期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
A review of Al-based material dopants for high-performance solid state lithium metal batteries
1
作者 Ying Tian Weicui Liu +6 位作者 Tianwei Liu Xiaofan Feng Wenwen Duan Wen Yu Hongze Li Nanping Deng Weimin Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期244-261,共18页
As the world transitions to green energy, there is a growing focus among many researchers on the requirement for high-efficient and safe batteries. Solid-state lithium metal batteries(SSLMBs) have emerged as a promisi... As the world transitions to green energy, there is a growing focus among many researchers on the requirement for high-efficient and safe batteries. Solid-state lithium metal batteries(SSLMBs) have emerged as a promising alternative to traditional liquid lithium-ion batteries(LIBs), offering higher energy density, enhanced safety, and longer lifespan. The rise of SSLMBs has brought about a transformation in energy storage, with aluminum(Al)-based material dopants playing a crucial role in advancing the next generation of batteries. The review highlights the significance of Al-based material dopants in SSLMBs applications, particularly its contributions to solid-state electrolytes(SSEs), cathodes, anodes,and other components of SSLMBs. Some studies have also shown that Al-based material dopants effectively enhance SSE ion conductivity, stabilize electrode and SSE interfaces, and suppress lithium dendrite growth, thereby enhancing the electrochemical performance of SSLMBs. Despite the above mentioned progresses, there are still problems and challenges need to be addressed. The review offers a comprehensive insight into the important role of Al in SSLMBs and addresses some of the issues related to its applications, endowing valuable support for the practical implementation of SSLMBs. 展开更多
关键词 Al-based material dopants solid state lithium metal batteries solid-state electrolytes Action mechanisms and structure designs Optimization strategies
下载PDF
Improvement of ionic conductivity of solid polymer electrolyte based on Cu-Al bimetallic metal-organic framework fabricated through molecular grafting
2
作者 Liu-bin SONG Tian-yuan LONG +5 位作者 Min-zhi XIAO Min LIU Ting-ting ZHAO Yin-jie KUANG Lin JIANG Zhong-liang XIAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第9期2943-2958,共16页
A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of th... A composite solid electrolyte comprising a Cu-Al bimetallic metal-organic framework(CAB),lithium salt(LiTFSI)and polyethylene oxide(PEO)was fabricated through molecular grafting to enhance the ionic conductivity of the PEO-based electrolytes.Experimental and molecular dynamics simulation results indicated that the electrolyte with 10 wt.%CAB(PL-CAB-10%)exhibits high ionic conductivity(8.42×10~(-4)S/cm at 60℃),high Li+transference number(0.46),wide electrochemical window(4.91 V),good thermal stability,and outstanding mechanical properties.Furthermore,PL-CAB-10%exhibits excellent cycle stability in both Li-Li symmetric battery and Li/PL-CAB-10%/LiFePO4 asymmetric battery setups.These enhanced performances are primarily attributable to the introduction of the versatile CAB.The abundant metal sites in CAB can react with TFSI~-and PEO through Lewis acid-base interactions,promoting LiTFSI dissociation and improving ionic conductivity.Additionally,regular pores in CAB provide uniformly distributed sites for cation plating during cycling. 展开更多
关键词 polyethylene oxide Cu−Al bimetallic metal-organic framework solid lithium metal battery molecular grafting ionic conductivity
下载PDF
Heterogeneous electrolyte membranes enabling double-side stable interfaces for solid lithium batteries 被引量:3
3
作者 Shuang Mu Weilin Huang +4 位作者 Wuhui Sun Ning Zhao Mengyang Jia Zhijie Bi Xiangxin Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期162-168,共7页
The solid polymer electrolyte(SPE) is one of the most promising candidates for building solid lithium batteries with high energy density and safety due to its advantages of flexibility and light-weight.However,the con... The solid polymer electrolyte(SPE) is one of the most promising candidates for building solid lithium batteries with high energy density and safety due to its advantages of flexibility and light-weight.However,the conventional monolayered electrolytes usually exhibit unstable contacts with either high-voltage cathodes or Li-metal anodes during cell operation.Herein,heterogeneous dual-layered electrolyte membranes(HDEMs) consisting of the specific functional polymer matrixes united with the designed solid ceramic fillers are constructed to address the crucial issues of interfacial instability.The electrolyte layers composed of the high-conductivity and oxidation-resistance polyacrylonitrile(PAN) combined with Li_(0.33)La_(0.557)TiO_(3) nanofibers are in contact with the high-voltage cathodes,achieving the compatible interface between the cathodes and the electrolytes.Meanwhile,the electrolyte layers composed of the highstability and dendrite-resistance polyethylene oxide(PEO) with Li_(6.4)La_(3) Zr_(1.4)Ta_(0.6)O_(12) nanoparticles are in contact with the Li-metal anodes,aiming to suppress the dendrite growth,as well as avoid the passivation between the PAN and the Li-metal.Consequently,the solid LiNi_(0.6)Co_(0.2)Mn_(0.2)O2‖Li full cells based on the designed HDEMs show the good rate and cycling performance,i.e.the discharge capacity of 170.1 mAh g^(-1) with a capacity retention of 78.2% after 100 cycles at 0.1 C and 30℃.The results provide an effective strategy to construct the heterogeneous electrolyte membranes with double-side stable electrode/-electrolyte interfaces for the high-voltage and dendrite-free solid lithium batteries. 展开更多
关键词 solid electrolytes High-voltage cathodes Dendrite suppression solid lithium batteries
下载PDF
Forming solid electrolyte interphase in situ in an ionic conducting Li_(1.5)Al_(0.5)Ge_(1.5)(PO_4)_3-polypropylene(PP) based separator for Li-ion batteries 被引量:6
4
作者 吴娇杨 凌仕刚 +3 位作者 杨琪 李泓 许晓雄 陈立泉 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第7期103-107,共5页
A new concept of forming solid electrolyte interphases(SEI) in situ in an ionic conducting Li(1.5)Al(0.5)Ge(1.5)(PO4)3-polypropylene(LAGP-PP) based separator during charging and discharging is proposed and... A new concept of forming solid electrolyte interphases(SEI) in situ in an ionic conducting Li(1.5)Al(0.5)Ge(1.5)(PO4)3-polypropylene(LAGP-PP) based separator during charging and discharging is proposed and demonstrated. This unique structure shows a high ionic conductivity, low interface resistance with electrode, and can suppress the growth of lithium dendrite. The features of forming the SEI in situ are investigated by scanning electron microscopy(SEM) and x-ray photoelectron spectroscopy(XPS). The results confirm that SEI films mainly consist of lithium fluoride and carbonates with various alkyl contents. The cell assembled by using the LAGP-coated separator demonstrates a good cycling performance even at high charging rates, and the lithium dendrites were not observed on the lithium metal electrode. Therefore, the SEI-LAGP-PP separator can be used as a promising flexible solid electrolyte for solid state lithium batteries. 展开更多
关键词 solid state lithium batteries solid electrolyte interphase ionic conductor coated separator lithium dendrite
原文传递
A homogenous solid polymer electrolyte prepared by facile spray drying method is used for room-temperature solid lithium metal batteries 被引量:3
5
作者 Zehao Zhou Tong Sun +4 位作者 Jin Cui Xiu Shen Chuan Shi Shuang Cao Jinbao Zhao 《Nano Research》 SCIE EI CSCD 2023年第4期5080-5086,共7页
The aggregation of inorganic particles with high mass ratio will form a heterogeneous electric field in the solid polymer electrolytes(SPEs),which is difficult to be compatible with lithium anode,leading to inadequate... The aggregation of inorganic particles with high mass ratio will form a heterogeneous electric field in the solid polymer electrolytes(SPEs),which is difficult to be compatible with lithium anode,leading to inadequate ionic conductivity.Herein,a facile spray drying method is adopted to increase the mass ratio of inorganic particles and solve the aggregation problems of fillers simultaneously.The polyvinylidene fluoride(PVDF)with lithium bis(trifluoromethanesulfonyl)imide(LiTFSI)covers the surface of each Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(LLZTO)granules during the nebulization process,then forming flat solid electrolytes via layer-by-layer deposition.Characterized by the atomic force microscope,the obtained solid electrolytes achieve a homogenous dispersion of Young’s modulus and surface electric field.As a result,the as-prepared SPEs present high tensile strength of 7.1 MPa,high ionic conductivity of 1.86×10^(−4)S·cm^(−1)at room temperature,and wide electrochemical window up to 5.0 V,demonstrating increased mechanical strength and uniform lithium-ion migration channels for SPEs.Thanks to the as-prepared SPEs,the lithiumsymmetrical cells show a highly stable Li plating/stripping cycling for over 1,000 h at 0.1 mA·cm^(−2).The corresponding Li/LCoO_(2)batteries also present good rate capability and excellent cyclic performance with capacity retention of 80%after 100 cycles at room temperature. 展开更多
关键词 solid polymer electrolytes spray drying homogenous dispersion solid lithium batteries polyvinylidene fluoride/Li_(6.4)La_(3)Zr_(1.4)Ta_(0.6)O_(12)(PVDF/LLZTO) surface electric field
原文传递
A highly ionic transference number eutectogel hybrid electrolytes based on spontaneous coupling inhibitor for solid-state lithium metal batteries 被引量:3
6
作者 Linnan Bi Xiongbang Wei +5 位作者 Yuhong Qiu Yaochen Song Xin Long Zhi Chen Sizhe Wang Jiaxuan Liao 《Nano Research》 SCIE EI CSCD 2023年第1期1717-1725,共9页
Polymer-based solid electrolytes have been extensively studied for solid-state lithium metal batteries to achieve high energy density and reliable security.But,its practical application is severely limited by low ioni... Polymer-based solid electrolytes have been extensively studied for solid-state lithium metal batteries to achieve high energy density and reliable security.But,its practical application is severely limited by low ionic conductivity and slow Li+transference.Herein,based on the“binary electrolytes”of poly(vinylidene fluoride-chlorotrifluoroethylene)(P(VDF-CTFE))and lithium salt(LiTFSI),a kind of eutectogel hybrid electrolytes(EHEs)with high Li+transference number was developed via tuning the spontaneous coupling of charge and vacated space generated by Li-cation diffusion utilizing the Li6.4La3Zr1.4Ta0.6O12(LLZTO)dopant.LLZTO doping promotes the dissociation of lithium salt,increases Li+carrier density,and boosts ion jumping and the coordination/decoupling reactions of Li+.As a result,the optimized EHEs-10%possess a high Li-transference number of 0.86 and a high Li+conductivity of 3.2×10–4 S·cm–1 at room temperature.Moreover,the prepared EHEs-10%composite solid electrolyte presents excellent lithiumphilic and compatibility,and can be tested stably for 1,200 h at 0.3 mA·cm–2 with assembled lithium symmetric batteries.Likewise,the EHEs-10%films match well with high-loading LiFePO4 and LiCoO2 cathodes(>10 mg·cm–2)and exhibit remarkable interface stability.Particularly,the LiFePO4//EHEs-10%//Li and LiCoO2//EHEs-10%//Li cells deliver high rate performance of 118 mAh·g–1 at 1 C and 93.7 mAh·g–1 at 2 C with coulombic efficiency of 99.3%and 98.1%,respectively.This work provides an in-depth understanding and new insights into our design for polymer electrolytes with fast Li+diffusion. 展开更多
关键词 poly(vinylidene fluoride-chlorotrifluoroethylene)(P(VDF-CTFE)) Li6.4La3Zr1.4Ta0.6O12(LLZTO) ionic transference numbers eutectic solvent composite electrolytes solid state lithium metal battery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部