期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Total alkaloids of Sophora alopecuroides-and matrine-induced reactive oxygen species impair biofilm formation of Staphylococcus epidermidis and increase bacterial susceptibility to ciprofloxacin 被引量:2
1
作者 Fang Jia Mei-yang Sun +1 位作者 Xiang-jun Zhang Xue-zhang Zhou 《Chinese Herbal Medicines》 CAS 2020年第4期390-398,共9页
Objective:To investigate the mechanism by which total alkaloids of Sophora alopecuroides(TASA)and matrine(MT)impair biofilm to increase the susceptibility of Staphylococcus epidermidis(S.epidermidis)to ciprofloxacin.M... Objective:To investigate the mechanism by which total alkaloids of Sophora alopecuroides(TASA)and matrine(MT)impair biofilm to increase the susceptibility of Staphylococcus epidermidis(S.epidermidis)to ciprofloxacin.Methods:The minimum biofilm inhibitory concentration(mBIC)was determined using a 2-fold dilution method.Structure of biofilm of S.epidermidis was examined by Confocal Laser Scanning Microscope(CLSM).The cellular reactive oxygen species(ROS)was determined using a DCFH-DA assay.The key factors related to the regulation of ROS were accessed using respective kits.Results:TASA and MT were more beneficial to impair biofilm of S.epidermidis than ciprofloxacin(CIP)(P<0.05).TASA and MT were not easily developed resistance to biofilm-producing S.epidermidis.The mBIC of CIP decreased by 2-6-fold following the treatment of sub-biofilm inhibitory concentration(sub-BIC)TASA and MT,whereas the mBIC of CIP increased by 2-fold following a treatment of sub-BIC CIP from the first to sixth generations.TASA and MT can improve the production of ROS in biofilmproducing S.epidermidis.The ROS content was decreased 23%-33%following the treatment of submBIC CIP,whereas ROS content increased 7%-24%following treatment with TASA+CIP and MT+CIP combination from the first to sixth generations.Nitric oxide(NO)as a ROS,which was consistent with the previously confirmed relationship between ROS and drug resistance.Related regulatory factorssuperoxide dismutase(SOD)and glutathione peroxidase(GSH)could synergistically maintain the redox balance in vivo.Conclusion:TASA and MT enhanced reactive oxygen species to restore the susceptibility of S.epidermidis to ciprofloxacin. 展开更多
关键词 drug resistance MATRINE reactive oxygen species Staphylococcus epidermidis total alkaloids of sophora alopecuroides
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部