Si,and a B dopant concentration as high as∼10^(21) cm^(−3).We measure an implied open-circuit voltage of 735 mV for Ga-doped poly-Si/SiO_(x)contacts on Czochralski Si with a low contact resistivity of 35.5±2.4 mΩcm^(2).Scanning spreading resistance microscopy and Kelvin probe force microscopy show large diffusion and drift current in the p-n junction that contributes to the low contact resistivity.Our results suggest that PLM can be extended for hyperdoping of other semiconductors with low solubility atoms to enable high-efficiency devices. 展开更多
关键词 Ga hyperdoping Ga passivating contacts poly-Si/SiO_(x) pulsed laser melting silicon solar cell
下载PDF
Numerical study of mono-crystalline silicon solar cells with passivated emitter and rear contact configuration for the efficiency beyond 24% based on mass production technology 被引量:2
10
作者 Peng Wang Gaofei Li +6 位作者 Miao Wang Hong Li Jing Zheng Liyou Yang Yigang Chen Dongdong Li Linfeng Lu 《Journal of Semiconductors》 EI CAS CSCD 2020年第6期78-84,共7页
Mono-crystalline silicon solar cells with a passivated emitter rear contact(PERC)configuration have attracted extensive attention from both industry and scientific communities.A record efficiency of 24.06%on p-type si... Mono-crystalline silicon solar cells with a passivated emitter rear contact(PERC)configuration have attracted extensive attention from both industry and scientific communities.A record efficiency of 24.06%on p-type silicon wafer and mass production efficiency around 22%have been demonstrated,mainly due to its superior rear side passivation.In this work,the PERC solar cells with a p-type silicon wafer were numerically studied in terms of the surface passivation,quality of silicon wafer and metal electrodes.A rational way to achieve a 24%mass-production efficiency was proposed.Free energy loss analyses were adopted to address the loss sources with respect to the limit efficiency of 29%,which provides a guideline for the design and manufacture of a high-efficiency PERC solar cell. 展开更多
关键词 monocrystalline silicon solar cell passivated emitter rear contact numerical simulation free energy loss analysis
下载PDF
Enhanced Photovoltaic Properties for Rear Passivated Crystalline Silicon Solar Cells by Fabricating Boron Doped Local Back Surface Field 被引量:1
11
作者 陈楠 SHEN Shuiliang 杜国平 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第6期1323-1328,共6页
In order to enhance the p-type doping concentration in the LBSF, boron was added into the aluminum paste and boron doped local back surface field(B-LBSF) was successfully fabricated in this work. Through boron doping ... In order to enhance the p-type doping concentration in the LBSF, boron was added into the aluminum paste and boron doped local back surface field(B-LBSF) was successfully fabricated in this work. Through boron doping in the LBSF, much higher doping concentration was observed for the B-LBSF over the Al-LBSF. Higher doping concentration in the LBSF is expected to lead to better rear passivation and lower rear contact resistance. Based on one thousand pieces of solar cells for each type, it was found that the rear passivated crystalline silicon solar cells with B-LBSF showed statistical improvement in their photovoltaic properties over those with Al-LBSF. 展开更多
关键词 crystalline silicon solar cells rear passivation local back surface field doping concentration
原文传递
External Magnetic Field Effect on Bifacial Silicon Solar Cell’s Electrical Parameters 被引量:2
12
作者 Issa Zerbo Martial Zoungrana +3 位作者 Idrissa Sourabié Adama Ouedraogo Bernard Zouma Dieudonné Joseph Bathiebo 《Energy and Power Engineering》 2016年第3期146-151,共6页
The aim of this work is to present a theoretical study of external magnetic field effect on a bifacial silicon solar cell’s electrical parameters (peak power, fill factor and load resistance) using the J-V and P-V ch... The aim of this work is to present a theoretical study of external magnetic field effect on a bifacial silicon solar cell’s electrical parameters (peak power, fill factor and load resistance) using the J-V and P-V characteristics. After the resolution of the magneto transport equation and continuity equation of excess minority carriers in the base of the bifacial silicon solar cell under multispectral illumination, the photo-current density and the photovoltage are determined and the J-V and P-V curves are plotted. Using simultaneously the J-V and P-V curves, we determine, according to magnetic field intensity, the peak photocurrent density, the peak photovoltage, the peak electric power, the fill factor and the load resistance at the peak power point. The numerical data show that the solar cell’s peak power decreases with magnetic field intensity while the fill factor and the load resistance increase. 展开更多
关键词 Bifacial silicon solar cell Fill Factor Load Resistance Magnetic Field Peak Power
下载PDF
Photocarrier radiometry for noncontact evaluation of space monocrystalline silicon solar cell under low-energy electron irradiation 被引量:2
13
作者 刘俊岩 宋鹏 +1 位作者 王飞 王扬 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第9期536-541,共6页
A space monocrystalline silicon(c-Si) solar cell under low-energy(< 1 MeV) electron irradiation was investigated using noncontact photocarrier radiometry(PCR). Monte Carlo simulation(MCS) was employed to characteri... A space monocrystalline silicon(c-Si) solar cell under low-energy(< 1 MeV) electron irradiation was investigated using noncontact photocarrier radiometry(PCR). Monte Carlo simulation(MCS) was employed to characterize the effect of different energy electron irradiation on the c-Si solar cell. The carrier transport parameters(carrier lifetime, diffusion coefficient, and surface recombination velocities) were obtained by best fitting the experimental results with a theoretical one-dimensional two-layer PCR model. The results showed that the increase of the irradiation electron energy caused a large reduction of the carrier lifetime and diffusion length. Furthermore, the rear surface recombination velocity of the Si:p base of the solar cell at the irradiation electron energy of 1 Me V was dramatically enhanced due to 1 MeV electron passing through the whole cell. Short-circuit current(I sc) degradation evaluated by PCR was in good agreement with that obtained by electrical measurement. 展开更多
关键词 单晶硅太阳能电池 PCR分析 电子辐照 低能量 空间 表面复合速度 载流子寿命 评估
原文传递
Simulation and experimental study of a novel bifacial structure of silicon heterojunction solar cell for high efficiency and low cost 被引量:4
14
作者 黄海宾 田罡煜 +6 位作者 周浪 袁吉仁 Wolfgang R.Fahrner 张闻斌 李杏兵 陈文浩 刘仁中 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第3期520-525,共6页
A novel structure of Ag grid/SiN_x/n^+-c-Si/n-c-Si/i-a-Si:H/p^+-a-Si:H/TCO/Ag grid was designed to increase the efficiency of bifacial amorphous/crystalline silicon-based solar cells and reduce the rear material consu... A novel structure of Ag grid/SiN_x/n^+-c-Si/n-c-Si/i-a-Si:H/p^+-a-Si:H/TCO/Ag grid was designed to increase the efficiency of bifacial amorphous/crystalline silicon-based solar cells and reduce the rear material consumption and production cost. The simulation results show that the new structure obtains higher efficiency compared with the typical bifacial amorphous/crystalline silicon-based solar cell because of an increase in the short-circuit current(J_(sc)), while retaining the advantages of a high open-circuit voltage, low temperature coefficient, and good weak-light performance. Moreover,real cells composed of the novel structure with dimensions of 75 mm × 75 mm were fabricated by a special fabrication recipe based on industrial processes. Without parameter optimization, the cell efficiency reached 21.1% with the J_(sc) of 41.7 mA/cm^2. In addition, the novel structure attained 28.55% potential conversion efficiency under an illumination of AM 1.5 G, 100 mW/cm^2. We conclude that the configuration of the Ag grid/SiN_x/n^+-c-Si/n-c-Si/i-a-Si:H/p^+-a-Si:H/TCO/Ag grid is a promising structure for high efficiency and low cost. 展开更多
关键词 太阳能电池 低费用 结构 双面 模拟 试验性 学习 异质
原文传递
Improvement in IBC-silicon solar cell performance by insertion of highly doped crystalline layer at heterojunction interfaces 被引量:3
15
作者 Hadi Bashiri Mohammad Azim Karami Shahramm Mohammadnejad 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第10期508-514,共7页
By inserting a thin highly doped crystalline silicon layer between the base region and amorphous silicon layer in an interdigitated back-contact(IBC) silicon solar cell, a new passivation layer is investigated. The pa... By inserting a thin highly doped crystalline silicon layer between the base region and amorphous silicon layer in an interdigitated back-contact(IBC) silicon solar cell, a new passivation layer is investigated. The passivation layer performance is characterized by numerical simulations. Moreover, the dependence of the output parameters of the solar cell on the additional layer parameters(doping concentration and thickness) is studied. By optimizing the additional passivation layer in terms of doping concentration and thickness, the power conversion efficiency could be improved by a factor of2.5%, open circuit voltage is increased by 30 mV and the fill factor of the solar cell by 7.4%. The performance enhancement is achieved due to the decrease of recombination rate, a decrease in solar cell resistivity and improvement of field effect passivation at heterojunction interface. The above-mentioned results are compared with reported results of the same conventional interdigitated back-contact silicon solar cell structure. Furthermore, the effect of a-Si:H/c-Si interface defect density on IBC silicon solar cell parameters with a new passivation layer is studied. The additional passivation layer also reduces the sensitivity of output parameter of solar cell to interface defect density. 展开更多
关键词 硅太阳能电池 异质结界面 电池性能 IBC 掺杂晶体 硅太阳电池 掺杂浓度 输出参数
原文传递
A.C. Recombination Velocity as Applied to Determine n<sup>+</sup>/p/p<sup>+</sup>Silicon Solar Cell Base Optimum Thickness 被引量:1
16
作者 Amadou Mar Ndiaye Sega Gueye +6 位作者 Ousmane Sow Gora Diop Amadou Mamour Ba Mamadou Lamine Ba Ibrahima Diatta Lemrabott Habiboullah Gregoire Sissoko 《Energy and Power Engineering》 2020年第10期543-554,共12页
This work deals with determining the optimum thickness of the base of an n<sup>+</sup>/p/p<sup>+</sup> silicon solar cell under monochromatic illumination in frequency modulation. The continuit... This work deals with determining the optimum thickness of the base of an n<sup>+</sup>/p/p<sup>+</sup> silicon solar cell under monochromatic illumination in frequency modulation. The continuity equation for the density of minority carriers generated in the base, by a monochromatic wavelength illumination (<i>λ</i>), with boundary conditions that impose recombination velocities (<i>Sf</i>) and (<i>Sb</i>) respectively at the junction and back surface, is resolved. The ac photocurrent is deduced and studied according to the recombination velocity at the junction, to extract the mathematical expressions of recombination velocity (<i>Sb</i>). By the graphic technique of comparing the two expressions obtained, depending on the thickness (<i>H</i>) of the base, for each frequency, the optimum thickness (Hopt) is obtained. It is then modeled according to the frequency, at the long wavelengths of the incident light. Thus, Hopt decreases due to the low relaxation time of minority carriers, when the frequency of modulation of incident light increases. 展开更多
关键词 silicon solar cell Modulation Frequency Recombination Velocity Base Thickness WAVELENGTH
下载PDF
Back Surface Recombination Velocity Dependent of Absorption Coefficient as Applied to Determine Base Optimum Thickness of an n+/p/p+ Silicon Solar Cell 被引量:1
17
作者 Meimouna Mint Sidi Dede Mamadou Lamine Ba +7 位作者 Mamour Amadou Ba Mor Ndiaye Sega Gueye El Hadj Sow Ibrahima Diatta Masse Samba Diop Mamadou Wade Gregoire Sissoko 《Energy and Power Engineering》 2020年第7期445-458,共14页
The monochromatic absorption coefficient of silicon, inducing the light penetration depth into the base of the solar cell, is used to determine the optimum thickness necessary for the production of a large photocurren... The monochromatic absorption coefficient of silicon, inducing the light penetration depth into the base of the solar cell, is used to determine the optimum thickness necessary for the production of a large photocurrent. The absorption-generation-diffusion and recombination (bulk and surface) phenomena are taken into account in the excess minority carrier continuity equation. The solution of this equation gives the photocurrent according to ab</span><span style="font-family:Verdana;">sorption and electronic parameters. Then from the obtained short circuit</span><span style="font-family:Verdana;"> photocurrent expression, excess minority carrier back surface recombination velocity is determined, function of the monochromatic absorption coefficient at a given wavelength. This latter plotted versus base thickness yields the optimum thickness of an n</span><sup><span style="font-family:Verdana;">+</span></sup><span style="font-family:Verdana;">-p-p</span><sup><span style="font-family:Verdana;">+</span></sup><span style="font-family:Verdana;"> solar cell, for each wavelength, which is in the range close to the energy band gap of the silicon material. This study provides a tool for improvement solar cell manufacture processes, through the mathematical relationship obtained from the thickness limit according to the absorption coefficient that allows base width optimization. 展开更多
关键词 silicon solar cell Absorption Coefficient Back Surface Recombination Optimum Thickness
下载PDF
Back Illuminated N/P/P<sup>+</sup>Bifacial Silicon Solar Cell under Modulated Short-Wavelength: Determination of Base Optimum Thickness 被引量:1
18
作者 Mamadou Sall Dianguina Diarisso +4 位作者 Mame Faty Mbaye Fall Gora Diop Mor Ndiaye Khady Loum Gregoire Sissoko 《Energy and Power Engineering》 2021年第5期207-220,共14页
A bifacial silicon solar cell under monochromatic illumination in frequency modulation by the rear side is being studied for the optimization of base thickness. The density of photogenerated carriers in the base is ob... A bifacial silicon solar cell under monochromatic illumination in frequency modulation by the rear side is being studied for the optimization of base thickness. The density of photogenerated carriers in the base is obtained by resolution of the continuity equation, with the help of boundary conditions at the junction surface (n<sup><span style="font-family:Verdana;">+</span></sup><span style="font-family:Verdana;">/p) and the rear face (p/p</span><sup><span style="font-family:Verdana;">+</span></sup><span style="font-family:Verdana;">) of the base. For a short wavelength corresponding to a high absorption coefficient, the AC photocurrent density is calculated and represented according to the excess minority carrier’s recombination velocity at the junction, for different modulation frequency values. The expression of the AC recombination velocity of excess minority carriers at the rear surface of the base of the solar cell is then deduced, depending on both, the absorption coefficient of the silicon material and the thickness of the base. Compared to the intrinsic AC recombination velocity, the optimal thickness is extracted and modeled in a mathematical relationship, as a decreasing function of </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">modulated frequency of back illumination. Thus under these operating conditions</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> a maximum short-circuit photocurrent is obtained and a low</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">cost bifacial solar cell can be achieved by reducing material (Si) to elaborate the base thickness.</span> 展开更多
关键词 Bifacial silicon solar cell AC Recombination Velocity-Base Thickness Short-Wavelength
下载PDF
Diffusion Coefficient at Resonance Frequency as Applied to n+/p/p+ Silicon Solar Cell Optimum Base Thickness Determination 被引量:1
19
作者 Amadou Mar Ndiaye Sega Gueye +6 位作者 Mame Faty Mbaye Fall Gora Diop Amadou Mamour Ba Mamadou Lamine Ba Ibrahima Diatta Lemrabott Habiboullah Gregoire Sissoko 《Journal of Electromagnetic Analysis and Applications》 2020年第10期145-158,共14页
The modelling and determination of the geometric parameters of a solar cell are important data, which influence the evaluation of its performance under specific operating conditions, as well as its industrial developm... The modelling and determination of the geometric parameters of a solar cell are important data, which influence the evaluation of its performance under specific operating conditions, as well as its industrial development for a low cost. In this work, an n+/p/p+ crystalline silicon solar cell is studied under monochromatic illumination in modulation and placed in a constant magnetic field. The minority carriers’ diffusion coefficient (<em>D</em>(<em>ω</em>, <em>B</em>), in the (<em>p</em>) base leads to maximum values (Dmax) at resonance frequencies (<em>ωr</em>). These values are used in expressions of AC minority carriers recombination velocity (Sb(Dmax, H)) in the rear of the base, to extract the optimum thickness while solar cell is subjected to these specific conditions. Optimum thickness modelling relationships, depending respectively on Dmax, <em>ωr</em> and <em>B</em>, are then established, and will be data for industrial development of low-cost solar cells for specific use. 展开更多
关键词 silicon solar cell Resonance Frequency Magnetic Field Recombination Velocity Base Thickness
下载PDF
n<sup>+</sup>-p-p<sup>+</sup>Silicon Solar Cell Base Optimum Thickness Determination under Magnetic Field 被引量:1
20
作者 Cheikh Thiaw Mamadou Lamine Ba +4 位作者 Mamour Amadou Ba Gora Diop Ibrahima Diatta Mor Ndiaye Gregoire Sissoko 《Journal of Electromagnetic Analysis and Applications》 2020年第7期103-113,共11页
Base optimum thickness is determined for a front illuminated bifacial silicon solar cell n<sup>+</sup>-p<span style="font-size:10px;">-</span>p<sup>+</sup> under magnetic ... Base optimum thickness is determined for a front illuminated bifacial silicon solar cell n<sup>+</sup>-p<span style="font-size:10px;">-</span>p<sup>+</sup> under magnetic field. From the magneto transport equation relative to excess minority carriers in the base, with specific boundary conditions, the photocurrent is obtained. From this result the expressions of the carrier’s recombination velocity at the back surface are deducted. These new expressions of recombination velocity are plotted according to the depth of the base, to deduce the optimum thickness, which will allow the production, of a high short-circuit photocurrent. Calibration relationships of optimum thickness versus magnetic field were presented according to study ranges. It is found that, applied magnetic field imposes a weak thickness material for solar cell manufacturing leading to high short-circuit current. 展开更多
关键词 silicon solar cell MAGNETOTRANSPORT Surface Recombination Velocity Base Thickness
下载PDF
上一页 1 2 57 下一页 到第
使用帮助 返回顶部