期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Topology Optimization of Sound-Absorbing Materials for Two-Dimensional Acoustic Problems Using Isogeometric Boundary Element Method
1
作者 Jintao Liu Juan Zhao Xiaowei Shen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第2期981-1003,共23页
In this work,an acoustic topology optimizationmethod for structural surface design covered by porous materials is proposed.The analysis of acoustic problems is performed using the isogeometric boundary elementmethod.T... In this work,an acoustic topology optimizationmethod for structural surface design covered by porous materials is proposed.The analysis of acoustic problems is performed using the isogeometric boundary elementmethod.Taking the element density of porousmaterials as the design variable,the volume of porousmaterials as the constraint,and the minimum sound pressure or maximum scattered sound power as the design goal,the topology optimization is carried out by solid isotropic material with penalization(SIMP)method.To get a limpid 0–1 distribution,a smoothing Heaviside-like function is proposed.To obtain the gradient value of the objective function,a sensitivity analysis method based on the adjoint variable method(AVM)is proposed.To find the optimal solution,the optimization problems are solved by the method of moving asymptotes(MMA)based on gradient information.Numerical examples verify the effectiveness of the proposed topology optimization method in the optimization process of two-dimensional acoustic problems.Furthermore,the optimal distribution of sound-absorbingmaterials is highly frequency-dependent and usually needs to be performed within a frequency band. 展开更多
关键词 Boundary element method isogeometric analysis two-dimensional acoustic analysis sound-absorbing materials topology optimization adjoint variable method
下载PDF
Parameter Study on a Composite Sound-Absorbing Structure Liner in Elevator Shafts
2
作者 Ting Qu Bo Wang Hequn Min 《Journal of Renewable Materials》 EI 2023年第9期3433-3446,共14页
With the growing global environmental awareness,the development of renewable and green materials has gained increased worldwide interest to substitute conventional materials and are favorable for sustainable economic ... With the growing global environmental awareness,the development of renewable and green materials has gained increased worldwide interest to substitute conventional materials and are favorable for sustainable economic development.This paper proposed a novel eco-friendly sound absorbing structure(NSAS)liner for noise reduction in elevator shafts.The base layer integrated with the shaft walls is a damping gypsum mortarboard,and a rock wool board and a perforated cement mortarboard are used to compose the NSAS.Based on the acoustic impedance theory of porous materials and perforated panels,the sound absorption theory of the NSAS was proposed;the parameter effects of the rock wool board(flow resistivity,porosity,structure factor)and perforated panel(perforated rates,thickness,density,perforated diameter)on NSAS absorption were discussed theoretically for absorption improvement,and experiments were also conducted.Numerical results showed that the perforation rate,the thickness of the perforated plate,and the porosity,flow resistance,and volume density of the rock wool board played a key issue in the absorption performances of the NSAS.Experiments verified the accuracy of the proposed theoretical model.Wideband sound absorption performance of the NSAS at frequencies between 500–1600 Hz was achieved in both numerical analysis and experiments,and the sound absorption coefficient was improved to 0.72 around 1000 Hz after parameter adjustments.The NSAS proposed in this paper can also be made of other renewable materials with preferable structure strength and still has the potential to broaden the absorption bandwidth.It can provide a reference for controlling the elevator shaft noise. 展开更多
关键词 Elevator shafts sound-absorbing liner porous material flow resistivity acoustic impedance
下载PDF
Sintering preparation of porous sound-absorbing materials from steel slag 被引量:7
3
作者 孙朋 郭占成 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2230-2240,共11页
Porous sound-absorbing materials were prepared from steel slag using waste expanded polystyrene(EPS) particles as pore former.The influences of the experimental conditions such as fly ash content,sintering temperatu... Porous sound-absorbing materials were prepared from steel slag using waste expanded polystyrene(EPS) particles as pore former.The influences of the experimental conditions such as fly ash content,sintering temperature,sintering time,and pore former addition on the performance of the porous sound-absorbing materials were investigated.The results show that the porosity of the specimens can reach above 50.0%;the compressive strength and average sound-adsorption coefficient of the sintered specimens are above 3.0 MPa and 0.47,respectively.The optimum preparation conditions for the steel slag porous sound-absorbing materials are as follows:mass fraction of fly ash 50%,waste EPS particles 3.6 g,sintering temperature 1100℃,and sintering time 7.5h,which are determined by considering the properties of the sound-absorbing materials,energy consumption and cost. 展开更多
关键词 steel slag porous sound-absorbing material noise reduction coefficient POROSITY compressive strength
下载PDF
Sound absorbing properties of spiral metasurfaces inspired by micro-perforated plates
4
作者 Han Zhang Pengxiang Hao +4 位作者 Huilan Wu Zhenyuan Lin Chengpeng Hao Zhengpan Qi Ning Hu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第3期209-215,共7页
As a kind of classical low-frequency sound-absorbing material,the microperforated plate(MPP)has been widely used.Here,we inspired by the sound absorption mechanism of the MPP,a spiral metasurface(SM)is designed and th... As a kind of classical low-frequency sound-absorbing material,the microperforated plate(MPP)has been widely used.Here,we inspired by the sound absorption mechanism of the MPP,a spiral metasurface(SM)is designed and the analytical solution of acoustic impedance and sound absorption coefficient are obtained.The relationship between the sound absorption properties of the MPP and the SM with their own structures is systematically studied,and the analytical solutions are used to optimise the structure.It is concluded that the MPP and the SM of the same thickness achieve effective absorption in the frequency range between 390-900 Hz and 1920-4266 Hz,with a total thickness less than 1/6 of the wavelength.Meanwhile,the numerical calculation shows that the MPP and SM can match well with the background medium in the effective rang.Our study provides new insights into the design methods of sound-absorbing materials and is potentially suitable for many acoustic engineering applications. 展开更多
关键词 Microperforated plates Spiral metasurfaces sound-absorbing properties Equivalent dispersion
下载PDF
Preparation of steel slag porous sound-absorbing material using coal powder as pore former 被引量:4
5
作者 Peng Sun Zhancheng Guo 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第10期67-75,共9页
The aim of the study was to prepare a porous sound-absorbing material using steel slag and fly ash as the main raw material, with coal powder and sodium silicate used as a pore former and binder respectively. The infl... The aim of the study was to prepare a porous sound-absorbing material using steel slag and fly ash as the main raw material, with coal powder and sodium silicate used as a pore former and binder respectively. The influence of the experimental conditions such as the ratio of fly ash, sintering temperature, sintering time, and porosity regulation on the performance of the porous sound-absorbing material was investigated. The results showed that the specimens prepared by this method had high sound absorption performance and good mechanical properties, and the noise reduction coefficient and compressive strength could reach 0.50 and 6.5 MPa, respectively. The compressive strength increased when the dosage of fly ash and sintering temperature were raised. The noise reduction coefficient decreased with increasing ratio of fly ash and reducing pore former, and first increased and then decreased with the increase of sintering temperature and time. The optimum preparation conditions for the porous sound-absorbing material were a proportion of fly ash of 50%(wt.%), percentage of coal powder of 30%(wt.%), sintering temperature of 1130°C,and sintering time of 6.0 hr, which were determined by analyzing the properties of the sound-absorbing material. 展开更多
关键词 Steel slag Porous sound-absorbing material Noise reduction coefficient Apparent porosity Compressive strength
原文传递
The Effect of Reflector with Sound-Absorbing Material on Supersonic Jet Noise
6
作者 Y.-H.KWEON M.TSUCHIDA +3 位作者 Y.MIYAZATO T.AOKI H.-D.KIM T.SETOGUCHI 《Journal of Thermal Science》 SCIE EI CAS CSCD 2005年第1期22-27,共6页
This paper describes an experimental work to investigate the effect of a reflector on supersonic jet noise radiated from a convergent-divergent nozzle with a design Mach number 2.0.In the present study,a metal reflect... This paper describes an experimental work to investigate the effect of a reflector on supersonic jet noise radiated from a convergent-divergent nozzle with a design Mach number 2.0.In the present study,a metal reflector and reflectors made of three different sound-absorbing materials(grass wool and polyurethane foam)were employed,and the reflector size was varied.Acoustic measurement is carried out to obtain the acoustic characteristics such as frequency,amplitude of screech tone and overall sound pressure level(OASPL).A high-quality schlieren optical system is used to visualize the detailed structure of supersonic jet.The results obtained show that the acoustic characteristics of supersonic jet noise are strongly dependent upon the jet pressure ratio and the reflector size.It is also found that the reflector with sound-absorbing material reduces the screech tone amplitude by about 5-13dB and the overall sound pressure levels by about 2-5dB,compared with those of the metal reflector. 展开更多
关键词 supersonic jet supersonic jet noise screech tone OASPL REFLECTOR sound-absorbing material.
原文传递
Design of noise-reduction seats for high-speed trains
7
作者 Xiaojun DENG Yanju ZHAO +2 位作者 Haijin ZHANG Renzhong SHUAI Leiwei ZHU 《Frontiers of Mechanical Engineering》 SCIE CSCD 2018年第3期385-389,共5页
Noise-reduction seats have been successfully used in concert halls, theaters, and other places that reduce noise. In this study, a new noise-reduction seat design was proposed for high-speed trains, which have unique ... Noise-reduction seats have been successfully used in concert halls, theaters, and other places that reduce noise. In this study, a new noise-reduction seat design was proposed for high-speed trains, which have unique interior noise spectral characteristics. First, before the noisereduction seat models were fabricated, the parameters of high-performance sound-absorbing materials and perforated plates were selected by conducting a standing-wave tube test. The sound-absorption effects of the noisereduction seats and normal seats were investigated and compared in a reverberation chamber. Test results showed that, compared with normal seats, the noise-reduction seats obtained a significantly improved sound-absorption coefficient in the entire frequency band. Furthermore, the test results were used to establish a simulation model for calculation, and the simulation results proved that the noise-reduction seats substantially reduced the noise in an entire train car. Finally, the noise-reduction seats were fabricated and installed in a full train car of an actual highspeed train. The test results showed that, compared with the normal seats, the noise-reduction seats decreased the noise level at a standard point in the passenger car by 1.5 dB. Therefore, the noise-reduction seats are effective in noise reduction. 展开更多
关键词 high-speed train sound-absorbing materials perforated board noise-reduction seats
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部