The prediction of solitary wave run-up has important practical significance in coastal and ocean engineering, but the calculation precision is limited in the existing models. For improving the calculation precision, a...The prediction of solitary wave run-up has important practical significance in coastal and ocean engineering, but the calculation precision is limited in the existing models. For improving the calculation precision, a solitary wave run-up calculation model was established based on artificial neural networks in this study. A back-propagation (BP) network with one hidden layer was adopted and modified with the additional momentum method and the auto-adjusting learning factor. The model was applied to calculation of solitary wave run-up. The correlation coefficients between the neural network model results and the experimental values was 0.996 5. By comparison with the correlation coefficient of 0.963 5, between the Synolakis formula calculation results and the experimental values, it is concluded that the neural network model is an effective method for calculation and analysis of solitary wave ran-up.展开更多
Simulation of solitary wave run-up on a vertical circular cylinder is carried out in a viscous numerical wave tank developed based on the open source codes Open FOAM. An incompressible two-phase flow solver naoe-FOAM-...Simulation of solitary wave run-up on a vertical circular cylinder is carried out in a viscous numerical wave tank developed based on the open source codes Open FOAM. An incompressible two-phase flow solver naoe-FOAM-SJTU is used to solve the Reynolds-Averaged Navier–Stokes(RANS) equations with the SST k ?? turbulence model. The PISO algorithm is utilized for the pressure-velocity coupling. The air-water interface is captured via Volume of Fluid(VOF) technique. The present numerical model is validated by simulating the solitary wave run-up and reflected against a vertical wall, and solitary wave run-up on a vertical circular cylinder. Comparisons between numerical results and available experimental data show satisfactory agreement. Furthermore, simulations are carried out to study the solitary wave run-up on the cylinder with different incident wave height H and different cylinder radius a. The relationships of the wave run-up height with the incident wave height H, cylinder radius a are analyzed. The evolutions of the scattering free surface and vortex shedding are also presented to give a better understanding of the process of nonlinear wave-cylinder interaction.展开更多
Coastal vegetation is capable of decreasing wave run-up.However,because of regrowth,decay or man-made damage,coastal vegetation is always distributed in patches,and its internal distribution is often non-uniform.This ...Coastal vegetation is capable of decreasing wave run-up.However,because of regrowth,decay or man-made damage,coastal vegetation is always distributed in patches,and its internal distribution is often non-uniform.This study investigates the effects of patchy vegetation on solitary wave run-up by using a numerical simulation.A numerical model based on fully nonlinear Boussinesq equations is established to simulate the wave propagation on a slope with patchy vegetation.By using the model,the process of solitary wave run-up attenuation due to patchy vegetation is numerically analysed.The numerical results reveal that patchy vegetation can considerably attenuate the wave run-up in an effective manner.In addition,high-density patched vegetation can attenuate the solitary wave run-up more effectively than low-density patched vegetation can.For the same density,patchy vegetation with a uniform distribution has a better attenuation effect on wave run-up compared to that of patchy vegetation with a non-uniform distribution.展开更多
We investigate propagation of dust ion acoustic solitary wave(DIASW)in a multicomponent dusty plasma with adiabatic ions,superthermal electrons,and stationary dust.The reductive perturbation method is employed to deri...We investigate propagation of dust ion acoustic solitary wave(DIASW)in a multicomponent dusty plasma with adiabatic ions,superthermal electrons,and stationary dust.The reductive perturbation method is employed to derive the damped Korteweg-de Vries(DKdV)equation which describes DIASW.The result reveals that the adiabaticity of ions significantly modifies the basic features of the DIASW.The ionization effect makes the solitary wave grow,while collisions reduce the growth rate and even lead to the damping.With the increases in ionization cross sectionΔσ/σ_(0),ion-to-electron density ratioδ_(ie)and superthermal electrons parameterκ,the effect of ionization on DIASW enhances.展开更多
This study numerically investigates the nonlinear interaction of head-on solitary waves in a granular chain(a nonintegrable system)and compares the simulation results with the theoretical results in fluid(an integrabl...This study numerically investigates the nonlinear interaction of head-on solitary waves in a granular chain(a nonintegrable system)and compares the simulation results with the theoretical results in fluid(an integrable system).Three stages(the pre-in-phase traveling stage,the central-collision stage,and the post-in-phase traveling stage)are identified to describe the nonlinear interaction processes in the granular chain.The nonlinear scattering effect occurs in the central-collision stage,which decreases the amplitude of the incident solitary waves.Compared with the leading-time phase in the incident and separation collision processes,the lagging-time phase in the separation collision process is smaller.This asymmetrical nonlinear collision results in an occurrence of leading phase shifts of time and space in the post-in-phase traveling stage.We next find that the solitary wave amplitude does not influence the immediate space-phase shift in the granular chain.The space-phase shift of the post-in-phase traveling stage is only determined by the measurement position rather than the wave amplitude.The results are reversed in the fluid.An increase in solitary wave amplitude leads to decreased attachment,detachment,and residence times for granular chains and fluid.For the immediate time-phase shift,leading and lagging phenomena appear in the granular chain and the fluid,respectively.These results offer new knowledge for designing mechanical metamaterials and energy-mitigating systems.展开更多
Internal solitary waves(ISWs)change the roughness of the sea surface,thus producing dark and bright bands in optical images.However,reasons for changes in imaging characteristics with the solar zenith angle remain unc...Internal solitary waves(ISWs)change the roughness of the sea surface,thus producing dark and bright bands in optical images.However,reasons for changes in imaging characteristics with the solar zenith angle remain unclear.In this paper,the optical imaging pattern of ISWs in sunglint under different zenith angles of the light source is investigated by collecting optical images of ISWs through physical simulation.The experiment involves setting 10 zenith angles of the light source,which are divided into area a the optical images of ISWs in the three areas show dark-bright mode,single bright band,and bright-dark mode,which are consistent with those observed by optical remote sensing.In addition,this study analyzed the percentage of the dark and bright areas of the bands and the change in the relative gray difference and found changes in both areas under different zenith angles of the light source.The MODIS and ASAR images display a similar brightness-darkness distance of the same ISWs.Therefore,the relationship between the brightness-darkness distance and the characteristic half-width of ISWs is determined in accordance with the eKdV theory and the imaging mechanism of ISWs of the SAR image.Overall,the relationship between them in the experiment is almost consistent with the theoretical result.展开更多
According to the established prediction model of internal solitary wave loads on FPSO in the previous work,the lumped mass model and the movement equations of finite displacement in time domain,the dynamic response mo...According to the established prediction model of internal solitary wave loads on FPSO in the previous work,the lumped mass model and the movement equations of finite displacement in time domain,the dynamic response model of interaction between internal solitary waves and FPSO with mooring lines were established.Through calculations and analysis,time histories of dynamic loads of FPSO exerted by internal solitary waves,FPSO’s motion and dynamic tension of mooring line were obtained.The effects of the horizontal pretension of mooring line,the amplitude of internal solitary wave and layer fluid depth on dynamic response behavior of FPSO were mastered.It was shown that the internal solitary waves had significant influence on FPSO,such as the large magnitude horizontal drift and a sudden tension increment.With internal solitary wave of −170 m amplitude in the ocean with upper and lower layer fluid depth ratio being 60:550,the dynamic loads reached 991.132 kN(horizontal force),18067.3 kN(vertical force)and−5042.92 kN·m(pitching moment).Maximum of FPSO’s horizontal drift was 117.56 m.Tension increment of upstream mooring line approached 401.48 kN and that of backflow mooring line was−140 kN.Moreover,the loads remained nearly constant with different pretension but increased obviously with the changing amplitude and layer fluid depth ratio.Tension increments of mooring lines also changed little with the pretension but increased rapidly when amplitude and layer fluid depth ratio increased.However,FPSO’s motion increased quickly with not only the horizontal pretension but also the amplitude of internal solitary wave and layer fluid depth ratio.展开更多
Based on the high-quality observation data and the numerical simulation,the evolution characteristics of internal solitary waves(ISWs)and the load on the suspend submerged body are studied on the continental shelf and...Based on the high-quality observation data and the numerical simulation,the evolution characteristics of internal solitary waves(ISWs)and the load on the suspend submerged body are studied on the continental shelf and slope separately.The observed ISWs exhibit the first mode depression ISWs.The amplitudes of ISWs on the shelf and slope areas reach 50 m and 80 m,respectively.The upper layer velocity in the westward direction is about 0.8 m/s on the continental shelf and 0.9 m/s on the continental slope during the passing through of ISWs.The lower layer is dominated by the eastward compensating flow.In the vertical direction,the water in front of the wave flows downward,while the water behind the wave flows upward,and the maximum vertical velocity exceeds 0.2 m/s.Numerical simulation results show that the larger the amplitude of ISWs,the larger the load on the submerged body.The force on the submerged body by ISWs is dominated by the vertical force,and the corresponding maximum vertical forces on the continental shelf and slope are−25 kN and −27 kN.The submerged body is subjected to a large counterclockwise moment and the sudden change of the moment will also cause the submerged body to capsize.This paper not only gives a deeper understanding of the characteristics of ISWs from the deep continental slope to the shallow continental shelf,but also has a certain guiding value for the prediction of ISWs and for marine military activities.展开更多
Internal solitary wave(ISW),as a typical marine dynamic process in the deep sea,widely exists in oceans and marginal seas worldwide.The interaction between ISW and the seafloor mainly occurs in the bottom boundary lay...Internal solitary wave(ISW),as a typical marine dynamic process in the deep sea,widely exists in oceans and marginal seas worldwide.The interaction between ISW and the seafloor mainly occurs in the bottom boundary layer.For the seabed boundary layer of the deep sea,ISW is the most important dynamic process.This study analyzed the current status,hotspots,and frontiers of research on the interaction between ISW and the seafloor by CiteSpace.Focusing on the action of ISW on the seabed,such as transformation and reaction,a large amount of research work and results were systematically analyzed and summarized.On this basis,this study analyzed the wave–wave interaction and interaction between ISW and the bedform or slope of the seabed,which provided a new perspective for an in‐depth understanding of the interaction between ISW and the seafloor.Finally,the latest research results of the bottom boundary layer and marine engineering stability by ISW were introduced,and the unresolved problems in the current research work were summarized.This study provides a valuable reference for further research on the hazards of ISW to marine engineering geology.展开更多
Optical remote sensing has been widely used to study internal solitary waves(ISWs).Wind speed has an important effect on ISW imaging of optical remote sensing.The light and dark bands of ISWs cannot be observed by opt...Optical remote sensing has been widely used to study internal solitary waves(ISWs).Wind speed has an important effect on ISW imaging of optical remote sensing.The light and dark bands of ISWs cannot be observed by optical remote sensing when the wind is too strong.The relationship between the characteristics of ISWs bands in optical remote sensing images and the wind speed is still unclear.The influence of wind speeds on the characteristics of the ISWs bands is investigated based on the physical simulation experiments with the wind speeds of 1.6,3.1,3.5,3.8,and 3.9 m/s.The experimental results show that when the wind speed is 3.9 m/s,the ISWs bands cannot be observed in optical remote sensing images with the stratification of h_(1)∶h_(2)=7∶58,ρ_(1)∶ρ_(2)=1∶1.04.When the wind speeds are 3.1,3.5,and 3.8 m/s,which is lower than 3.9 m/s,the ISWs bands can be obtained in the simulated optical remote sensing image.The location of the band’s dark and light extremum and the band’s peak-to-peak spacing are almost not affected by wind speed.More-significant wind speeds can cause a greater gray difference of the light-dark bands.This provided a scientific basis for further understanding of ISW optical remote sensing imaging.展开更多
Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploi...Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploit two-dimensional image information.However,with the launch of the surface water ocean topography(SWOT)satellite on December 16,2022,a unique opportunity has emerged to capture wide-swath three-dimensional ISW-induced sea surface information.In this study,we examine ISWs in the Andaman Sea using data from the Ka-band Radar Interferometer(KaRIN),a crucial sensor onboard SWOT.KaRIN not only provides backscattering satellite images but also employs synthetic aperture interferometry techniques to retrieve wide-swath two-dimensional sea surface height measurements.Our observations in the Andaman Sea revealed the presence of ISWs characterized by dark-bright strips and surface elevation solitons.The surface soliton has an amplitude of 0.32 m,resulting in an estimation of ISW amplitude of approximately 60 m.In contrast to traditional two-dimensional satellite images or nadir-looking altimetry data,the SWOT mission’s capability to capture threedimensional sea surface information represents a significant advancement.This breakthrough holds substantial promise for ISW studies,particularly in the context of ISW amplitude inversion.展开更多
The dynamic parameters for internal solitary waves(ISWs)derived from the extended Korteweg-de Vries(eKdV)equation play an important role in the understanding and prediction of ISWs.The spatiotemporal variations of the...The dynamic parameters for internal solitary waves(ISWs)derived from the extended Korteweg-de Vries(eKdV)equation play an important role in the understanding and prediction of ISWs.The spatiotemporal variations of the dynamic parameters of the ISWs in the northern South China Sea(SCS)were studied based on the reanalysis of long-term temperature and salinity datasets.The results for spectrum analysis show that there are definite geographical differences for the periodic variation of the parameters:in shallow water,all parameters vary with a wave period of one year,while in deep water wave components of the parameters at other frequencies exist.Using wavelet analysis,the wavelet power spectral densities in deep water exhibited an inter-annual variation pattern.For example,the wave component of the dispersion coefficient with a wave period of about half a year reached its power peak once every two years.Based on previous work,this inter-annual variation pattern was deduced to be caused by dynamic processes.In further work on the regulatory mechanisms,empirical orthogonal function(EOF)decomposition was performed.It was found that the modes of the dispersion coefficient have different geographical distributions,explaining the reason why the wave components in different frequencies appeared in different locations.The numerical simulation results confirm that the variations in the parameters of the ISWs derived from the eKdV equation could affect the waveforms significantly because of changes in the polarity of the ISWs.Therefore,the periodic variations of the dynamic parameters are related to the geographical location because of dynamic processes operating.展开更多
Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims t...Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims to preliminarily analyze the detection capabilities of the Ka-band radar interferometer(KaRIn)and Nadir altimeter(NALT),which are carried out by SWOT for internal solitary waves(ISWs),and to gather other remote sensing images to validate SWOT observations.KaRIn effectively detects ISW surface features and generates surface height variation maps reflecting the modulations induced by ISWs.However,its swath width does not completely cover the entire wave packet,and the resolution of L2/L3 level products(about 2 km)cannot be used to identify ISWs with smaller wavelengths.Additionally,significant wave height(SWH)images exhibit blocky structures that are not suitable for ISW studies;sea surface height anomaly(SSHA)images display systematic leftright banding.We optimize this imbalance using detrending methods;however,more precise treatment should commence with L1-level data.Quantitative analysis based on L3-level SSHA data indicates that the average SSHA variation induced by ISWs ranges from 10 cm to 20 cm.NALTs disturbed by ISWs record unusually elevated SWH and SSHA values,rendering the data unsuitable for analysis and necessitating targeted corrections in future retracking algorithms.For the normalized radar cross section,Ku-band and four-parameter maximum likelihood estimation retracking demonstrated greater sensitivity to minor changes in the sea surface,making them more suitable for ISW detection.In conclusion,SWOT demonstrates outstanding capabilities in ISW detection,significantly advancing research on the modulation of the sea surface by ISWs and remote sensing imaging mechanisms.展开更多
The waveguide which is at the center of our concerns in this work is a strongly flattened waveguide, that is to say characterized by a strong dispersion and in addition is strongly nonlinear. As this type of waveguide...The waveguide which is at the center of our concerns in this work is a strongly flattened waveguide, that is to say characterized by a strong dispersion and in addition is strongly nonlinear. As this type of waveguide contains multiple dispersion coefficients according to the degrees of spatial variation within it, our work in this article is to see how these dispersions and nonlinearities each influence the wave or the signal that can propagate in the waveguide. Since the partial differential equation which governs the dynamics of propagation in such transmission medium presents several dispersion and nonlinear coefficients, we check how they contribute to the choices of the solutions that we want them to verify this nonlinear partial differential equation. This effectively requires an adequate choice of the form of solution to be constructed. Thus, this article is based on three main pillars, namely: first of all, making a good choice of the solution function to be constructed, secondly, determining the exact solutions and, if necessary, remodeling the main equation such that it is possible;then check the impact of the dispersion and nonlinear coefficients on the solutions. Finally, the reliability of the solutions obtained is tested by a study of the propagation. Another very important aspect is the use of notions of probability to select the predominant solutions.展开更多
An internal solitary wave of elevation in a two-layer density stratified system of an incompressible, viscous and homogeneous fluid was studied. The run-up of a wave of elevation encountering different slopes was inve...An internal solitary wave of elevation in a two-layer density stratified system of an incompressible, viscous and homogeneous fluid was studied. The run-up of a wave of elevation encountering different slopes was investigated numerically based on solving the continuity, Navier-Stokes and convective-diffusion equations within the Boussinesq approximation. The commercial software COMSOL Multiphysics was used to conduct the numerical simulations. For gradual shoals, a bolus formed that transported dense fluid up the shoal. The bolus disappeared when it reached its maximum height on the slope due to the draining of the dense fluid. Various shoal angles were simulated to detect the critical angle above which a bolus does not form. An angle of 30 or less resulted in the formation of a bolus. In addition, the simulations demonstrated that the size of the bolus induced by shallower slopes was larger and that the vertical height traveled by the bolus was insensitive to the slope of the shoal.展开更多
Internal solitary waves(ISWs)are nonlinear fluctuations in nature that could cause significant interactions between seawater and the seabed.ISWs have been proven to be an adequate cause of sediment resuspension in sha...Internal solitary waves(ISWs)are nonlinear fluctuations in nature that could cause significant interactions between seawater and the seabed.ISWs have been proven to be an adequate cause of sediment resuspension in shallow and deep-sea environments.In the South China Sea,ISWs have the largest amplitude globally and directly interact with the seabed near the Dongsha slope in the northern South China Sea.We analyzed the water profile and high-resolution multibeam bathymetric data near the Dongsha slope and revealed that submarine trenches have a significant impact on the sediment resuspension by ISWs.Moreover,ISWs in the zone of the wave-wave interaction enhanced sediment mixing and resuspension.The concentration of the suspended particulate matter inside submarine trenches was significantly higher than that outside them.The concentration of the suspended particulate matter near the bottoms of trenches could be double that outside them and formed a vast bottom nepheloid layer.Trenches could increase the concentration of the suspended particulate matter in the entire water column,and a water column with a high concentration of the suspended particulate matter was formed above the trench.ISWs in the wave-wave interaction zone near Dongsha could induce twice the concentration of the bottom nepheloid layer than those in other areas.The sediment resuspension caused by ISWs is a widespread occurrence all around the world.The findings of this study can offer new insights into the influence of submarine trench and wave-wave interaction on sediment resuspension and help in geohazard assessment.展开更多
The dynamic response of the steel lazy wave riser(SLWR)subjected to the internal solitary wave is a key to assessing its application feasibility.The innovation of this paper is to study the dynamic response properties...The dynamic response of the steel lazy wave riser(SLWR)subjected to the internal solitary wave is a key to assessing its application feasibility.The innovation of this paper is to study the dynamic response properties of the SLWR with large deformation characteristics under internal wave excitation.A numerical scheme of the SLWR is constructed using the slender-rod theory,and the internal solitary wave(ISW)with a two-layer seawater model is simulated by the extended Korteweg-deVries equation.The finite element method combined with the Newmark-βmethod is applied to discretize the equations and update the time integration.The ISW excitation combined with vessel motion on the dynamic deformation and stress of the SLWR is investigated,and extensive simulations of the ISW parameters,including the interface depth ratio and density difference,are carried out.Case calculation reveals that the displacement of the riser in the lower interface layer increases significantly under the ISW excitation,and the stresses at a part of both ends grow evidently.Moreover,the mean value of riser responses under a combination of vessel motion and ISW coincides with the ISW-induced ones.Furthermore,the dynamic responses along the whole riser,including the displacement amplitudes,bending moment amplitudes,and stress amplitudes,almost increase with the increase in interface depth ratios and density differences.展开更多
In this article, the use of a high-order Boussinesq-type model and sets of laboratory experiments in a large scale flume of breaking solitary waves climbing up slopes with two inclinations are presented to study the s...In this article, the use of a high-order Boussinesq-type model and sets of laboratory experiments in a large scale flume of breaking solitary waves climbing up slopes with two inclinations are presented to study the shoreline behavior of breaking and non-breaking solitary waves on plane slopes. The scale effect on run-up height is briefly discussed. The model simulation capability is well validated against the available laboratory data and present experiments. Then, serial numerical tests are conducted to study the shoreline motion correlated with the effects of beach slope and wave nonlinearity for breaking and non-breaking waves. The empirical formula proposed by Hsiao et al. for predicting the maximum run-up height of a breaking solitary wave on plane slopes with a wide range of slope inclinations is confirmed to be cautious. Furthermore, solitary waves impacting and overtopping an impermeable sloping seawall at various water depths are investigated. Laboratory data of run-up height, shoreline motion, free surface elevation and overtopping discharge are presented. Comparisons of run-up, run-down, shoreline trajectory and wave overtopping discharge are made. A fairly good agreement is seen between numerical results and experimental data. It elucidates that the present depth-integrated model can be used as an efficient tool for predicting a wide spectrum of coastal problems.展开更多
The resuspension of marine sediments plays a key role in the biogeochemical cycle and marine ecology system.Internal solitary waves are considered to be important driving forces of the resuspension of bottom sediments...The resuspension of marine sediments plays a key role in the biogeochemical cycle and marine ecology system.Internal solitary waves are considered to be important driving forces of the resuspension of bottom sediments.In this paper,the movement of turbidity currents,the generation and the effects on the bottom bed of internal solitary waves and excitation waves are studied by flume tests and numerical simulations,and the sediment resuspension are analyzed.The results show that the excitation wave can lead to the resuspension of the bottom sediments under all the conditions,while the internal solitary wave can lead to the resuspension of the sediment only under some special conditions,such as high amplitude or large underwater slope.Under the experimental conditions,the change in the near-bottom velocity caused by the excitation wave is close to three times that of the internal solitary wave.展开更多
The high-fidelity reconstruction of sound speeds is crucial for predicting acoustic propagation in shallow water where internal solitary waves(ISWs)are prevalent.Mapping temperatures from time series to spatial fields...The high-fidelity reconstruction of sound speeds is crucial for predicting acoustic propagation in shallow water where internal solitary waves(ISWs)are prevalent.Mapping temperatures from time series to spatial fields is an approach widely used to reproduce the sound speed perturbed by deformed internal waves.However,wave-shape distortions are inherent in the modeling results.This paper analyzes the formation mechanism and dynamic behavior of the distorted waveform that is shown to arise from the mismatch between the modeled and real propagation speeds of individual solitons within an ISW packet.To mitigate distortions,a reconstruction method incorporating the dispersion property of an ISW train is proposed here.The principle is to assign each soliton a real speed observed in the experiment.Then,the modeled solitons propagate at their intrinsic speeds,and the packet disperses naturally with time.The method is applied to reconstruct the sound speed perturbed by ISWs in the South China Sea.The mean and median of the root-mean-square error between the reconstructed and measured sound speeds are below 2 m/s.The modeled shape deformations and packet dispersion agree well with observations,and the waveform distortion is reduced compared with the original method.This work ensures the high fidelity of waveguide-environment reconstructions and facilitates the investigation of sound propagation in the future.展开更多
基金supported by State Key Development Program of Basic Research of China (Grant No.2010CB429001)
文摘The prediction of solitary wave run-up has important practical significance in coastal and ocean engineering, but the calculation precision is limited in the existing models. For improving the calculation precision, a solitary wave run-up calculation model was established based on artificial neural networks in this study. A back-propagation (BP) network with one hidden layer was adopted and modified with the additional momentum method and the auto-adjusting learning factor. The model was applied to calculation of solitary wave run-up. The correlation coefficients between the neural network model results and the experimental values was 0.996 5. By comparison with the correlation coefficient of 0.963 5, between the Synolakis formula calculation results and the experimental values, it is concluded that the neural network model is an effective method for calculation and analysis of solitary wave ran-up.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51379125,51411130131,and 11432009)Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning(Grant No.2013022)the National Basic Research Program of China(973 Program,Grant No.2013CB036103)
文摘Simulation of solitary wave run-up on a vertical circular cylinder is carried out in a viscous numerical wave tank developed based on the open source codes Open FOAM. An incompressible two-phase flow solver naoe-FOAM-SJTU is used to solve the Reynolds-Averaged Navier–Stokes(RANS) equations with the SST k ?? turbulence model. The PISO algorithm is utilized for the pressure-velocity coupling. The air-water interface is captured via Volume of Fluid(VOF) technique. The present numerical model is validated by simulating the solitary wave run-up and reflected against a vertical wall, and solitary wave run-up on a vertical circular cylinder. Comparisons between numerical results and available experimental data show satisfactory agreement. Furthermore, simulations are carried out to study the solitary wave run-up on the cylinder with different incident wave height H and different cylinder radius a. The relationships of the wave run-up height with the incident wave height H, cylinder radius a are analyzed. The evolutions of the scattering free surface and vortex shedding are also presented to give a better understanding of the process of nonlinear wave-cylinder interaction.
基金The National Natural Science Foundation of China under contract Nos 51579036 and 51779039the Fundamental Research Funds for the Central Universities of China under contract No.DUT19LAB13。
文摘Coastal vegetation is capable of decreasing wave run-up.However,because of regrowth,decay or man-made damage,coastal vegetation is always distributed in patches,and its internal distribution is often non-uniform.This study investigates the effects of patchy vegetation on solitary wave run-up by using a numerical simulation.A numerical model based on fully nonlinear Boussinesq equations is established to simulate the wave propagation on a slope with patchy vegetation.By using the model,the process of solitary wave run-up attenuation due to patchy vegetation is numerically analysed.The numerical results reveal that patchy vegetation can considerably attenuate the wave run-up in an effective manner.In addition,high-density patched vegetation can attenuate the solitary wave run-up more effectively than low-density patched vegetation can.For the same density,patchy vegetation with a uniform distribution has a better attenuation effect on wave run-up compared to that of patchy vegetation with a non-uniform distribution.
基金supported by the Project of Scientific and Technological Innovation Base of Jiangxi Province,China (Grant No.20203CCD46008)the Key R&D Plan of Jiangxi Province,China (Grant No.20223BBH80006)+1 种基金the Natural Science Foundation of Jiangxi Province,China (Grant No.20212BAB211025)the Jiangxi Province Key Laboratory of Fusion and Information Control (Grant No.20171BCD40005)。
文摘We investigate propagation of dust ion acoustic solitary wave(DIASW)in a multicomponent dusty plasma with adiabatic ions,superthermal electrons,and stationary dust.The reductive perturbation method is employed to derive the damped Korteweg-de Vries(DKdV)equation which describes DIASW.The result reveals that the adiabaticity of ions significantly modifies the basic features of the DIASW.The ionization effect makes the solitary wave grow,while collisions reduce the growth rate and even lead to the damping.With the increases in ionization cross sectionΔσ/σ_(0),ion-to-electron density ratioδ_(ie)and superthermal electrons parameterκ,the effect of ionization on DIASW enhances.
基金Project supported by the National Natural Science Foundation of China(Grant No.11574153)the Foundation of the Ministry of Industry and Information Technology of China(Grant No.TSXK2022D007)。
文摘This study numerically investigates the nonlinear interaction of head-on solitary waves in a granular chain(a nonintegrable system)and compares the simulation results with the theoretical results in fluid(an integrable system).Three stages(the pre-in-phase traveling stage,the central-collision stage,and the post-in-phase traveling stage)are identified to describe the nonlinear interaction processes in the granular chain.The nonlinear scattering effect occurs in the central-collision stage,which decreases the amplitude of the incident solitary waves.Compared with the leading-time phase in the incident and separation collision processes,the lagging-time phase in the separation collision process is smaller.This asymmetrical nonlinear collision results in an occurrence of leading phase shifts of time and space in the post-in-phase traveling stage.We next find that the solitary wave amplitude does not influence the immediate space-phase shift in the granular chain.The space-phase shift of the post-in-phase traveling stage is only determined by the measurement position rather than the wave amplitude.The results are reversed in the fluid.An increase in solitary wave amplitude leads to decreased attachment,detachment,and residence times for granular chains and fluid.For the immediate time-phase shift,leading and lagging phenomena appear in the granular chain and the fluid,respectively.These results offer new knowledge for designing mechanical metamaterials and energy-mitigating systems.
基金National Natural Science Foundation of China (Nos.61871353 and 42006164)for their support。
文摘Internal solitary waves(ISWs)change the roughness of the sea surface,thus producing dark and bright bands in optical images.However,reasons for changes in imaging characteristics with the solar zenith angle remain unclear.In this paper,the optical imaging pattern of ISWs in sunglint under different zenith angles of the light source is investigated by collecting optical images of ISWs through physical simulation.The experiment involves setting 10 zenith angles of the light source,which are divided into area a the optical images of ISWs in the three areas show dark-bright mode,single bright band,and bright-dark mode,which are consistent with those observed by optical remote sensing.In addition,this study analyzed the percentage of the dark and bright areas of the bands and the change in the relative gray difference and found changes in both areas under different zenith angles of the light source.The MODIS and ASAR images display a similar brightness-darkness distance of the same ISWs.Therefore,the relationship between the brightness-darkness distance and the characteristic half-width of ISWs is determined in accordance with the eKdV theory and the imaging mechanism of ISWs of the SAR image.Overall,the relationship between them in the experiment is almost consistent with the theoretical result.
基金supported by JUST start-up fund for science research,the Jiangsu Natural Science Foundation(Grant No.BK20210885).
文摘According to the established prediction model of internal solitary wave loads on FPSO in the previous work,the lumped mass model and the movement equations of finite displacement in time domain,the dynamic response model of interaction between internal solitary waves and FPSO with mooring lines were established.Through calculations and analysis,time histories of dynamic loads of FPSO exerted by internal solitary waves,FPSO’s motion and dynamic tension of mooring line were obtained.The effects of the horizontal pretension of mooring line,the amplitude of internal solitary wave and layer fluid depth on dynamic response behavior of FPSO were mastered.It was shown that the internal solitary waves had significant influence on FPSO,such as the large magnitude horizontal drift and a sudden tension increment.With internal solitary wave of −170 m amplitude in the ocean with upper and lower layer fluid depth ratio being 60:550,the dynamic loads reached 991.132 kN(horizontal force),18067.3 kN(vertical force)and−5042.92 kN·m(pitching moment).Maximum of FPSO’s horizontal drift was 117.56 m.Tension increment of upstream mooring line approached 401.48 kN and that of backflow mooring line was−140 kN.Moreover,the loads remained nearly constant with different pretension but increased obviously with the changing amplitude and layer fluid depth ratio.Tension increments of mooring lines also changed little with the pretension but increased rapidly when amplitude and layer fluid depth ratio increased.However,FPSO’s motion increased quickly with not only the horizontal pretension but also the amplitude of internal solitary wave and layer fluid depth ratio.
基金supported by the Natural Science Foundation of Jiangsu Province(Grant No.BK20210885)the National Natural Science Foundation of China(Grant Nos.52372356,52371277,and 42076005)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515010890).
文摘Based on the high-quality observation data and the numerical simulation,the evolution characteristics of internal solitary waves(ISWs)and the load on the suspend submerged body are studied on the continental shelf and slope separately.The observed ISWs exhibit the first mode depression ISWs.The amplitudes of ISWs on the shelf and slope areas reach 50 m and 80 m,respectively.The upper layer velocity in the westward direction is about 0.8 m/s on the continental shelf and 0.9 m/s on the continental slope during the passing through of ISWs.The lower layer is dominated by the eastward compensating flow.In the vertical direction,the water in front of the wave flows downward,while the water behind the wave flows upward,and the maximum vertical velocity exceeds 0.2 m/s.Numerical simulation results show that the larger the amplitude of ISWs,the larger the load on the submerged body.The force on the submerged body by ISWs is dominated by the vertical force,and the corresponding maximum vertical forces on the continental shelf and slope are−25 kN and −27 kN.The submerged body is subjected to a large counterclockwise moment and the sudden change of the moment will also cause the submerged body to capsize.This paper not only gives a deeper understanding of the characteristics of ISWs from the deep continental slope to the shallow continental shelf,but also has a certain guiding value for the prediction of ISWs and for marine military activities.
基金National Natural Science Foundation of China,Grant/Award Number:42107158Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20210527。
文摘Internal solitary wave(ISW),as a typical marine dynamic process in the deep sea,widely exists in oceans and marginal seas worldwide.The interaction between ISW and the seafloor mainly occurs in the bottom boundary layer.For the seabed boundary layer of the deep sea,ISW is the most important dynamic process.This study analyzed the current status,hotspots,and frontiers of research on the interaction between ISW and the seafloor by CiteSpace.Focusing on the action of ISW on the seabed,such as transformation and reaction,a large amount of research work and results were systematically analyzed and summarized.On this basis,this study analyzed the wave–wave interaction and interaction between ISW and the bedform or slope of the seabed,which provided a new perspective for an in‐depth understanding of the interaction between ISW and the seafloor.Finally,the latest research results of the bottom boundary layer and marine engineering stability by ISW were introduced,and the unresolved problems in the current research work were summarized.This study provides a valuable reference for further research on the hazards of ISW to marine engineering geology.
基金Supported by the National Natural Science Foundation of China(Nos.61871353,42006164)。
文摘Optical remote sensing has been widely used to study internal solitary waves(ISWs).Wind speed has an important effect on ISW imaging of optical remote sensing.The light and dark bands of ISWs cannot be observed by optical remote sensing when the wind is too strong.The relationship between the characteristics of ISWs bands in optical remote sensing images and the wind speed is still unclear.The influence of wind speeds on the characteristics of the ISWs bands is investigated based on the physical simulation experiments with the wind speeds of 1.6,3.1,3.5,3.8,and 3.9 m/s.The experimental results show that when the wind speed is 3.9 m/s,the ISWs bands cannot be observed in optical remote sensing images with the stratification of h_(1)∶h_(2)=7∶58,ρ_(1)∶ρ_(2)=1∶1.04.When the wind speeds are 3.1,3.5,and 3.8 m/s,which is lower than 3.9 m/s,the ISWs bands can be obtained in the simulated optical remote sensing image.The location of the band’s dark and light extremum and the band’s peak-to-peak spacing are almost not affected by wind speed.More-significant wind speeds can cause a greater gray difference of the light-dark bands.This provided a scientific basis for further understanding of ISW optical remote sensing imaging.
基金Supported by the National Key Research and Development Program of China(No.2022YFE0204600)the National Natural Science Foundation for Young Scientists of China(No.41906157)。
文摘Internal solitary waves(ISW),characterized by large amplitude and long propagation distance,are widespread in global oceans.While remote sensing images have played an essential role in studying ISWs,they mainly exploit two-dimensional image information.However,with the launch of the surface water ocean topography(SWOT)satellite on December 16,2022,a unique opportunity has emerged to capture wide-swath three-dimensional ISW-induced sea surface information.In this study,we examine ISWs in the Andaman Sea using data from the Ka-band Radar Interferometer(KaRIN),a crucial sensor onboard SWOT.KaRIN not only provides backscattering satellite images but also employs synthetic aperture interferometry techniques to retrieve wide-swath two-dimensional sea surface height measurements.Our observations in the Andaman Sea revealed the presence of ISWs characterized by dark-bright strips and surface elevation solitons.The surface soliton has an amplitude of 0.32 m,resulting in an estimation of ISW amplitude of approximately 60 m.In contrast to traditional two-dimensional satellite images or nadir-looking altimetry data,the SWOT mission’s capability to capture threedimensional sea surface information represents a significant advancement.This breakthrough holds substantial promise for ISW studies,particularly in the context of ISW amplitude inversion.
基金Supported by the Hunan Provincial Science Fund for Distinguished Young Scholars(No.2023JJ10053)the National Natural Science Foundation of China(No.42276205)。
文摘The dynamic parameters for internal solitary waves(ISWs)derived from the extended Korteweg-de Vries(eKdV)equation play an important role in the understanding and prediction of ISWs.The spatiotemporal variations of the dynamic parameters of the ISWs in the northern South China Sea(SCS)were studied based on the reanalysis of long-term temperature and salinity datasets.The results for spectrum analysis show that there are definite geographical differences for the periodic variation of the parameters:in shallow water,all parameters vary with a wave period of one year,while in deep water wave components of the parameters at other frequencies exist.Using wavelet analysis,the wavelet power spectral densities in deep water exhibited an inter-annual variation pattern.For example,the wave component of the dispersion coefficient with a wave period of about half a year reached its power peak once every two years.Based on previous work,this inter-annual variation pattern was deduced to be caused by dynamic processes.In further work on the regulatory mechanisms,empirical orthogonal function(EOF)decomposition was performed.It was found that the modes of the dispersion coefficient have different geographical distributions,explaining the reason why the wave components in different frequencies appeared in different locations.The numerical simulation results confirm that the variations in the parameters of the ISWs derived from the eKdV equation could affect the waveforms significantly because of changes in the polarity of the ISWs.Therefore,the periodic variations of the dynamic parameters are related to the geographical location because of dynamic processes operating.
基金The National Natural Science Foundation of China under contract Nos U2006207 and 42006164.
文摘Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims to preliminarily analyze the detection capabilities of the Ka-band radar interferometer(KaRIn)and Nadir altimeter(NALT),which are carried out by SWOT for internal solitary waves(ISWs),and to gather other remote sensing images to validate SWOT observations.KaRIn effectively detects ISW surface features and generates surface height variation maps reflecting the modulations induced by ISWs.However,its swath width does not completely cover the entire wave packet,and the resolution of L2/L3 level products(about 2 km)cannot be used to identify ISWs with smaller wavelengths.Additionally,significant wave height(SWH)images exhibit blocky structures that are not suitable for ISW studies;sea surface height anomaly(SSHA)images display systematic leftright banding.We optimize this imbalance using detrending methods;however,more precise treatment should commence with L1-level data.Quantitative analysis based on L3-level SSHA data indicates that the average SSHA variation induced by ISWs ranges from 10 cm to 20 cm.NALTs disturbed by ISWs record unusually elevated SWH and SSHA values,rendering the data unsuitable for analysis and necessitating targeted corrections in future retracking algorithms.For the normalized radar cross section,Ku-band and four-parameter maximum likelihood estimation retracking demonstrated greater sensitivity to minor changes in the sea surface,making them more suitable for ISW detection.In conclusion,SWOT demonstrates outstanding capabilities in ISW detection,significantly advancing research on the modulation of the sea surface by ISWs and remote sensing imaging mechanisms.
文摘The waveguide which is at the center of our concerns in this work is a strongly flattened waveguide, that is to say characterized by a strong dispersion and in addition is strongly nonlinear. As this type of waveguide contains multiple dispersion coefficients according to the degrees of spatial variation within it, our work in this article is to see how these dispersions and nonlinearities each influence the wave or the signal that can propagate in the waveguide. Since the partial differential equation which governs the dynamics of propagation in such transmission medium presents several dispersion and nonlinear coefficients, we check how they contribute to the choices of the solutions that we want them to verify this nonlinear partial differential equation. This effectively requires an adequate choice of the form of solution to be constructed. Thus, this article is based on three main pillars, namely: first of all, making a good choice of the solution function to be constructed, secondly, determining the exact solutions and, if necessary, remodeling the main equation such that it is possible;then check the impact of the dispersion and nonlinear coefficients on the solutions. Finally, the reliability of the solutions obtained is tested by a study of the propagation. Another very important aspect is the use of notions of probability to select the predominant solutions.
文摘An internal solitary wave of elevation in a two-layer density stratified system of an incompressible, viscous and homogeneous fluid was studied. The run-up of a wave of elevation encountering different slopes was investigated numerically based on solving the continuity, Navier-Stokes and convective-diffusion equations within the Boussinesq approximation. The commercial software COMSOL Multiphysics was used to conduct the numerical simulations. For gradual shoals, a bolus formed that transported dense fluid up the shoal. The bolus disappeared when it reached its maximum height on the slope due to the draining of the dense fluid. Various shoal angles were simulated to detect the critical angle above which a bolus does not form. An angle of 30 or less resulted in the formation of a bolus. In addition, the simulations demonstrated that the size of the bolus induced by shallower slopes was larger and that the vertical height traveled by the bolus was insensitive to the slope of the shoal.
基金supported by the National Natural Science Foundation of China(Nos.42107158 and 41831280)the Natural Science Foundation of Jiangsu Province(No.BK20210527)+2 种基金the Open Research Fund of Key Laboratory of Coastal Science and Integrated Management,the Ministry of Natural Resources,the National Basic Research Program of China(No.2018YFC0309200)the Fundamental Research Funds for the Central Universities(No.2021QN1096)We thank the Natural Science Foundation of China for the Open Research Cruise(No.NORC2018-05).
文摘Internal solitary waves(ISWs)are nonlinear fluctuations in nature that could cause significant interactions between seawater and the seabed.ISWs have been proven to be an adequate cause of sediment resuspension in shallow and deep-sea environments.In the South China Sea,ISWs have the largest amplitude globally and directly interact with the seabed near the Dongsha slope in the northern South China Sea.We analyzed the water profile and high-resolution multibeam bathymetric data near the Dongsha slope and revealed that submarine trenches have a significant impact on the sediment resuspension by ISWs.Moreover,ISWs in the zone of the wave-wave interaction enhanced sediment mixing and resuspension.The concentration of the suspended particulate matter inside submarine trenches was significantly higher than that outside them.The concentration of the suspended particulate matter near the bottoms of trenches could be double that outside them and formed a vast bottom nepheloid layer.Trenches could increase the concentration of the suspended particulate matter in the entire water column,and a water column with a high concentration of the suspended particulate matter was formed above the trench.ISWs in the wave-wave interaction zone near Dongsha could induce twice the concentration of the bottom nepheloid layer than those in other areas.The sediment resuspension caused by ISWs is a widespread occurrence all around the world.The findings of this study can offer new insights into the influence of submarine trench and wave-wave interaction on sediment resuspension and help in geohazard assessment.
基金This work was supported by the National Natural Science Foundation of China(Nos.U2006226,51979257)the Shandong Provincial Natural Science Foundation,China(Nos.ZR2020ME261,ZR2019MEE032).
文摘The dynamic response of the steel lazy wave riser(SLWR)subjected to the internal solitary wave is a key to assessing its application feasibility.The innovation of this paper is to study the dynamic response properties of the SLWR with large deformation characteristics under internal wave excitation.A numerical scheme of the SLWR is constructed using the slender-rod theory,and the internal solitary wave(ISW)with a two-layer seawater model is simulated by the extended Korteweg-deVries equation.The finite element method combined with the Newmark-βmethod is applied to discretize the equations and update the time integration.The ISW excitation combined with vessel motion on the dynamic deformation and stress of the SLWR is investigated,and extensive simulations of the ISW parameters,including the interface depth ratio and density difference,are carried out.Case calculation reveals that the displacement of the riser in the lower interface layer increases significantly under the ISW excitation,and the stresses at a part of both ends grow evidently.Moreover,the mean value of riser responses under a combination of vessel motion and ISW coincides with the ISW-induced ones.Furthermore,the dynamic responses along the whole riser,including the displacement amplitudes,bending moment amplitudes,and stress amplitudes,almost increase with the increase in interface depth ratios and density differences.
基金financially supported by the National Science Council(Grant NSC101-2628-E-015-MY3)
文摘In this article, the use of a high-order Boussinesq-type model and sets of laboratory experiments in a large scale flume of breaking solitary waves climbing up slopes with two inclinations are presented to study the shoreline behavior of breaking and non-breaking solitary waves on plane slopes. The scale effect on run-up height is briefly discussed. The model simulation capability is well validated against the available laboratory data and present experiments. Then, serial numerical tests are conducted to study the shoreline motion correlated with the effects of beach slope and wave nonlinearity for breaking and non-breaking waves. The empirical formula proposed by Hsiao et al. for predicting the maximum run-up height of a breaking solitary wave on plane slopes with a wide range of slope inclinations is confirmed to be cautious. Furthermore, solitary waves impacting and overtopping an impermeable sloping seawall at various water depths are investigated. Laboratory data of run-up height, shoreline motion, free surface elevation and overtopping discharge are presented. Comparisons of run-up, run-down, shoreline trajectory and wave overtopping discharge are made. A fairly good agreement is seen between numerical results and experimental data. It elucidates that the present depth-integrated model can be used as an efficient tool for predicting a wide spectrum of coastal problems.
基金The research was supported by the National Natural Science Foundation of China(Nos.42206055,41976049,41720104001)the Taishan Scholar Project of Shandong Province(No.TS20190913)the Fundamental Research Funds for the Central Universities(No.202061028).
文摘The resuspension of marine sediments plays a key role in the biogeochemical cycle and marine ecology system.Internal solitary waves are considered to be important driving forces of the resuspension of bottom sediments.In this paper,the movement of turbidity currents,the generation and the effects on the bottom bed of internal solitary waves and excitation waves are studied by flume tests and numerical simulations,and the sediment resuspension are analyzed.The results show that the excitation wave can lead to the resuspension of the bottom sediments under all the conditions,while the internal solitary wave can lead to the resuspension of the sediment only under some special conditions,such as high amplitude or large underwater slope.Under the experimental conditions,the change in the near-bottom velocity caused by the excitation wave is close to three times that of the internal solitary wave.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11534009,11904342,and 12274348)。
文摘The high-fidelity reconstruction of sound speeds is crucial for predicting acoustic propagation in shallow water where internal solitary waves(ISWs)are prevalent.Mapping temperatures from time series to spatial fields is an approach widely used to reproduce the sound speed perturbed by deformed internal waves.However,wave-shape distortions are inherent in the modeling results.This paper analyzes the formation mechanism and dynamic behavior of the distorted waveform that is shown to arise from the mismatch between the modeled and real propagation speeds of individual solitons within an ISW packet.To mitigate distortions,a reconstruction method incorporating the dispersion property of an ISW train is proposed here.The principle is to assign each soliton a real speed observed in the experiment.Then,the modeled solitons propagate at their intrinsic speeds,and the packet disperses naturally with time.The method is applied to reconstruct the sound speed perturbed by ISWs in the South China Sea.The mean and median of the root-mean-square error between the reconstructed and measured sound speeds are below 2 m/s.The modeled shape deformations and packet dispersion agree well with observations,and the waveform distortion is reduced compared with the original method.This work ensures the high fidelity of waveguide-environment reconstructions and facilitates the investigation of sound propagation in the future.