期刊文献+
共找到32,228篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of Ultrasonic Seed Treatment on Rice Performances under the Seawater Irrigation
1
作者 Yingying Zhang Jinhai Liu +2 位作者 Zhuosheng Yan Gangshun Rao Xiangru Tang 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第1期121-130,共10页
Irrigation with desalinated seawater is an effective way to use ocean resources and save freshwater resources.However,seawater irrigation would cause yield loss of rice.In order to explore the effects of ultrasonic se... Irrigation with desalinated seawater is an effective way to use ocean resources and save freshwater resources.However,seawater irrigation would cause yield loss of rice.In order to explore the effects of ultrasonic seed treatment on rice performances under seawater irrigation,the present study was conducted with three irrigation treatments(fresh water(SW0),ten times diluted seawater(SW1%,0.34%salinity),and five times diluted seawater(SW2%,0.68%salinity))and two seed treatments(ultrasonic treated seeds(UT)and untreated seeds(CK)).Compared with SW0+CK treatment,SW1+CK and SW2+CK treatments significantly decreased grain yield by 56.19%and 66.69%,spikelets per panicle by 30.11%and 55.80%,seed-setting rate by 23.05%and 18.87%,and 1000-grain weight by 4.55%and 14.50%,respectively.Seawater irrigation also significantly increased malonaldehyde(MDA)and proline contents and the activities of superoxide dismutase(SOD)and peroxidase(POD).Ultrasonic seed treatment significantly increased the grain number per panicle,seed-setting rate,and grain yield of rice under seawater irrigation.Compared with CK,UT treatment substantially reduced MDA content,SOD activity,and POD activity in SW1 and SW2 conditions.Furthermore,UT treatment significantly increased proline content and down-regulated proline dehydrogenase activity under seawater irrigation.We deduced that ultrasonic seed treatment enhanced the salinity tolerance of rice by inducing the proline accmulation.Our findings indicated that ultrasonic seed treatment could an effective strategy to promote rice productivity under seawater irrigation. 展开更多
关键词 PROLINE RICE seawater irrigation ultrasonic waves yield formation
下载PDF
Effects of drip and flood irrigation on carbon dioxide exchange and crop growth in the maize ecosystem in the Hetao Irrigation District,China
2
作者 LI Chaoqun HAN Wenting PENG Manman 《Journal of Arid Land》 SCIE CSCD 2024年第2期282-297,共16页
Drip irrigation and flood irrigation are major irrigation methods for maize crops in the Hetao Irrigation District,Inner Mongolia Autonomous Region,China.This research delves into the effects of these irrigation metho... Drip irrigation and flood irrigation are major irrigation methods for maize crops in the Hetao Irrigation District,Inner Mongolia Autonomous Region,China.This research delves into the effects of these irrigation methods on carbon dioxide(CO_(2))exchange and crop growth in this region.The experimental site was divided into drip and flood irrigation zones.The irrigation schedules of this study aligned with the local commonly used irrigation schedule.We employed a developed chamber system to measure the diurnal CO_(2)exchange of maize plants during various growth stages under both drip and flood irrigation methods.From May to September in 2020 and 2021,two sets of repeated experiments were conducted.In each experiment,a total of nine measurements of CO_(2)exchange were performed to obtain carbon exchange data at different growth stages of maize crop.During each CO_(2)exchange measurement event,CO_(2)flux data were collected every two hours over a day-long period to capture the diurnal variations in CO_(2)exchange.During each CO_(2)exchange measurement event,the biological parameters(aboveground biomass and crop growth rate)of maize and environmental parameters(including air humidity,air temperature,precipitation,soil water content,and photosynthetically active radiation)were measured.The results indicated a V-shaped trend in net ecosystem CO_(2)exchange in daytime,reducing slowly at night,while the net assimilation rate(net primary productivity)exhibited a contrasting trend.Notably,compared with flood irrigation,drip irrigation demonstrated significantly higher average daily soil CO_(2)emission and greater average daily CO_(2)absorption by maize plants.Consequently,within the maize ecosystem,drip irrigation appeared more conducive to absorbing atmospheric CO_(2).Furthermore,drip irrigation demonstrated a faster crop growth rate and increased aboveground biomass compared with flood irrigation.A strong linear relationship existed between leaf area index and light utilization efficiency,irrespective of the irrigation method.Notably,drip irrigation displayed superior light use efficiency compared with flood irrigation.The final yield results corroborated these findings,indicating that drip irrigation yielded higher harvest index and overall yield than flood irrigation.The results of this study provide a basis for the selection of optimal irrigation methods commonly used in the Hetao Irrigation District.This research also serves as a reference for future irrigation studies that consider measurements of both carbon emissions and yield simultaneously. 展开更多
关键词 carbon dioxide exchange maize growth drip irrigation harvest index net primary productivity Hetao irrigation District
下载PDF
Expert consensus on irrigation and intracanal medication in root canal therapy
3
作者 Xiaoying Zou Xin Zheng +25 位作者 Yuhong Liang Chengfei Zhang Bing Fan Jingping Liang Junqi Ling Zhuan Bian Qing Yu Benxiang Hou Zhi Chen Xi Wei Lihong Qiu Wenxia Chen Wenxi He Xin Xu Liuyan Meng Chen Zhang Liming Chen Shuli Deng Yayan Lei Xiaoli Xie Xiaoyan Wang Jinhua Yu Jin Zhao Song Shen Xuedong Zhou Lin Yue 《International Journal of Oral Science》 SCIE CAS CSCD 2024年第1期26-35,共10页
Chemical cleaning and disinfection are crucial steps for eliminating infection in root canal treatment. However, irrigant selection or irrigation procedures are far from clear. The vapor lock effect in the apical regi... Chemical cleaning and disinfection are crucial steps for eliminating infection in root canal treatment. However, irrigant selection or irrigation procedures are far from clear. The vapor lock effect in the apical region has yet to be solved, impeding irrigation efficacy and resulting in residual infections and compromised treatment outcomes. 展开更多
关键词 treatment. irrigation EXPERT
下载PDF
Irrigation and nitrogen fertiliser optimisation in protected vegetable fields of northern China:Achieving environmental and agronomic sustainability
4
作者 Bingqian Fan Yitao Zhang +8 位作者 Owen Fenton Karen Daly Jungai Li Hongyuan Wang Limei Zhai Xiaosheng Luo Qiuliang Lei Shuxia Wu Hongbin Liu 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期1022-1033,共12页
Globally,sub-optimal use of nitrogen (N) fertiliser and elevated N irrigation groundwater have led to high leached nitrate (NO_(3)^(–)) losses from protected vegetable field systems.Optimising fertiliser and irrigati... Globally,sub-optimal use of nitrogen (N) fertiliser and elevated N irrigation groundwater have led to high leached nitrate (NO_(3)^(–)) losses from protected vegetable field systems.Optimising fertiliser and irrigation management in different soil types is crucial to reduce future N loads from such systems.The present 4-year study examined leached N loads from lysimeter monitoring arrays set up across 18 protected vegetable system sites encompassing the dominant soil types of northern China.The treatments applied at each field site were:1) a high N and high irrigation input treatment (HNHI);2) a low N but high irrigation input treatment (LNHI) and 3) a low N with low irrigation input treatment (LNLI).Results showed that the mean annual leached total nitrogen loads from the HNHI,LNHI and LNLI treatments were 325,294 and 257 kg N ha^(–1) in the fluvo-aquic soil,114,100 and 78 kg N ha^(–1) in the cinnamon soil and 79,68 and 57 kg N ha^(–1) in the black soil,respectively.The N dissolved in irrigation water in the fluvo-aquic soil areas was 8.26-fold higher than in the cinnamon areas.A structural equation model showed that N fertiliser inputs and leaching water amounts explained 14.7 and 81.8%of the variation of leached N loads,respectively.Correspondingly,reducing irrigation water by 21.5%decreased leached N loads by 20.9%,while reducing manure N and chemical N inputs by 22 and 25%decreased leached N loads by only 9.5%. This study highlights that protected vegetable fields dominated by fluvo-aquic soil need management to curtail leached N losses in northern China. 展开更多
关键词 agriculture water quality NITRATE GROUNDWATER irrigation management
下载PDF
A study of the soil water potential threshold values to trigger irrigation of ‘Shimizu Hakuto’ peach at pivotal fruit developmental stages
5
作者 Yusui Lou Yuepeng Han +4 位作者 Yubin Miao Hongquan Shang Zhongwei Lv Lei Wang Shiping Wang 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期376-386,共11页
Water management is an important practice that affects fruit size and quality.Effective implementation of irrigation scheduling requires knowledge of the appropriate indicators and thresholds,which are established man... Water management is an important practice that affects fruit size and quality.Effective implementation of irrigation scheduling requires knowledge of the appropriate indicators and thresholds,which are established manly based on the effects of water deficits on final fruit quality.Few studies have focused on the real-time effects of water status on fruit and shoot growth.To establish soil water potential (ψ_(soil)) thresholds to trigger irrigation of peach at pivotal fruit developmental stages,photogrammetry,^(13)C labelling,and other techniques were used in this study to investigate real-time changes in stem diameter,fruit projected area,net leaf photosynthetic rate (P_(n)),and allocation of photoassimilates to fruit under soil water potential conditions ranging from saturation to stress in 6-year-old Shimizu hakuto’peach.Stem growth,fruit growth,and P_n exhibited gradually decreasing sensitivity to water deficits during fruit developmental stages I,II,and III.Stem diameter growth was significantly inhibited whenψ_(soil)dropped to-8.5,-7.6,and-5.4 k Pa,respectively.Fruit growth rate was low,reaching zero when theψ_(soil)was-9.0 to-23.1,-14.9 to-21.4,and-16.5 to-23.3 k Pa,respectively,and P_ndecreased significantly when theψ_(soil)reached-24.2,-22.7,and-20.4 kPa,respectively.In addition,more photoassimilates were allocated to fruit under moderateψ_(soil)conditions (-10.1 to-17.0 k Pa) than under otherψ_(soil)values.Our results revealed threeψ_(soil)thresholds,-10.0,-15.0,and-15.0 kPa,suitable for triggering irrigation during stages I,II,and III,respectively.These thresholds can be helpful for controlling excessive tree vigor,maintaining rapid fruit growth and leaf photosynthesis,and promoting the allocation of more photoassimilates to fruit. 展开更多
关键词 PEACH Soil water potential irrigation threshold Fruit expansion PHOTOSYNTHESIS
下载PDF
Effect of Sonic hedgehog gene-modified bone marrow mesenchymal stem cells on graft-induced retinal gliosis and retinal ganglion cells survival in diabetic mice
6
作者 Tong Wang Hai-Chun Li +1 位作者 Jin Ma Xi-Ling Yu 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第1期34-41,共8页
AIM:To investigate the effects of Sonic hedgehog(Shh)gene-modified bone marrow mesenchymal stem cells(MSCs)on graft-induced retinal gliosis and retinal ganglion cells(RGCs)survival in diabetic mice.METHODS:Bone marrow... AIM:To investigate the effects of Sonic hedgehog(Shh)gene-modified bone marrow mesenchymal stem cells(MSCs)on graft-induced retinal gliosis and retinal ganglion cells(RGCs)survival in diabetic mice.METHODS:Bone marrow-derived MSCs were genetically modified with the Shh gene to generate a stably transfected cell line of Shh-modified MSCs(MSC-Shh).Intravitreal injections of MSC-Shh and green fluorescent protein-modified MSCs(MSC-Gfp;control)were administered in diabetic mice.After 4wk,the effects of MSC-Shh on retinal gliosis were evaluated using fundus photography,and markers of gliosis were examined by immunofluorescence and Western blotting.The neurotrophic factors expression and RGCs survival in the host retina were evaluated using Western blotting and immunofluorescence.The mechanisms underlying the effects of MSC-Shh was investigated.RESULTS:A significant reduction of proliferative vitreoretinopathy(PVR)was observed after intravitreal injection of MSC-Shh compared to MSC-Gfp.Significant downregulation of glial fibrillary acidic protein(GFAP)was demonstrated in the host retina after MSC-Shh administration compared to MSC-Gfp.The extracellular signal-regulated kinase 1/2(ERK1/2),protein kinase B(AKT)and phosphatidylin-ositol-3-kinase(PI3K)pathways were significantly downregulated after MSC-Shh administration compared to MSC-Gfp.Brain-derived neurotrophic factor(BDNF)and ciliary neurotrophic factor(CNTF)levels were significantly increased in the host retina,and RGCs loss was significantly prevented after MSC-Shh administration.CONCLUSION:MSC-Shh administration reduces graft-induced reactive gliosis following intravitreal injection in diabetic mice.The ERK1/2,AKT and PI3K pathways are involved in this process.MSC-Shh also increases the levels of neurotrophic factors in the host retina and promoted RGCs survival in diabetic mice. 展开更多
关键词 mesenchymal stem cells sonic hedgehog signaling reactive gliosis diabetic retinopathy retinal ganglion cells
原文传递
Exploring the combination of biochar‐amended soil and automated irrigation technology for water regulation and preservation in green infrastructure
7
作者 Honghu Zhu Yuanxu Huang +4 位作者 Haihong Song Jian Chen Songlei Han Tanwee Mazumder Ankit Garg 《Deep Underground Science and Engineering》 2024年第1期39-52,共14页
Biochar is a carbon sink material with the potential to improve water retention in various soils.However,for the long‐term maintenance of green infrastructure,there is an additional need to regulate the water content... Biochar is a carbon sink material with the potential to improve water retention in various soils.However,for the long‐term maintenance of green infrastructure,there is an additional need to regulate the water contents in the covers to maintain vegetation growth in semiarid conditions.In this study,biochar‐amended soil was combined with subsurface drip irrigation,and the water preservation characteristics of this treatment were investigated through a series of one‐dimensional soil column tests.To ascertain the best treatment method specific to semiarid climatic conditions,the test soil was amended with 0%,1%,3%,and 5%biochar.Automatic irrigation devices equipped with soil moisture sensors were used to control the subsurface water content with the aim of enhancing vegetation growth.Each soil column test lasted 150 h,during which the volumetric water contents and soil suction data were recorded.The experimental results reveal that the soil specimen amended with 3%biochar is the most water‐saving regardless of the time cost.Soil with a higher biochar content(e.g.,5%)consumes a more significant amount of water due to the enhancement of the water‐holding capacity.Based on the experimental results,it can be concluded that the appropriate ratio can be determined within 1%–3%,which can reduce not only the amount of irrigated/used water but also the time cost.Such technology can be explored for water content regulation in green infrastructure and the development of barriers for protecting the environment around deep underground waste containment. 展开更多
关键词 BIOCHAR drip irrigation UNDERGROUND water preservation water regulation
原文传递
Reform of the Irrigation Sector and Creation of Functional and Sustainable Irrigation Water Users Associations (AUEI) in Niger: Capitalization of the Experience of the Konni AHA
8
作者 Saidou Abdoulkarimou Illou Mahamadou 《Agricultural Sciences》 2024年第2期209-229,共21页
During the 1980s, as part of a policy of liberalization, following budgetary cuts linked to the implementation of structural adjustment programs, management responsibilities for AHAs were transferred from ONAHA to coo... During the 1980s, as part of a policy of liberalization, following budgetary cuts linked to the implementation of structural adjustment programs, management responsibilities for AHAs were transferred from ONAHA to cooperatives concerned. Due to lack of financial resources, but also because of poor management, everywhere in Niger we are witnessing an accelerated deterioration of the irrigation infrastructure of hydro-agricultural developments. Institutional studies carried out on this situation led the State of Niger to initiate a reform of the governance of hydro-agricultural developments, by streng-thening the status of ONAHA, by creating an Association of Irrigation Water Users (AUEI) and by restructuring the old cooperatives. Indeed, this research aims to analyze the creation of functional and sustainable Irrigation Water User Associations (AUEI) in Niger in a context of reform of the irrigation sector, and based on the experience of the Konni AHA. It is based on a methodological approach which takes into account documentary research and the collection of data from 115 farmers, selected by reasoned choice and directly concerned by the management of the irrigated area. The data collected was analyzed and the results were analyzed using the systemic approach and the diagnostic process. The results show that the main mission of the AUEI is to ensure better management of water, hydraulic equipment and infrastructure on the hydro-agricultural developments of Konni. The creation of the Konni AUEI was possible thanks to massive support from the populations and authorities in the implementation process. After its establishment, the AUEI experienced a certain lethargy for some time due to the rehabilitation work of the AHA but currently it is functional and operational in terms of associative life and governance. Thus, the constraints linked to the legal system, the delay in the completion of the work, the uncertainties of access to irrigation water but also the problems linked to the change in mentality of certain ONAHA agents constitute the challenges that must be resolved in the short term for the operationalization of the Konni AUEI. 展开更多
关键词 Konni (Niger) Hydro-Agricultural Developments Association of irrigation Water Users GOVERNANCE
下载PDF
Impact of Seawater Irrigation on seed germination and seedling growth of Ten Bread Wheat(Triticum aestivum L.)Genotypes
9
作者 Sami Mohammed Salih Ahmed Amrajaa Abdulrraziq 《Life Research》 2024年第2期32-37,共6页
Objective:Seawater leakage in Al-Jabal Al-Akhdar East Libya's coastal areas is one of the most biggest obstacles to farmers obtaining a highly productive crop.As a result,the experiment was conducted in a laborato... Objective:Seawater leakage in Al-Jabal Al-Akhdar East Libya's coastal areas is one of the most biggest obstacles to farmers obtaining a highly productive crop.As a result,the experiment was conducted in a laboratory to find out the impact of irrigation with seawater on the salt tolerance of Acsad Bread wheat genotypes.Method:Ten genotypes(1398,1492,1514,1522,1524,1536,1538,1544,1550,and 1562),obtained from the Arab Center for the Studies of Arid Zones and Dry Lands Acsad,were used in the study,10 seeds of each genotype with three repetitions were germinated under four seawater concentrations(10,20,30 and 40%).Results:The results showed that there were highly significant(P≤0.05)differences in the genotypes’response to all salinity concentrations,Which led to decreasing germination percentage,delaying the average germination time,and decreasing radical/plumule length and seedling fresh/dry weight compared with a control.As noted genotypes(1524,1522 and 1514)were able to germinate in all concentrations of seawater,and gave the best average for all the studied traits.Also,the study indicated that a concentration of seawater of 40%was the most toxic for all wheat genotypes.The results of this study categorize the wheat genotypes into tolerant genotypes(1524,1522 and 1514),moderate tolerant(1492,1536),and sensitive(1398,1538,1544,1550 and 1562).Conclusion:The results concluded that the possibility of wheat crops agriculture into tolerant in Libyan coastal locations in which seawater concentration did not exceed 30%. 展开更多
关键词 acsad bread wheat Libyan coastal locations salinity tolerance seawater irrigation
下载PDF
Agricultural Water Footprint of Southern Highbush Blueberry Produced Commercially with Drip Irrigation and Sprinkler Frost Protection 被引量:1
10
作者 Alejandro Pannunzio Eduardo Holzapfel +3 位作者 Alicia Fernandez Cirelli Pamela Texeira Camilo Souto David R. Bryla 《Agricultural Sciences》 CAS 2023年第1期114-128,共15页
A study was conducted from 2010 to 2017 to determine the water footprint for producing blueberries in the Entre Ríos province of Argentina. Three cultivars of southern highbush blueberry (hybrid cross of Vacciniu... A study was conducted from 2010 to 2017 to determine the water footprint for producing blueberries in the Entre Ríos province of Argentina. Three cultivars of southern highbush blueberry (hybrid cross of Vaccinium sp.) were evaluated in the study, including “Star”, “Emerald”, and “Snowchaser”. In each case, the plants were irrigated by drip and protected from frost using overhead sprinklers. Water requirements for irrigation and frost protection varied among the cultivars due to differences in the timing of flowering and fruit development. The annual water footprint for fruit production in each cultivar is expressed in units of cubic meters of water used to produce one ton of fresh fruit and ranged from 212 - 578 m<sup>3</sup>&#8729;t<sup>&#8722;1</sup> for “Star”, 296 - 985 m<sup>3</sup>&#8729;t<sup>&#8722;1</sup> for “Emerald”, and 536 - 4066 m<sup>3</sup>&#8729;t<sup>&#8722;1</sup> for “Snowchaser”. “Snowchaser” flowered earlier than the other cultivars and, therefore, needed more water for frost protection. “Star”, on the other hand, ripened the latest among the cultivars and required little to no water for frost protection. Frost protection required a minimum of 30 m<sup>3</sup>&#8729;h<sup>&#8722;1</sup> of water per hectare and in addition to drip irrigation was a major component of the water footprint. 展开更多
关键词 BLUE Green and Grey Water Freeze Damage irrigation Efficiency MICROirrigation
下载PDF
Effect of fertigation frequency on soil nitrogen distribution and tomato yield under alternate partial root-zone drip irrigation 被引量:1
11
作者 FENG Xu-yu PU Jing-xuan +5 位作者 LIU Hai-jun WANG Dan LIU Yu-hang QIAO Shu-ting LEI Tao LIU Rong-hao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第3期897-907,共11页
Alternate partial root-zone drip fertigation (ADF) is a combination of alternating irrigation and drip fertigation,with the potential to save water and increase nitrogen (N) fertilizer efficiency.A 2-year greenhouse e... Alternate partial root-zone drip fertigation (ADF) is a combination of alternating irrigation and drip fertigation,with the potential to save water and increase nitrogen (N) fertilizer efficiency.A 2-year greenhouse experiment was conducted to evaluate the effect of different fertigation frequencies on the distribution of soil moisture and nutrients and tomato yield under ADF.The treatments included three ADF frequencies with intervals of 3 days (F3),6 days (F6) and 12 days (F12),and conventional drip fertigation as a control (CK),which was fertilized once every 6 days.For the ADF treatments,two drip tapes were placed 10 cm away on each side of the tomato row,and alternate drip irrigation was realized using a manual valve on the distribution tapes.For the CK treatment,a drip tape was located close to the roots of the tomato plants.The total N application rate of all treatments was 180 kg ha^(-1).The total irrigation amounts applied to the CK treatment were450.6 and 446.1 mm in 2019 and 2020,respectively;and the irrigation amounts applied to the ADF treatments were 60%of those of the CK treatment.The F3 treatment resulted in water and N being distributed mainly in the 0–40-cm soil layer with less water and N being distributed in the 40–60-cm soil layer.The F6 treatment led to 21.0 and 29.0%higher 2-year average concentration of mineral N in the 0–20 and 20–40-cm soil layer,respectively and a 23.0%lower N concentration in the 40–60-cm soil layer than in the CK treatment.The 2-year average tomato yields of the F3,F6,F12,and CK treatments were 107.5,102.6,87.2,and 98.7 t ha^(-1),respectively.The tomato yield of F3 was significantly higher (23.3%) than that in the F12 treatment,whereas there was no significant difference between the F3 and F6 treatment.The F6 treatment resulted in yield similar to the CK treatment,indicating that ADF could maintain tomato yield with a 40%saving in water use.Based on the distribution of water and N,and tomato yield,a fertigation frequency of 6 days under ADF should be considered as a water-saving strategy for greenhouse tomato production. 展开更多
关键词 alternate partial root-zone irrigation drip fertigation soil water soil mineral content tomato yield
下载PDF
Effects of water and nitrogen conditions under surge-root irrigation on growth and yield of apple trees
12
作者 YIN Yongle FEI Liangjun +4 位作者 LI Zhe LIU Teng LI Zhongjie HAO Kun PENG Youliang 《排灌机械工程学报》 CSCD 北大核心 2023年第2期179-186,共8页
In order to explore the effects of different irrigation and nitrogen application on growth cha-racteristics and yield of apple trees under surge-root irrigation in mountainous areas of northern Shaanxi, field experime... In order to explore the effects of different irrigation and nitrogen application on growth cha-racteristics and yield of apple trees under surge-root irrigation in mountainous areas of northern Shaanxi, field experiments were carried out with different apple trees. Three irrigation levels were applied: 85%-100%(H1), 70%-85%(H2) and 55%-70%(H3) of the field water capacity, respectively, and three nitrogen levels were N1(360 g/plant), N2(240 g/plant) and N3(120 g/plant). The results show that irrigation and nitrogen application has significant effects on new shoot length, flowering and fruit setting, fruit diameter, fruit volume and yield of apple. The leaf area index(LAI) shows a single trend during the growth period, and the peak value appears in the middle of July. Under the same irrigation level, compared with N3, N1 increases in yield, new shoot length, LAI, transverse diameter, longitudinal diameter, volume, flowering and fruit setting by 17.91%, 28.31%, 18.75%, 11.38%, 10.13%, 36.60%, 20.92% and 5.19%, respectively, while N2 also increases by 12.40%, 15.63%, 4.86%, 5.40%, 5.11%, 17.01%, 26.17% and 13.74%, respectively. The rate of flowering and fruit setting decreases with the increase of nitrogen application. Under the same nitrogen level, compared with H3, H1 increases in yield, new shoot length, LAI, transverse diameter, longitudinal diameter, volume, flowering and fruit setting by 34.65%, 15.49%, 30.77%, 3.93%, 4.95%, 12.86%, 33.15% and 28.62%, respectively, while H2 also increases by 33.67%, 16.42%, 67.52%, 3.81%, 2.97%, 11.57%, 43.45% and 27.26%, respectively. The rate of flowering and fruit setting decreases first and then increases with the increase of irrigation amount. Compared with H3N3, the yield of other treatments increases by 2.69%-52.20%, while H2N1 treatment has the highest yield(26 852.55 kg/ha). Considering from the point of view of promoting growth and increasing yield, the best water and nitrogen combination mode of mountain apple in northern Shaanxi is medium water deficit irrigation and high nitrogen(H2N1) treatment. The results from this study can provide a theoretical basis for apple water and nitrogen management in mountainous areas of northern Shaanxi. 展开更多
关键词 mountain apple surge-root irrigation irrigation NITROGEN growth yield
下载PDF
Assessment of Groundwater Quality for Drinking and Irrigation Uses in the Samba Dia Area, Central West Senegal
13
作者 Amadou Sarr Seyni Ndoye +1 位作者 Axel Laurel Tcheheumeni Djanni Serigne Faye 《Journal of Water Resource and Protection》 CAS 2023年第4期130-148,共19页
In the Sahelian zone in Africa, groundwater is the main source of drinking water for domestic, industrial, and agricultural uses. The groundwater of the Samba Dia sandy aquifer was assessed for understanding processes... In the Sahelian zone in Africa, groundwater is the main source of drinking water for domestic, industrial, and agricultural uses. The groundwater of the Samba Dia sandy aquifer was assessed for understanding processes controlling the hydrogeochemistry and its drinking and irrigation suitability, on the basis of various water quality parameters. For the present study, thirty-three groundwater samples were collected in wells of the study area during the dry season in March 2021 and subjected to analysis for chemical characteristics (major ions), pH, electrical conductivity (EC), and total dissolved solids (TDS). Gibbs plot depicts that the process of ionic exchange is mainly due to the dissolution of water-rock interaction. The Piper diagram indicates a largely dominant sodium chloride facies with 70% of the groundwater samples followed by calcium chloride facies (18%) than calcium bicarbonate facies (12%). Analytical results of hydrogeochemical parameters of groundwater samples reveal that the majority of samples are within the World Health Organization safety range for drinking water. TDS and electrical conductivity (EC) values of groundwater indicate that 70% and 61% are safe for drinking water, respectively. Sodium percentage (% Na), Sodium Adsorption Ratio (SAR) values, and Ca/Mg ratio were calculated and compared with the standard guideline values recommended by the World Health Organization and agricultural water standards. This study shows that the groundwater in the area is mostly chemically suitable for drinking and irrigation, although some wells at the edge of the area exhibit signs of progressive salinization and traces of pollution. 展开更多
关键词 Samba Dia Groundwater HYDROGEOCHEMISTRY SUITABILITY DRINKING irrigation
下载PDF
Assessing Suitability of Irrigation Scheduling Decision Support Systems for Lowland Rice Farmers in Sub-Saharan Africa—A Review
14
作者 Aloysius Mubangizi Joshua Wanyama +1 位作者 Nicholas Kiggundu Prossie Nakawuka 《Agricultural Sciences》 CAS 2023年第2期219-239,共21页
Irrigation in lowland rice production systems in Sub-Saharan Africa (SSA) is mainly based on traditional surface irrigation methods with continuous flooding practices. This irrigation method ends up using a lot more w... Irrigation in lowland rice production systems in Sub-Saharan Africa (SSA) is mainly based on traditional surface irrigation methods with continuous flooding practices. This irrigation method ends up using a lot more water that would have otherwise been used to open more land and be used in other water-requiring sectors. Various studies suggest Alternate Wetting and Drying (AWD) as an alternative practice for water management that reduces water use without significantly affecting yield. However, this practice has not been well adopted by the farmers despite its significant benefits of reduced total water use. Improving the adoption of AWD using irrigation Decision Support Systems (DSSs) helps the farmer on two fronts;to know “how much water to apply” and “when to irrigate”, which is very critical in maximizing productivity. This paper reviews the applicability of DSSs using AWD in lowland rice production systems in Sub-Saharan Africa. 展开更多
关键词 Lowland Rice irrigation Scheduling Forecasting Decision Support Systems Rice Production Farmer-Led irrigation AWD
下载PDF
Automated Irrigation System Using Improved Fuzzy Neural Network in Wireless Sensor Networks
15
作者 S.Sakthivel V.Vivekanandhan M.Manikandan 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期853-866,共14页
Irrigation plays a significant role in various agricultural cropping methods deployed in semiarid and arid regions where valuable water applications and managing are considered crucial concerns.Multiple factors such a... Irrigation plays a significant role in various agricultural cropping methods deployed in semiarid and arid regions where valuable water applications and managing are considered crucial concerns.Multiple factors such as weather,soil,water,and crop data need to be considered for irrigation maintenance in an efficient besides uniform manner from multifaceted and different information-based systems.A Multi-Agent System(MAS)has been proposed recently based on diverse agent subsystems with definite objectives for attaining global MAS objective and is deployed on Cloud Computing paradigm capable of gathering information from Wireless Sensor Networks(WSNs)positioned in rice,cotton,cassava crops for knowledge discovery and decision making.The radial basis function network has been used for irrigation prediction.However,in recent work,the security of data has not focused on where intruder involvement might corrupt the data at the time of data transferring to the cloud,which would affect the accuracy of decision making.To handle the above mentioned issues,an efficient method for irrigation prediction is used in this work.The factors considered for decision making are soil moisture,temperature,plant height,root depth.The above-mentioned data will be gathered from the sensors that are attached to the cropfield.Sensed data will be forwarded to the local server,where data encryption will be performed using Adaptive Elliptic Curve Cryptography(AECC).After the encryption process,the data will be forwarded to the cloud.Then the data stored in the cloud will be decrypted key before being given to the deci-sion-making module.Finally,the uniform distribution-based fuzzy neural network is formulated based on the received data information in the decisionmaking module.Thefinal decision regarding the level of water required for cropfields would be taken.Based on this outcome,the water volve opening duration and the level of fertilizers required will be considered.Experimental results demonstrate the effectiveness of the proposed model for the United States Geological Survey(USGS)database in terms of precision,accuracy,recall,and packet delivery ratio. 展开更多
关键词 irrigation multi-agent system precision irrigation ACCURACY elliptic curve cryptography ENCRYPTION wireless sensor networks fertilizers
下载PDF
Different Deficit Irrigation Lower Limits and Irrigation Quotas Affect the Yield and Water Use Efficiency of Winter Wheat by Regulating Photosynthetic Characteristics
16
作者 Huiqin Li Mingzhi Zhang +1 位作者 Na Xiao Haijian Yang 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第12期3211-3236,共26页
To determine suitable thresholds for deficit irrigation of winter wheat in the well-irrigated area of the Huang-Huai-Hai Plain,we investigated the effects of different deficit irrigation lower limits and quotas on the... To determine suitable thresholds for deficit irrigation of winter wheat in the well-irrigated area of the Huang-Huai-Hai Plain,we investigated the effects of different deficit irrigation lower limits and quotas on the photosynthetic characteristics and grain yield of winter wheat.Four irrigation lower limits were set for initiating irrigation(i.e.,light drought(LD,50%,55%,60%and 50%of field holding capacity(FC)at the seedling-regreening,jointing,heading and filling-ripening stages,respectively),medium drought(MD,40%,50%,55%and 45%of FC at the same stages,respectively),adequate moisture(CK1,60%,65%,70%and 60%of FC at the same stages,respectively),heavy drought(CK2,35%,40%,45%and 40%of FC at the same stages,respectively))and five irrigation quota per event(30,60,90,120 and 180 mm)were set for each lower limit.We found that the increase of drought stress is conducive to normal photosynthesis of winter wheat leaves which is supported by the following findings.First,photosynthetic rate(Pn)of LD60 treatment was higher than that of LD30,LD90,LD120,LD180,MD30,MD60,MD90,MD120 and MD180.Then,Under the 90 mm irrigation quota treatment,the yield of winter wheat basically increased with the increase of irrigation’s lower limit.Moreover,With the increase in irrigation quota,the yield of winter wheat increased,and the water use efficiency(WUE)of winter wheat increased at first and then decreased.In addition,compared with the LD30,MD30,MD60,MD90,MD120,and MD180,the yield of winter wheat in LD60 treatment increased by about 3.23%(3-year average),32.3%,19.9%,11.7%,10.1%,and 14.6%.At the same time,the WUE with LD60 treatment of winter wheat was significantly higher than LD90,LD120,LD180,MD30,MD60,MD90,MD120,MD180 treatments.There was a positive correlation between soil volumetric water content and Pn and between yield and Pn.The key period for yield formation in winter wheat is 180 days after sowing.In conclusion,to achieve the dual goals of stable winter wheat yield and efficient utilization of water resources in this region,the suitable threshold for initiating deficit irrigation of winter wheat is the LD60 treatment.This conclusion provides data support for water-saving and stable yield of winter wheat in this area. 展开更多
关键词 irrigation lower limit irrigation quota soil volume moisture content photosynthetic rate YIELD regression analysis
下载PDF
Anethole improves the developmental competence of porcine embryos by reducing oxidative stress via the sonic hedgehog signaling pathway
17
作者 Ye Eun Joo Pil-Soo Jeong +8 位作者 Sanghoon Lee Se-Been Jeon Min-Ah Gwon Min Ju Kim Hyo-Gu Kang Bong-Seok Song Sun-Uk Kim Seong-Keun Cho Bo-Woong Sim 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第4期1395-1407,共13页
Background Anethole(AN)is an organic antioxidant compound with a benzene ring and is expected to have a positive impact on early embryogenesis in mammals.However,no study has examined the effect of AN on porcine embry... Background Anethole(AN)is an organic antioxidant compound with a benzene ring and is expected to have a positive impact on early embryogenesis in mammals.However,no study has examined the effect of AN on porcine embryonic development.Therefore,we investigated the effect of AN on the development of porcine embryos and the underlying mechanism.Results We cultured porcine in vitro-fertilized embryos in medium with AN(0,0.3,0.5,and 1 mg/mL)for 6 d.AN at 0.5 mg/mL significantly increased the blastocyst formation rate,trophectoderm cell number,and cellular survival rate compared to the control.AN-supplemented embryos exhibited significantly lower reactive oxygen species levels and higher glutathione levels than the control.Moreover,AN significantly improved the quantity of mitochondria and mitochondrial membrane potential,and increased the lipid droplet,fatty acid,and ATP levels.Interestingly,the levels of proteins and genes related to the sonic hedgehog(SHH)signaling pathway were significantly increased by AN.Conclusions These results revealed that AN improved the developmental competence of porcine preimplantation embryos by activating SHH signaling against oxidative stress and could be used for large-scale production of high-quality porcine embryos. 展开更多
关键词 ANETHOLE Lipid metabolism Mitochondrial function Porcine embryo development sonic hedgehog signaling pathway
下载PDF
Integrating a novel irrigation approximation method with a process-based remote sensing model to estimate multi-years'winter wheat yield over the North China Plain
18
作者 ZHANG Sha YANG Shan-shan +5 位作者 WANG Jing-wen WU Xi-fang Malak HENCHIRI Tehseen JAVED ZHANG Jia-hua BAI Yun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第9期2865-2881,共17页
Accurate estimation of regional winter wheat yields is essential for understanding the food production status and ensuring national food security.However,using the existing remote sensing-based crop yield models to ac... Accurate estimation of regional winter wheat yields is essential for understanding the food production status and ensuring national food security.However,using the existing remote sensing-based crop yield models to accurately reproduce the inter-annual and spatial variations in winter wheat yields remains challenging due to the limited ability to acquire irrigation information in water-limited regions.Thus,we proposed a new approach to approximating irrigations of winter wheat over the North China Plain(NCP),where irrigation occurs extensively during the winter wheat growing season.This approach used irrigation pattern parameters(IPPs)to define the irrigation frequency and timing.Then,they were incorporated into a newly-developed process-based and remote sensing-driven crop yield model for winter wheat(PRYM–Wheat),to improve the regional estimates of winter wheat over the NCP.The IPPs were determined using statistical yield data of reference years(2010–2015)over the NCP.Our findings showed that PRYM–Wheat with the optimal IPPs could improve the regional estimate of winter wheat yield,with an increase and decrease in the correlation coefficient(R)and root mean square error(RMSE)of 0.15(about 37%)and 0.90 t ha–1(about 41%),respectively.The data in validation years(2001–2009 and 2016–2019)were used to validate PRYM–Wheat.In addition,our findings also showed R(RMSE)of 0.80(0.62 t ha–1)on a site level,0.61(0.91 t ha–1)for Hebei Province on a county level,0.73(0.97 t ha–1)for Henan Province on a county level,and 0.55(0.75 t ha–1)for Shandong Province on a city level.Overall,PRYM–Wheat can offer a stable and robust approach to estimating regional winter wheat yield across multiple years,providing a scientific basis for ensuring regional food security. 展开更多
关键词 approximating irrigations process-based model remote sensing winter wheat yield North China Plain
下载PDF
Subsurface irrigation with ceramic emitters improves wolfberry yield and economic benefits on the Tibetan Plateau, China
19
作者 HAN Mengxue ZHANG Lin LIU Xiaoqiang 《Journal of Arid Land》 SCIE CSCD 2023年第11期1376-1390,共15页
Climate warming has led to the expansion of arable land at high altitudes,but it has also increased the demand for water use efficiency(WUE).To address this issue,the development of water-saving irrigation technology ... Climate warming has led to the expansion of arable land at high altitudes,but it has also increased the demand for water use efficiency(WUE).To address this issue,the development of water-saving irrigation technology has become crucial in improving water productivity and economic returns.This study aimed to assess the impacts of three irrigation methods on water productivity and economic returns in wolfberry(Lycium barbarum L.)cultivation on the Tibetan Plateau,China during a two-year field trial.Results showed that subsurface irrigation with ceramic emitters(SICE)outperformed surface drip irrigation(DI)and subsurface drip irrigation(SDI)in terms of wolfberry yield.Over the two-year period,the average yield with SICE increased by 8.0%and 2.3%compared with DI and SDI,respectively.This improvement can be attributed to the stable soil moisture and higher temperature accumulation achieved with SICE.Furthermore,SICE exhibited higher WUE,with 14.6%and 4.5%increases compared with DI and SDI,respectively.In addition to the agronomic benefits,SICE also proved advantageous in terms of economic returns.Total average annual input costs of SICE were lower than the other two methods starting from the 8th year.Moreover,the benefit-cost ratio of SICE surpassed the other methods in the 4th year and continued to widen the gap with subsequent year.These findings highlight SICE as an economically viable water-saving irrigation strategy for wolfberry cultivation on the Tibetan Plateau.Thus,this research not only provides an effective water-saving irrigation strategy for wolfberry cultivation but also offers insights into addressing irrigation-related energy challenges in other crop production systems. 展开更多
关键词 irrigation system soil water content soil temperature water use efficiency economic benefit
下载PDF
Can food security and low carbon be achieved simultaneously?——An empirical analysis of the mechanisms influencing the carbon footprint of potato and corn cultivation in irrigation areas
20
作者 NIU Kun-yu GUO Hui LIU Jing 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第4期1230-1243,共14页
Irrigated agriculture has tripled since 1950,accounting for 20%of the global arable land and 40%of food production.Irrigated agriculture increases food security yet has controversial implications for global climate ch... Irrigated agriculture has tripled since 1950,accounting for 20%of the global arable land and 40%of food production.Irrigated agriculture increases food security yet has controversial implications for global climate change.Most previous studies have calculated carbon emissions and their composition in irrigated areas using the engineering approach to life-cycle assessment.By combining life cycle assessment(LCA)-based carbon emissions accounting with econometric models such as multiple linear regression and structural equation modeling(SEM),we conducted an interdisciplinary study to identify the influencing factors and internal mechanisms of the carbon footprint(CFP)of smallholder crop cultivation on irrigation reform pilot areas.To this end,we investigated corn and potato production data in the 2019–2020 crop years for 852 plots of 345 rural households in six villages(two irrigation agriculture pilot villages and four surrounding villages as controls)in Southwest China.The crop CFP in the irrigation agriculture pilot areas was significantly lower than in non-reform areas.Irrigation reforms mainly impacted the crop CFP through four intermediary effects:the project(implementation of field irrigation channels),technology(improving adoption of new irrigation technologies),management(proper irrigation operation and maintenance),and yield effects.All effects inhibited the CFP,except for the project effect that promotes carbon emissions.Among them,yield increase has the greatest impact on reducing CFP,followed by management and technology effects.Furthermore,planting practices,individual characteristics,and plot quality significantly impacted the crop CFP.This study has policy implications for understanding the food security–climate nexus in the food production industry. 展开更多
关键词 food security-climate nexus irrigated agriculture carbon footprint smallholder farmer path analysis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部