This paper documents the first attempt to apply a localized method of fundamental solutions(LMFS)to the acoustic analysis of car cavity containing soundabsorbing materials.The LMFS is a recently developed meshless app...This paper documents the first attempt to apply a localized method of fundamental solutions(LMFS)to the acoustic analysis of car cavity containing soundabsorbing materials.The LMFS is a recently developed meshless approach with the merits of being mathematically simple,numerically accurate,and requiring less computer time and storage.Compared with the traditional method of fundamental solutions(MFS)with a full interpolation matrix,the LMFS can obtain a sparse banded linear algebraic system,and can circumvent the perplexing issue of fictitious boundary encountered in the MFS for complex solution domains.In the LMFS,only circular or spherical fictitious boundary is involved.Based on these advantages,the method can be regarded as a competitive alternative to the standard method,especially for high-dimensional and large-scale problems.Three benchmark numerical examples are provided to verify the effectiveness and performance of the present method for the solution of car cavity acoustic problems with impedance conditions.展开更多
基金the National Natural Science Foundation of China(No.11802151)the Natural Science Foundation of Shandong Province of China(No.ZR2019BA008).
文摘This paper documents the first attempt to apply a localized method of fundamental solutions(LMFS)to the acoustic analysis of car cavity containing soundabsorbing materials.The LMFS is a recently developed meshless approach with the merits of being mathematically simple,numerically accurate,and requiring less computer time and storage.Compared with the traditional method of fundamental solutions(MFS)with a full interpolation matrix,the LMFS can obtain a sparse banded linear algebraic system,and can circumvent the perplexing issue of fictitious boundary encountered in the MFS for complex solution domains.In the LMFS,only circular or spherical fictitious boundary is involved.Based on these advantages,the method can be regarded as a competitive alternative to the standard method,especially for high-dimensional and large-scale problems.Three benchmark numerical examples are provided to verify the effectiveness and performance of the present method for the solution of car cavity acoustic problems with impedance conditions.