1 Introduction The Tudimiaogou-Yindongshan lead-zinc polymetallic orefield is located in the Tudimiaogou-Weimoshi lead and zinc silver polymetallic metallogenic belt.The belt is an important part of southwestern Henan...1 Introduction The Tudimiaogou-Yindongshan lead-zinc polymetallic orefield is located in the Tudimiaogou-Weimoshi lead and zinc silver polymetallic metallogenic belt.The belt is an important part of southwestern Henan lead and zinc展开更多
The compositions of REE in quartz and pyrite from the main stage of the Laowan gold deposit in Henan Province and that in quartz from Laowan granite were determined by inductively coupled plasma-mass-spectrometry (IC...The compositions of REE in quartz and pyrite from the main stage of the Laowan gold deposit in Henan Province and that in quartz from Laowan granite were determined by inductively coupled plasma-mass-spectrometry (ICP-MS) to trace the source of ore-forming materials. Meanwhile, the REE compositions of the deposit ore, granite and metamorphic wall rock were also considered for comparative studies in detail. The range of ∑REE of quartz and pyrite from the deposit ores is 4.18 × 10^-6- 30.91 × 10^-6, the average of ∑REE is 13.39 × 10^-6, and the average of ∑REE of quartz in the Laowan granite is 6.68 × 10^-6. There is no distinct difference of REE parameters between the deposit ore quartz and granite quartz. The quartz in gold deposit has the same REE particular parameters as quartzes from Laowan granite, such as δEu, δCe, (La/Yb)N and (La/Sm)N, partition degree of LREE to HREE, especially, the chondrite-normalized REE patterns, but no similarity to those from metamorphic wall rock, which shows that ore-forming hydrothermal fluid is mainly the fluid coming from the Laowan granite magma, rather than metamorphic fluid. Meanwhile, comparison studies on REE features between minerals from the deposit ores and related geological bodies in the deposit show that REE characteristics of minerals can serve as an indicator of ore-forming fluid properties and sources, while the REE characteristics of the bulk samples (such as deposit ores, granites and wall rocks) can not trace the source of the ore-forming materials exactly.展开更多
Based on the main characteristics of the tectonic -magmatic evolution of region and Tanlu fault zone,we have discussed ore-bearing magmatic rocks petrochemistry,strontium and lead isotope,and the source of ore-forming...Based on the main characteristics of the tectonic -magmatic evolution of region and Tanlu fault zone,we have discussed ore-bearing magmatic rocks petrochemistry,strontium and lead isotope,and the source of ore-forming materials in Yinan skarn deposit in this paper.The petrochemical features show that the ore-bearing magmatic rocks are calc-alkaline rocks of sub-alkaline series formed during展开更多
Abstract This paper deals with characteristics of silicon isotope compositions and siliceous cathodoluminescence of host rocks, ores and hydrothermal silicified quartz of the Carlin-type ore deposits in the Yunnan-Gui...Abstract This paper deals with characteristics of silicon isotope compositions and siliceous cathodoluminescence of host rocks, ores and hydrothermal silicified quartz of the Carlin-type ore deposits in the Yunnan-Guizhou-Guangxi triangle area. The study shows that primary silicified quartz is nonluminescent but quartz in host rocks and secondary silicified quartz are luminescent by the action of cathode rays. Correspondingly, silicon isotope compositions of host rocks, ores and hydro6thermal quartz veins are clearly distinguished. In strata from the Middle Triassic to the “Dachang” host bed, δ30Si of the host rocks ranges from 0.0% ?0.3%, while that of primary ore-forming silicified fluids from ?0.1% to ?0.4%; in the Upper Permian and Lower Carboniferous strata and Indosinian diabase host beds, δ30Si of the host rocks is from ?0.1% to ?0.2% and that of the primary silicified quartz veins from 0.3 % ?0.5 %. This pattern demonstrates the following geochemical mineralization process, primary ore-forming siliceous fluids migrated upwards quickly along the main passages of deep-seated faults from mantle to crust and entered secondary faults where gold deposits were eventually formed as a result of permeation and replacement of the siliceous ore-forming fluids into different ore-bearing strata. This gives important evidence for the fact that ore-forming fluids of this type of gold deposits were mainly derived from upper mantle differentiation and shows good prospects for deep gold deposits and geochemical background for large and superlarge gold deposits.展开更多
The compositions of REE in quartz and pyrite from main mineralized stage of the Laowan gold deposit in Henan province and that of quartz from Laowan granite were determined by Inductively Coupled Plasma-Mass-Spectrome...The compositions of REE in quartz and pyrite from main mineralized stage of the Laowan gold deposit in Henan province and that of quartz from Laowan granite were determined by Inductively Coupled Plasma-Mass-Spectrometry (ICP-MS). The REE of deposit ore of the Laowan gold deposit, wall-rock and Laowan granite also were studied to trace the source of metallogenic materials in Laowan gold deposit in detail. The range of ∑ REE in quartz and pyrite from gold deposit is 4.18 × 10^-6 - 30.91 × 10^-6, average of 13.39 × 10^-6, 6.68 × 10^-6 of the Laowan granite quartz, obviously lower to REE concentration of deposit, granite and wall-rock. The value of (La/ Yb)N and (La/Sm)N of ore minerals from the gold deposit is 13.23 and 4.17 respectively. The differences in REE parameters, such as δEu, δCe and diffusion degree in REE from light to heavy, among deposit ore minerals and granite mineral are weak. Especially, there are no differences between the chondrite-normalised REE curves of minerals from gold deposit and those of quartzs in Laowan granite, no similarity to wall-rock', which shows that ore-forming hydrothermal fluid mainly came from magma fluid resulting from the Laowan granite magma, metamorphic fluid in few. The results also show that REE characteristics of ore minerals in deposit are effective for disclosing oreforming fluid quality comparing with deposit ore'REE compositions.展开更多
Objective The Shizishan Pb-Zn deposit is located in the southeastern margin of the Yangtze Block,and its Pb-Zn orebodies are mainly hosted in the Lower Cambrian Qingxudong Formation limestone.Previous researches have ...Objective The Shizishan Pb-Zn deposit is located in the southeastern margin of the Yangtze Block,and its Pb-Zn orebodies are mainly hosted in the Lower Cambrian Qingxudong Formation limestone.Previous researches have investigated the geological characteristics,geochemistry and fluid inclusions of this deposit.展开更多
The Jinshan gold deposit is located in the Northeast Jiangxi province,South China,which related to the ductile shear zone.It contains two ore types,i.e.the alteration-type ore and the goldbearing quartz vein ore.Rb-Sr...The Jinshan gold deposit is located in the Northeast Jiangxi province,South China,which related to the ductile shear zone.It contains two ore types,i.e.the alteration-type ore and the goldbearing quartz vein ore.Rb-Sr age dating is applied to both gold-bearing pyrite in the alteration-type ore and fluid inclusion in the gold-bearing quartz vein to make clear the time of the gold mineralization of the Jinshan deposit.Analytical results of this study yielded that the age of the alteration-type ore bodies is about 838±110Ma,with an initial 87Sr/86Sr value of 0.7045±0.0020.However,the age of the gold-bearing quartz vein-type ore is about 379±49Ma,and the initial 87Sr/86Sr is 0.7138±0.0011.Based on the age data from this work and many previous studies,the authors consider that the Jinshan gold deposit is a product of multi-staged mineralization,which may include the Jinninian,Caledonian,Hercynian,and Yanshanian Periods.Among them,the Jinninian Period and the Hercynian Period might be the two most important ore-forming periods for Jinshan deposit.The Jinninian Period is the main stage for the formation of alteration-type ore bodies,while the Hercynian Period is the major time for ore bodies of gold-bearing quartz vein type.The initial values of the 87Sr/86Sr from this study,as well as the previous isotope and trace element studies,indicate that the ore-forming materials mainly derived from the metamorphic wall rocks,and the ore-forming fluids mainly originated from the deep metamorphic water.展开更多
The Xiajinbao gold deposit is located in Yong’an-Xiayingfang-Maojiagou polymetallic metallogenic belt,which is animportant metallogenic belt in North China block.In this paper,we present a detailed study on fluid inc...The Xiajinbao gold deposit is located in Yong’an-Xiayingfang-Maojiagou polymetallic metallogenic belt,which is animportant metallogenic belt in North China block.In this paper,we present a detailed study on fluid inclusions and stable isotopes ofthe Xiajinbao gold deposit,Hebei Province,China,aiming at discussing the ore source,evolution of ore-forming fluid andore-forming mechanism of the deposit.The macroscopic geological characteristics,S and Pb isotopic analysis results show that thesource of ore-forming materials is mainly from granitic magma,and subordinately from country rocks.H and O isotopic compositionfeatures indicate that the ore-forming fluid is mainly derived from magmatic water.Fluid inclusion characteristics show that theore-forming fluid experienced boiling during the early mineralization stage,which led to the precipitation of gold.Fluid mixingdominated the precipitation of the ore-forming materials during the middle and late stages.The gold precipitation was caused bywater/rock reaction throughout the whole ore-forming process.展开更多
THE Laowangzhai superlarge gold deposit was found in 1984. Although studies on regional structure, geology of deposits and lamprophyres, which are temporally and spatially related to gold mineralization,have been carr...THE Laowangzhai superlarge gold deposit was found in 1984. Although studies on regional structure, geology of deposits and lamprophyres, which are temporally and spatially related to gold mineralization,have been carried out, the views on the source of ore-forming materials have been different. Thisnote summarized the characteristics of lead isotopic composition of the deposits, and probed further intothe source of ore-forming materials. 1 Geological setting The Laowangzhai gold deposit, located in the north of the Ailaoshan fault zone, consists of Donggualin and Laowangzhai ore block. The strata in the orefield include Paleozoic (Pz<sub>3</sub>) epimetamorphic ma-展开更多
The macroscopic and microscopic studies (in mineral inclusions, stable isotopes, traceelements, etc.) on the Donchuan-Yimen type copper deposits show that the ore material deriv-ed from host rocks and their underlying...The macroscopic and microscopic studies (in mineral inclusions, stable isotopes, traceelements, etc.) on the Donchuan-Yimen type copper deposits show that the ore material deriv-ed from host rocks and their underlying beds, and Bi, Pb, Zn probably did from deep frac-tures. The ore-forming fluid is hot brine in nature, and the water in it is probably stratumwater in origin. The sulphur derived from bacteria reducing of sulphate in sea water. Thecarbon derived from marine carbonate. The organic carbon plays an important role in themetallogenesis. In the Kangdian Axis, two deep fractures controlled the sedimentation of thecupriferous algal reef carbonate formation. They were ore-, heat-, brine-conducting tectonicsand led to the formation and transformation of many copper ore beds.展开更多
The source and evolution of ore-forming fluids is important to understand the genesis of Carlin-type gold deposit.Constraints on the source and evolution of ore fluid components by the con-ventional geochemical method...The source and evolution of ore-forming fluids is important to understand the genesis of Carlin-type gold deposit.Constraints on the source and evolution of ore fluid components by the con-ventional geochemical methods have long been a challenge due to the very fine-grained nature and complex textures of hydrothermal minerals in these deposits.In this study,we present the crush-leach analyzed solute data of fluid inclusion extracts within quartz,calcite,realgar,and fluorite from the Shuiyindong,Nibao,and Yata gold deposits in the Youjiang Basin,providing new insights into the source and evolution of ore-forming fluids.The results show that the high molar Cl/Br ratios up to 2508 in fluid inclusion extracts are indicative of a contribution of magmatic hydrothermal fluids.Flu-ids mixing between basinal and magmatic-hydrothermal fluids are evident on the plots of Cl/Br versus Na/K ratios,showing that ore-stage milky quartz near the magmatic-hydrothermal fluids reflects magma origin of the ore-forming fluids,whereas late ore-stage drusy quartz and realgar near the de-fined basinal fluids suggest the later input of basinal fluids in late-ore stage.Although the predominate-ly host rocks in Shuiyindong,Nibao and Yata gold deposit are bioclastic limestone,sedimentary tuff,and calcareous siltstone,respectively,the solute data of fluid inclusion extracts records they underwent the similar fluid-rocks reactions between the Na-rich magmatic hydrothermal fluids and the Ca-and Mg-rich host rocks.This study highlights the solute data of fluid inclusion extracts obtained by crush-leach analyses have the potential to fingerprint the source and evolution of ore-forming fluids of the Carlin-type gold deposit.展开更多
Southwestern Guizhou province is one of China’s most important distribution areas of Carlin-type gold deposits. The Nibao deposit is a typical gold deposit in southwestern Guizhou. To elucidate the genesis of the Nib...Southwestern Guizhou province is one of China’s most important distribution areas of Carlin-type gold deposits. The Nibao deposit is a typical gold deposit in southwestern Guizhou. To elucidate the genesis of the Nibao gold deposit, establish a metallogenic model, and guide prospecting prediction, we systematically collected previously reported geological, geochemical, and dating data and discussed the genesis of the Nibao gold deposit,based on which we proposed the metallogenic model.Earlier works show that the Nibao anticline, F1 fault, and its hanging wall dragged anticline(Erlongqiangbao anticline) were formed before or simultaneously with gold mineralization, while F2, F3, and F4 faults postdate gold mineralization. Regional geophysical data showed extensive low resistivity anomaly areas near the SBT(the product of tectonic slippage and hydrothermal alteration)between the P2/P3 and the strata of the Longtan Formation in the SSE direction of Nibao anticline in the lower plate of F1 and hanging wall dragged anticline(Erlongqiangbao anticline), and the anomaly areas are distributed within the influence range of anticlines. Simultaneously, soil and structural geochemistry show that F1, Nibao anticline,Erlongqiangbao anticline, and their transition areas all show good metallogenic elements(Au, As, and S) assemblage anomalies, with good metallogenic space and prospecting possibilities. There are five main hypotheses about the source of ore-forming fluids and Au in the Nibao gold deposit:(1) related to the Emeishan mantle plume activity;(2) source from the Emeishan basalt;(3) metamorphic fluid mineralization;(4) basin fluid mineralization;(5) related to deep concealed magmatic rocks;of these, the mainstream understanding is the fifth speculation. It is acknowledged that the ore-forming fluids are hydrothermal fluids with medium–low temperature, high pressure, medium–low salinity, low density, low oxygen fugacity, weak acidity, weak reduction, and rich in CO_(2)and CH_(4). The fluid pressure is 2–96.54 MPa, corresponding to depths of 0.23–3.64 km. The dating results show that the metallogenic age is ~141 Ma, the extensional tectonic environment related to the westward subduction of the Pacific Plate. Based on the above explanation, the genetic model related to deep concealed magmatic rocks of the Nibao gold deposit is established, and favorable prospecting areas are outlined;this is of great significance for regional mineral exploration and studying the genesis of gold deposits.展开更多
An analysis of trace elements and isotopic geochemistry suggest that the ore-forming materials of gold deposits in the Jiaodong granite-greenstone belt have multiple sources, especially the mantle source. Seismic wave...An analysis of trace elements and isotopic geochemistry suggest that the ore-forming materials of gold deposits in the Jiaodong granite-greenstone belt have multiple sources, especially the mantle source. Seismic wave, magnetic and gravity fields show that the crust-mantle structure and its coupling mechanism are the fundamental dynamic causes for the exchange and accumulation of materials and energy in the metallogenic system. Considering the evolution history of the structural setting, the tectono-metallogenic dynamics model of the area can be summarized as follows: (1) occurrence of the greenstone belt during the Archean-Proterozoic-the embryonic form of Au-source system; (2) stable tectonic setting in the Paleozoic-an intermittence in gold mineralization; (3) intensive activation and reformation of the greenstone belt in the Mesozoic-tectono-mineralization and tectono-diagensis; (4) posthumous structural activity in the Cenozoic-destruction of orebodies in the later stage. In the middle and late Indosinian, the Tancheng-Lujiang fault zone cut deeply into the upper mantle so that the ore-bearing fluids migrated to higher layers through the crust-mantle interaction, resulting in alteration and mineralization.展开更多
The Nage Cu-Pb deposit, a new found ore deposit in the southeast Guizhou province, southwest China, is located on the southwestern margin of the Jiangnan Orogenic Belt. Ore bodies are hosted in slate and phyllite of N...The Nage Cu-Pb deposit, a new found ore deposit in the southeast Guizhou province, southwest China, is located on the southwestern margin of the Jiangnan Orogenic Belt. Ore bodies are hosted in slate and phyllite of Neoproterozoic Jialu and Wuye Formations, and are structurally controlled by EW-trending fault. It contains Cu and Pb metals about 0.12 million tonnes with grades of 0.2 wt% to 3.4 wt% Cu and 1.1 wt% to 9.27 wt% Pb. Massive and disseminated Cu-Pb ores from the Nage deposit occur as either veinlets or disseminations in silicified rocks. The ore minerals include chalcopyrite, galena and pyrite, and gangue minerals are quartz, sericite and chlorite. The H-O isotopic compositions of quartz, S-Cu-Pb isotopic compositions of sulfide minerals, Pb isotopic compositions of whole rocks and ores have been analyzed to trace the sources of ore-forming fluids and metals for the Nage Cu-Pb deposit. The oSCUNBs values of chalcopyrite range from -0.09% to +0.33%0, similar to basic igneous rocks and chalcopyrite from magmatic deposits. J6SCUNBS values of chalcopyrite from the early, middle and final mineralization stages show an increasing trend due to 63Cu prior migrated in gas phase when fluids exsolution from magma, ja4ScDT values of sulfide minerals range from -2.7‰ to +2.8‰, similar to mantle-derived sulfur (0±3‰). The positive correlation between J65CUNBs and ja4SCDT values of chalcopyrite indicates that a common source of copper metal and sulfur from magma. JDu2o- SMOW and JlSOH2O-SMOW values of water in fluid inclusions of quartz range from -60.7‰ to -44.4‰ and +7.9‰ to +9.0%0 (T=260℃), respectively and fall in the field for magmatic and metamorphic waters, implicating that mixed sources for H20 in hydrothermal fluids. Ores and sulfide minerals have a small range of Pb isotopic compositions (208Pb/204pb=38.152 to 38.384, 207Pb/204Pb=15.656 to 17.708 and 206Pb/204Pb=17.991 to 18.049) that are close to orogenic belt and upper crust Pb evolution curve, and similar to Neoproterozoic host rocks (208Pb/204Pb=38.201 to 38.6373, 207pb/204pb=15.648 to 15.673 and 206pb/204pb=17.820 to 18.258), but higher than diabase (208Pb/204pb=37.830 to 38.012, 207pb/204pb=15.620 to 15.635 and 206pb/204pb=17.808 to 17.902). These results imply that the Pb metal originated mainly from host rocks. The H-O-S-Cu-Pb isotopes tegather with geology, indicating that the ore genesis of the Nage Cu-Pb deposit is post-magmatic hydrothermal type.展开更多
The Yinchanggou-Qiluogou Pb-Zn deposit,located in the western Yangtze Block,southwest China,is hosted by the Upper Sinian Dengying Formation dolostone.Ore bodies occur in the Qiluogou anticline and the NS-and NNW-tren...The Yinchanggou-Qiluogou Pb-Zn deposit,located in the western Yangtze Block,southwest China,is hosted by the Upper Sinian Dengying Formation dolostone.Ore bodies occur in the Qiluogou anticline and the NS-and NNW-trending faults.Sulfide ores mainly consist of sphalerite,pyrite,galena and calcite,with subordinate dolomite and quartz.Seventeen ore bodies have been discovered to date and they have a combined 1.0 million tons of sulfide ores with average grades of 2.27wt%Zn and 6.89wt%Pb.The δD(H2O-SMOW) and δ18O(H2O-SMOW) values of fluid inclusions in quartz and calcite samples range from-68.9‰ to-48.7‰ and 7.3‰ to 15.9‰,respectively,suggesting that H2O in the hydrothermal fluids sourced from metamorphic water.Calcite samples have δ13C(PDB) values ranging from-6.2‰ to-4.1‰ and δ18O(SMOW) values ranging from 15.1‰ to 17.4‰,indicating C and O in the hydrothermal fluids likely derived from a mixed source of metamorphic fluids and the host carbonates.The δ34S(CDT) values of sulfide minerals range from 5.5‰ to 20.3‰,suggesting that thermal chemical reduction of sulfate minerals in evaporates were the most probable source of S in the hydrothermal fluids.The 206Pb/204Pb,207Pb/204Pb and 208Pb/204Pb ratios of sulfide minerals fall in the range of 18.11 to 18.40,15.66 to 15.76 and 38.25 to 38.88,respectively.The Pb isotopic data of the studied deposit plot near the upper crust Pb evolution curve and overlap with the age-corrected Proterozoic basement rocks and the Upper Sinian Dengying Formation hosting dolostone.This indicates that the Pb originated from a mixed source of the basement metamorphic rocks and the ore-hosting carbonate rocks.The ore geology and C-H-O-S-Pb isotopic data suggest that the YinchanggouQiluogou deposit is an unusual carbonate-hosted,strata-bound and epigenetic deposit that derived ore-forming materials from a mixed source of the underlying Porterozoic basements and the Sinian hosting carbonates.展开更多
No. 22 ore of Dafulou deposit was systematically analyzed for sulfur isotopes. The results show that the δ34S values of sulfide minerals, ranging from 0.154 to +0.218% and with an average value of +0.114 1%, are most...No. 22 ore of Dafulou deposit was systematically analyzed for sulfur isotopes. The results show that the δ34S values of sulfide minerals, ranging from 0.154 to +0.218% and with an average value of +0.114 1%, are mostly positive and characterized by rich sulfur(S) content. This suggests that the sulfur of the Dafulou ore deposit is derived from magma and relates to the Longxianggai concealed granite, which points to the important role of magma during mineralization and implyies the product of the active continental margin. By comparison between the Dafulou and the Kengma tin deposit, significant differences exist in the sulfur isotope composition. In the Kengma deposit, the sulfur isotope composition is characterized by the high negative value, which is different from the Dafulou tin-polymetallic deposit. The difference of the enrichment and fractionation of the sulfur isotope is the synthesized result of the metallogenic conditions. It also has the difference in the metallogenic environment and metallogenic characteristics of the deposit in the same ore belt.展开更多
The Tongyu copper deposit, located in the western part of the North Qinling Orogen, China, is one of several volcanic-hosted massive sulphide(VHMS) deposits with industrial value and is also a typical example of min...The Tongyu copper deposit, located in the western part of the North Qinling Orogen, China, is one of several volcanic-hosted massive sulphide(VHMS) deposits with industrial value and is also a typical example of mineralization related to the subduction and metallogenesis during the Caledonian orogeny. We conducted systematic lead-sulphur isotope geochemical analyses of the Tongyu deposit to understand the possible ore-forming material sources and tectonic settings. Twenty-six sulphide samples yielded clustered δ^34SCDT values of 1.13‰-3.36‰, average 2.22‰, and show a tower-type distribution,implying that the sulphur of the Tongyu copper deposit mainly originated from a mantle source. The Pb isotope compositions of sulphides(^206Pb/^204Pb = 17.59225-18.56354, average 18.32020; ^207Pb/^204Pb =15.51770-15.69381, average 15.66217; ^208Pb/^204Pb= 37.99969-39.06953, average 38.52722) are close to the values of the volcanic host rocks(^206Pb/^204PbPb= 18.10678-18.26293, average 18.21158; ^207Pb/^204PbPb =15.63196-15.68188, average 15.65345; ^208Pb/^204PbPb= 38.43676-38.56360, average 38.49171), thus consistent with the Pb in ores and volcanic host rocks having been derived from a common source that was island-arc Pb related to oceanic crust subduction. The northward subduction of the Palaeo-Qinling oceanic crust triggered dehydration of the slab, which generated a large amount of high-oxygen-fugacity aqueous hydrothermal fluid. The fluid rose into the mantle wedge, activated and extracted metallogenic material and promoted partial melting of the mantle wedge. The magma and ore-forming fluid welled up and precipitated, finally forming the Tongyu VHMS copper deposit.展开更多
Pb isotopic analyses were reported for sulfide and hydrothermal carbonate minerals and marble of the Xiquegou lead-zinc, the Zhenzigou zinc-lead and the Gaojiapuzi silver deposits from the Qingchengzi ore field and th...Pb isotopic analyses were reported for sulfide and hydrothermal carbonate minerals and marble of the Xiquegou lead-zinc, the Zhenzigou zinc-lead and the Gaojiapuzi silver deposits from the Qingchengzi ore field and the Beiwagou zinc-lead deposit in the west, Proterozoic Liaodong rift zone. Pb isotopic ratios of the marble from the Qingchengzi ore field range from 18.24 to 30.63 for 206 Pb/204Pb, 15.59 to 17.05 for207Pb/204Pb and 37.43 to 38.63 for 208Pb/204Pb. The marble gives a Pb-Pb isochron age of 1822±92 Ma, which is interpreted as the age of the metamorphism of the marble. Ore Pb, including Pb of sulfide and hydrothermal car- bonate minerals, from the Qingchengzi ore field shows limited variation with 206 Pb/204Pb=17.66- 17.96, 207 Pb/204Pb=15.60-15.74 and 208Pb/204Pb=37.94-38.60. In contrast, ore Pb from the Beiwagou deposit gives different Pb isotopic ratios with 206Pb/204Pb=15.68-15.81, 207 Pb/204Pb= 15.34-15.45 and 208Pb/204Pb=35.30-35.68. Pb of all deposits from the Liaodong rift zone is derived from the upper crust. Ore Pb of the Qingchengzi deposits is derived from a young upper crust. The model Th/U ratios of 4.40 to 4.74 for ore Pb are significantly different from that of 1.7 to 4.4 given by the marble of the Qingchengzi ore field, suggesting that marble is not the source of the ore Pb. Ore Pb of the Beiwagou deposit is extracted from its source and the deposit is formed at the Paleoproterozoic era. Different Pb isotopic ratios of the Qingchengzi ore field and the Beiwagou deposit are due to different ages of the deposits and suggest that the two types of deposits are derived from different sources and are possibly formed by different ore-forming processes.展开更多
The Jiaodong Peninsula is the largest repository of gold in China based on the production in history. It covers less than 0.2% of China's territory, but production of gold accounts for about one fourth of the whol...The Jiaodong Peninsula is the largest repository of gold in China based on the production in history. It covers less than 0.2% of China's territory, but production of gold accounts for about one fourth of the whole country. Thus, the Jiaodong Peninsula is a typical area or case of large-scale metallogenesis and a large clusters of mineral deposits in China. It is characterized by the large clusters of gold deposits in large scale, high reserve and short mineralizing stage. In this study, we suggest that the eastern boundary of the large clusters of gold deposits is as same as that of North China Block, the gold deposits are hosted by Archean metamorphic rocks or Mesozoic granites, and the age of gold mineralization is 121.6 to 122.7 Ma. Gold and related ore-forming materials are derived from multisources, i.e. Archean metamorphic rocks, granites and intermediate-mafic dikes, especially, intermediate-mafic dikes and calc-alkaline granites. The metallogenic geodynamic process is constrained by the tectonic evolution of eastern North China Block during Late Mesozoic, and it is the result of the interaction between mantle and crust as the boundary plates are playing role on the block.展开更多
The Huachanggou gold deposit is located in the south part of the Mian-Lue suture zone in the Qinling orogenic belt. Rare earth element (REE) concentrations determined by ICP-MS are shown to characterize the ore samp...The Huachanggou gold deposit is located in the south part of the Mian-Lue suture zone in the Qinling orogenic belt. Rare earth element (REE) concentrations determined by ICP-MS are shown to characterize the ore samples and their wall rocks in three ore zones in order to reveal the origin of ore-forming materials and fluid. In AuI, REE chondrite normalized patterns of ore are similar to those of ore-controlling spilite; the ore-forming materials originated from deep magma, and magmatic activity offered main hydrothermal source for gold mineralization. The REE characteristics of AuII and AuIII are similar, and most of the ore samples are similar with the wall rocks. The ore-forming fluids of AuII and AuIII were metamorphic hydrothermal fluids which had extracted ore-forming materials part from the wall rocks, and part from the spilite in AuI.展开更多
文摘1 Introduction The Tudimiaogou-Yindongshan lead-zinc polymetallic orefield is located in the Tudimiaogou-Weimoshi lead and zinc silver polymetallic metallogenic belt.The belt is an important part of southwestern Henan lead and zinc
文摘The compositions of REE in quartz and pyrite from the main stage of the Laowan gold deposit in Henan Province and that in quartz from Laowan granite were determined by inductively coupled plasma-mass-spectrometry (ICP-MS) to trace the source of ore-forming materials. Meanwhile, the REE compositions of the deposit ore, granite and metamorphic wall rock were also considered for comparative studies in detail. The range of ∑REE of quartz and pyrite from the deposit ores is 4.18 × 10^-6- 30.91 × 10^-6, the average of ∑REE is 13.39 × 10^-6, and the average of ∑REE of quartz in the Laowan granite is 6.68 × 10^-6. There is no distinct difference of REE parameters between the deposit ore quartz and granite quartz. The quartz in gold deposit has the same REE particular parameters as quartzes from Laowan granite, such as δEu, δCe, (La/Yb)N and (La/Sm)N, partition degree of LREE to HREE, especially, the chondrite-normalized REE patterns, but no similarity to those from metamorphic wall rock, which shows that ore-forming hydrothermal fluid is mainly the fluid coming from the Laowan granite magma, rather than metamorphic fluid. Meanwhile, comparison studies on REE features between minerals from the deposit ores and related geological bodies in the deposit show that REE characteristics of minerals can serve as an indicator of ore-forming fluid properties and sources, while the REE characteristics of the bulk samples (such as deposit ores, granites and wall rocks) can not trace the source of the ore-forming materials exactly.
文摘Based on the main characteristics of the tectonic -magmatic evolution of region and Tanlu fault zone,we have discussed ore-bearing magmatic rocks petrochemistry,strontium and lead isotope,and the source of ore-forming materials in Yinan skarn deposit in this paper.The petrochemical features show that the ore-bearing magmatic rocks are calc-alkaline rocks of sub-alkaline series formed during
文摘Abstract This paper deals with characteristics of silicon isotope compositions and siliceous cathodoluminescence of host rocks, ores and hydrothermal silicified quartz of the Carlin-type ore deposits in the Yunnan-Guizhou-Guangxi triangle area. The study shows that primary silicified quartz is nonluminescent but quartz in host rocks and secondary silicified quartz are luminescent by the action of cathode rays. Correspondingly, silicon isotope compositions of host rocks, ores and hydro6thermal quartz veins are clearly distinguished. In strata from the Middle Triassic to the “Dachang” host bed, δ30Si of the host rocks ranges from 0.0% ?0.3%, while that of primary ore-forming silicified fluids from ?0.1% to ?0.4%; in the Upper Permian and Lower Carboniferous strata and Indosinian diabase host beds, δ30Si of the host rocks is from ?0.1% to ?0.2% and that of the primary silicified quartz veins from 0.3 % ?0.5 %. This pattern demonstrates the following geochemical mineralization process, primary ore-forming siliceous fluids migrated upwards quickly along the main passages of deep-seated faults from mantle to crust and entered secondary faults where gold deposits were eventually formed as a result of permeation and replacement of the siliceous ore-forming fluids into different ore-bearing strata. This gives important evidence for the fact that ore-forming fluids of this type of gold deposits were mainly derived from upper mantle differentiation and shows good prospects for deep gold deposits and geochemical background for large and superlarge gold deposits.
文摘The compositions of REE in quartz and pyrite from main mineralized stage of the Laowan gold deposit in Henan province and that of quartz from Laowan granite were determined by Inductively Coupled Plasma-Mass-Spectrometry (ICP-MS). The REE of deposit ore of the Laowan gold deposit, wall-rock and Laowan granite also were studied to trace the source of metallogenic materials in Laowan gold deposit in detail. The range of ∑ REE in quartz and pyrite from gold deposit is 4.18 × 10^-6 - 30.91 × 10^-6, average of 13.39 × 10^-6, 6.68 × 10^-6 of the Laowan granite quartz, obviously lower to REE concentration of deposit, granite and wall-rock. The value of (La/ Yb)N and (La/Sm)N of ore minerals from the gold deposit is 13.23 and 4.17 respectively. The differences in REE parameters, such as δEu, δCe and diffusion degree in REE from light to heavy, among deposit ore minerals and granite mineral are weak. Especially, there are no differences between the chondrite-normalised REE curves of minerals from gold deposit and those of quartzs in Laowan granite, no similarity to wall-rock', which shows that ore-forming hydrothermal fluid mainly came from magma fluid resulting from the Laowan granite magma, metamorphic fluid in few. The results also show that REE characteristics of ore minerals in deposit are effective for disclosing oreforming fluid quality comparing with deposit ore'REE compositions.
基金financially supported by the National Natural Science Foundation of China(grant No.41303026)
文摘Objective The Shizishan Pb-Zn deposit is located in the southeastern margin of the Yangtze Block,and its Pb-Zn orebodies are mainly hosted in the Lower Cambrian Qingxudong Formation limestone.Previous researches have investigated the geological characteristics,geochemistry and fluid inclusions of this deposit.
基金supported by the National Natural Science Foundation of China (No. 41202083, 40373025)the Research Award Fund for Outstanding Middle-aged and Young Scientist of Shandong Province (BS2013HZ024)
文摘The Jinshan gold deposit is located in the Northeast Jiangxi province,South China,which related to the ductile shear zone.It contains two ore types,i.e.the alteration-type ore and the goldbearing quartz vein ore.Rb-Sr age dating is applied to both gold-bearing pyrite in the alteration-type ore and fluid inclusion in the gold-bearing quartz vein to make clear the time of the gold mineralization of the Jinshan deposit.Analytical results of this study yielded that the age of the alteration-type ore bodies is about 838±110Ma,with an initial 87Sr/86Sr value of 0.7045±0.0020.However,the age of the gold-bearing quartz vein-type ore is about 379±49Ma,and the initial 87Sr/86Sr is 0.7138±0.0011.Based on the age data from this work and many previous studies,the authors consider that the Jinshan gold deposit is a product of multi-staged mineralization,which may include the Jinninian,Caledonian,Hercynian,and Yanshanian Periods.Among them,the Jinninian Period and the Hercynian Period might be the two most important ore-forming periods for Jinshan deposit.The Jinninian Period is the main stage for the formation of alteration-type ore bodies,while the Hercynian Period is the major time for ore bodies of gold-bearing quartz vein type.The initial values of the 87Sr/86Sr from this study,as well as the previous isotope and trace element studies,indicate that the ore-forming materials mainly derived from the metamorphic wall rocks,and the ore-forming fluids mainly originated from the deep metamorphic water.
基金Project(2015CX008) supported by the Innovation Driven Plan of Central South University,China
文摘The Xiajinbao gold deposit is located in Yong’an-Xiayingfang-Maojiagou polymetallic metallogenic belt,which is animportant metallogenic belt in North China block.In this paper,we present a detailed study on fluid inclusions and stable isotopes ofthe Xiajinbao gold deposit,Hebei Province,China,aiming at discussing the ore source,evolution of ore-forming fluid andore-forming mechanism of the deposit.The macroscopic geological characteristics,S and Pb isotopic analysis results show that thesource of ore-forming materials is mainly from granitic magma,and subordinately from country rocks.H and O isotopic compositionfeatures indicate that the ore-forming fluid is mainly derived from magmatic water.Fluid inclusion characteristics show that theore-forming fluid experienced boiling during the early mineralization stage,which led to the precipitation of gold.Fluid mixingdominated the precipitation of the ore-forming materials during the middle and late stages.The gold precipitation was caused bywater/rock reaction throughout the whole ore-forming process.
文摘THE Laowangzhai superlarge gold deposit was found in 1984. Although studies on regional structure, geology of deposits and lamprophyres, which are temporally and spatially related to gold mineralization,have been carried out, the views on the source of ore-forming materials have been different. Thisnote summarized the characteristics of lead isotopic composition of the deposits, and probed further intothe source of ore-forming materials. 1 Geological setting The Laowangzhai gold deposit, located in the north of the Ailaoshan fault zone, consists of Donggualin and Laowangzhai ore block. The strata in the orefield include Paleozoic (Pz<sub>3</sub>) epimetamorphic ma-
基金the National Natural Science Foundation of China.
文摘The macroscopic and microscopic studies (in mineral inclusions, stable isotopes, traceelements, etc.) on the Donchuan-Yimen type copper deposits show that the ore material deriv-ed from host rocks and their underlying beds, and Bi, Pb, Zn probably did from deep frac-tures. The ore-forming fluid is hot brine in nature, and the water in it is probably stratumwater in origin. The sulphur derived from bacteria reducing of sulphate in sea water. Thecarbon derived from marine carbonate. The organic carbon plays an important role in themetallogenesis. In the Kangdian Axis, two deep fractures controlled the sedimentation of thecupriferous algal reef carbonate formation. They were ore-, heat-, brine-conducting tectonicsand led to the formation and transformation of many copper ore beds.
基金This study is supported by the Natural Science Foundation of China(Nos.41802094,U1812402)the National Basic Research Program(No.2014CB440906).
文摘The source and evolution of ore-forming fluids is important to understand the genesis of Carlin-type gold deposit.Constraints on the source and evolution of ore fluid components by the con-ventional geochemical methods have long been a challenge due to the very fine-grained nature and complex textures of hydrothermal minerals in these deposits.In this study,we present the crush-leach analyzed solute data of fluid inclusion extracts within quartz,calcite,realgar,and fluorite from the Shuiyindong,Nibao,and Yata gold deposits in the Youjiang Basin,providing new insights into the source and evolution of ore-forming fluids.The results show that the high molar Cl/Br ratios up to 2508 in fluid inclusion extracts are indicative of a contribution of magmatic hydrothermal fluids.Flu-ids mixing between basinal and magmatic-hydrothermal fluids are evident on the plots of Cl/Br versus Na/K ratios,showing that ore-stage milky quartz near the magmatic-hydrothermal fluids reflects magma origin of the ore-forming fluids,whereas late ore-stage drusy quartz and realgar near the de-fined basinal fluids suggest the later input of basinal fluids in late-ore stage.Although the predominate-ly host rocks in Shuiyindong,Nibao and Yata gold deposit are bioclastic limestone,sedimentary tuff,and calcareous siltstone,respectively,the solute data of fluid inclusion extracts records they underwent the similar fluid-rocks reactions between the Na-rich magmatic hydrothermal fluids and the Ca-and Mg-rich host rocks.This study highlights the solute data of fluid inclusion extracts obtained by crush-leach analyses have the potential to fingerprint the source and evolution of ore-forming fluids of the Carlin-type gold deposit.
基金supported by the National Natural Science Fund of China (41962008)the Talent Team Program of Guizhou Science and Technology Fund (Qianke Pingtairen Caixintang[2021]007)+3 种基金the Geological Exploration Fund Project of Guizhou Province (520000214TLCOG7DGTDRG)the National Natural Science Foundation of China (U1812402)Scientific Research Project of Hubei Geological Bureau (KJ2022-21)the Graduate Research Fund of Guizhou Province (YJSCXJH [2020] 095)。
文摘Southwestern Guizhou province is one of China’s most important distribution areas of Carlin-type gold deposits. The Nibao deposit is a typical gold deposit in southwestern Guizhou. To elucidate the genesis of the Nibao gold deposit, establish a metallogenic model, and guide prospecting prediction, we systematically collected previously reported geological, geochemical, and dating data and discussed the genesis of the Nibao gold deposit,based on which we proposed the metallogenic model.Earlier works show that the Nibao anticline, F1 fault, and its hanging wall dragged anticline(Erlongqiangbao anticline) were formed before or simultaneously with gold mineralization, while F2, F3, and F4 faults postdate gold mineralization. Regional geophysical data showed extensive low resistivity anomaly areas near the SBT(the product of tectonic slippage and hydrothermal alteration)between the P2/P3 and the strata of the Longtan Formation in the SSE direction of Nibao anticline in the lower plate of F1 and hanging wall dragged anticline(Erlongqiangbao anticline), and the anomaly areas are distributed within the influence range of anticlines. Simultaneously, soil and structural geochemistry show that F1, Nibao anticline,Erlongqiangbao anticline, and their transition areas all show good metallogenic elements(Au, As, and S) assemblage anomalies, with good metallogenic space and prospecting possibilities. There are five main hypotheses about the source of ore-forming fluids and Au in the Nibao gold deposit:(1) related to the Emeishan mantle plume activity;(2) source from the Emeishan basalt;(3) metamorphic fluid mineralization;(4) basin fluid mineralization;(5) related to deep concealed magmatic rocks;of these, the mainstream understanding is the fifth speculation. It is acknowledged that the ore-forming fluids are hydrothermal fluids with medium–low temperature, high pressure, medium–low salinity, low density, low oxygen fugacity, weak acidity, weak reduction, and rich in CO_(2)and CH_(4). The fluid pressure is 2–96.54 MPa, corresponding to depths of 0.23–3.64 km. The dating results show that the metallogenic age is ~141 Ma, the extensional tectonic environment related to the westward subduction of the Pacific Plate. Based on the above explanation, the genetic model related to deep concealed magmatic rocks of the Nibao gold deposit is established, and favorable prospecting areas are outlined;this is of great significance for regional mineral exploration and studying the genesis of gold deposits.
基金This study is supported jointly by the National Natural Science Foundation of China(No.40172036)"the Key Project of Science and Technology Research"(No.01037)+1 种基金the“Trans-century Training Program for Outstanding Talents”Fund sponsored by the Ministry of Educationthe National Important Basic Research and Development Planning Program(No.1999043206).
文摘An analysis of trace elements and isotopic geochemistry suggest that the ore-forming materials of gold deposits in the Jiaodong granite-greenstone belt have multiple sources, especially the mantle source. Seismic wave, magnetic and gravity fields show that the crust-mantle structure and its coupling mechanism are the fundamental dynamic causes for the exchange and accumulation of materials and energy in the metallogenic system. Considering the evolution history of the structural setting, the tectono-metallogenic dynamics model of the area can be summarized as follows: (1) occurrence of the greenstone belt during the Archean-Proterozoic-the embryonic form of Au-source system; (2) stable tectonic setting in the Paleozoic-an intermittence in gold mineralization; (3) intensive activation and reformation of the greenstone belt in the Mesozoic-tectono-mineralization and tectono-diagensis; (4) posthumous structural activity in the Cenozoic-destruction of orebodies in the later stage. In the middle and late Indosinian, the Tancheng-Lujiang fault zone cut deeply into the upper mantle so that the ore-bearing fluids migrated to higher layers through the crust-mantle interaction, resulting in alteration and mineralization.
基金supported by Science Foundation of Guizhou province (No. 2012-2334)Open Foundation of State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences (Nos. 2011001 and 2009014)National Natural Science Foundation of China (Nos. 41102055 and 41102053)
文摘The Nage Cu-Pb deposit, a new found ore deposit in the southeast Guizhou province, southwest China, is located on the southwestern margin of the Jiangnan Orogenic Belt. Ore bodies are hosted in slate and phyllite of Neoproterozoic Jialu and Wuye Formations, and are structurally controlled by EW-trending fault. It contains Cu and Pb metals about 0.12 million tonnes with grades of 0.2 wt% to 3.4 wt% Cu and 1.1 wt% to 9.27 wt% Pb. Massive and disseminated Cu-Pb ores from the Nage deposit occur as either veinlets or disseminations in silicified rocks. The ore minerals include chalcopyrite, galena and pyrite, and gangue minerals are quartz, sericite and chlorite. The H-O isotopic compositions of quartz, S-Cu-Pb isotopic compositions of sulfide minerals, Pb isotopic compositions of whole rocks and ores have been analyzed to trace the sources of ore-forming fluids and metals for the Nage Cu-Pb deposit. The oSCUNBs values of chalcopyrite range from -0.09% to +0.33%0, similar to basic igneous rocks and chalcopyrite from magmatic deposits. J6SCUNBS values of chalcopyrite from the early, middle and final mineralization stages show an increasing trend due to 63Cu prior migrated in gas phase when fluids exsolution from magma, ja4ScDT values of sulfide minerals range from -2.7‰ to +2.8‰, similar to mantle-derived sulfur (0±3‰). The positive correlation between J65CUNBs and ja4SCDT values of chalcopyrite indicates that a common source of copper metal and sulfur from magma. JDu2o- SMOW and JlSOH2O-SMOW values of water in fluid inclusions of quartz range from -60.7‰ to -44.4‰ and +7.9‰ to +9.0%0 (T=260℃), respectively and fall in the field for magmatic and metamorphic waters, implicating that mixed sources for H20 in hydrothermal fluids. Ores and sulfide minerals have a small range of Pb isotopic compositions (208Pb/204pb=38.152 to 38.384, 207Pb/204Pb=15.656 to 17.708 and 206Pb/204Pb=17.991 to 18.049) that are close to orogenic belt and upper crust Pb evolution curve, and similar to Neoproterozoic host rocks (208Pb/204Pb=38.201 to 38.6373, 207pb/204pb=15.648 to 15.673 and 206pb/204pb=17.820 to 18.258), but higher than diabase (208Pb/204pb=37.830 to 38.012, 207pb/204pb=15.620 to 15.635 and 206pb/204pb=17.808 to 17.902). These results imply that the Pb metal originated mainly from host rocks. The H-O-S-Cu-Pb isotopes tegather with geology, indicating that the ore genesis of the Nage Cu-Pb deposit is post-magmatic hydrothermal type.
基金financially supported by the National Basic Research Program of China(973 Program,No. 2014CB440905)the Key Program of National Natural Science Foundation(No.41430315)the National Natural Science Foundation of China(Nos.41272111 and 41163001)
文摘The Yinchanggou-Qiluogou Pb-Zn deposit,located in the western Yangtze Block,southwest China,is hosted by the Upper Sinian Dengying Formation dolostone.Ore bodies occur in the Qiluogou anticline and the NS-and NNW-trending faults.Sulfide ores mainly consist of sphalerite,pyrite,galena and calcite,with subordinate dolomite and quartz.Seventeen ore bodies have been discovered to date and they have a combined 1.0 million tons of sulfide ores with average grades of 2.27wt%Zn and 6.89wt%Pb.The δD(H2O-SMOW) and δ18O(H2O-SMOW) values of fluid inclusions in quartz and calcite samples range from-68.9‰ to-48.7‰ and 7.3‰ to 15.9‰,respectively,suggesting that H2O in the hydrothermal fluids sourced from metamorphic water.Calcite samples have δ13C(PDB) values ranging from-6.2‰ to-4.1‰ and δ18O(SMOW) values ranging from 15.1‰ to 17.4‰,indicating C and O in the hydrothermal fluids likely derived from a mixed source of metamorphic fluids and the host carbonates.The δ34S(CDT) values of sulfide minerals range from 5.5‰ to 20.3‰,suggesting that thermal chemical reduction of sulfate minerals in evaporates were the most probable source of S in the hydrothermal fluids.The 206Pb/204Pb,207Pb/204Pb and 208Pb/204Pb ratios of sulfide minerals fall in the range of 18.11 to 18.40,15.66 to 15.76 and 38.25 to 38.88,respectively.The Pb isotopic data of the studied deposit plot near the upper crust Pb evolution curve and overlap with the age-corrected Proterozoic basement rocks and the Upper Sinian Dengying Formation hosting dolostone.This indicates that the Pb originated from a mixed source of the basement metamorphic rocks and the ore-hosting carbonate rocks.The ore geology and C-H-O-S-Pb isotopic data suggest that the YinchanggouQiluogou deposit is an unusual carbonate-hosted,strata-bound and epigenetic deposit that derived ore-forming materials from a mixed source of the underlying Porterozoic basements and the Sinian hosting carbonates.
基金Project(41202051) supported by the National Natural Science Foundation of ChinaProject(2012M521721) supported by China Postdoctoral Science FoundationProject(CSUZC2013021) supported by Valuable Equipment Open Sharing Fund of Central South University,China
文摘No. 22 ore of Dafulou deposit was systematically analyzed for sulfur isotopes. The results show that the δ34S values of sulfide minerals, ranging from 0.154 to +0.218% and with an average value of +0.114 1%, are mostly positive and characterized by rich sulfur(S) content. This suggests that the sulfur of the Dafulou ore deposit is derived from magma and relates to the Longxianggai concealed granite, which points to the important role of magma during mineralization and implyies the product of the active continental margin. By comparison between the Dafulou and the Kengma tin deposit, significant differences exist in the sulfur isotope composition. In the Kengma deposit, the sulfur isotope composition is characterized by the high negative value, which is different from the Dafulou tin-polymetallic deposit. The difference of the enrichment and fractionation of the sulfur isotope is the synthesized result of the metallogenic conditions. It also has the difference in the metallogenic environment and metallogenic characteristics of the deposit in the same ore belt.
基金jointly supported by National Natural Science Foundation of China(Grant Nos.41421002,41272092,and 41030423)MOST Special Fund from the State Key Laboratory of Continental Dynamics,Northwest University,China
文摘The Tongyu copper deposit, located in the western part of the North Qinling Orogen, China, is one of several volcanic-hosted massive sulphide(VHMS) deposits with industrial value and is also a typical example of mineralization related to the subduction and metallogenesis during the Caledonian orogeny. We conducted systematic lead-sulphur isotope geochemical analyses of the Tongyu deposit to understand the possible ore-forming material sources and tectonic settings. Twenty-six sulphide samples yielded clustered δ^34SCDT values of 1.13‰-3.36‰, average 2.22‰, and show a tower-type distribution,implying that the sulphur of the Tongyu copper deposit mainly originated from a mantle source. The Pb isotope compositions of sulphides(^206Pb/^204Pb = 17.59225-18.56354, average 18.32020; ^207Pb/^204Pb =15.51770-15.69381, average 15.66217; ^208Pb/^204Pb= 37.99969-39.06953, average 38.52722) are close to the values of the volcanic host rocks(^206Pb/^204PbPb= 18.10678-18.26293, average 18.21158; ^207Pb/^204PbPb =15.63196-15.68188, average 15.65345; ^208Pb/^204PbPb= 38.43676-38.56360, average 38.49171), thus consistent with the Pb in ores and volcanic host rocks having been derived from a common source that was island-arc Pb related to oceanic crust subduction. The northward subduction of the Palaeo-Qinling oceanic crust triggered dehydration of the slab, which generated a large amount of high-oxygen-fugacity aqueous hydrothermal fluid. The fluid rose into the mantle wedge, activated and extracted metallogenic material and promoted partial melting of the mantle wedge. The magma and ore-forming fluid welled up and precipitated, finally forming the Tongyu VHMS copper deposit.
文摘Pb isotopic analyses were reported for sulfide and hydrothermal carbonate minerals and marble of the Xiquegou lead-zinc, the Zhenzigou zinc-lead and the Gaojiapuzi silver deposits from the Qingchengzi ore field and the Beiwagou zinc-lead deposit in the west, Proterozoic Liaodong rift zone. Pb isotopic ratios of the marble from the Qingchengzi ore field range from 18.24 to 30.63 for 206 Pb/204Pb, 15.59 to 17.05 for207Pb/204Pb and 37.43 to 38.63 for 208Pb/204Pb. The marble gives a Pb-Pb isochron age of 1822±92 Ma, which is interpreted as the age of the metamorphism of the marble. Ore Pb, including Pb of sulfide and hydrothermal car- bonate minerals, from the Qingchengzi ore field shows limited variation with 206 Pb/204Pb=17.66- 17.96, 207 Pb/204Pb=15.60-15.74 and 208Pb/204Pb=37.94-38.60. In contrast, ore Pb from the Beiwagou deposit gives different Pb isotopic ratios with 206Pb/204Pb=15.68-15.81, 207 Pb/204Pb= 15.34-15.45 and 208Pb/204Pb=35.30-35.68. Pb of all deposits from the Liaodong rift zone is derived from the upper crust. Ore Pb of the Qingchengzi deposits is derived from a young upper crust. The model Th/U ratios of 4.40 to 4.74 for ore Pb are significantly different from that of 1.7 to 4.4 given by the marble of the Qingchengzi ore field, suggesting that marble is not the source of the ore Pb. Ore Pb of the Beiwagou deposit is extracted from its source and the deposit is formed at the Paleoproterozoic era. Different Pb isotopic ratios of the Qingchengzi ore field and the Beiwagou deposit are due to different ages of the deposits and suggest that the two types of deposits are derived from different sources and are possibly formed by different ore-forming processes.
基金by the Ministry of Science and Technology of China (Grant No.G1999043207), Chinese Academy of Sciences (Grant No. KZCX1-07) and National Natural Science Foundation of China (Grant No. 49872064).
文摘The Jiaodong Peninsula is the largest repository of gold in China based on the production in history. It covers less than 0.2% of China's territory, but production of gold accounts for about one fourth of the whole country. Thus, the Jiaodong Peninsula is a typical area or case of large-scale metallogenesis and a large clusters of mineral deposits in China. It is characterized by the large clusters of gold deposits in large scale, high reserve and short mineralizing stage. In this study, we suggest that the eastern boundary of the large clusters of gold deposits is as same as that of North China Block, the gold deposits are hosted by Archean metamorphic rocks or Mesozoic granites, and the age of gold mineralization is 121.6 to 122.7 Ma. Gold and related ore-forming materials are derived from multisources, i.e. Archean metamorphic rocks, granites and intermediate-mafic dikes, especially, intermediate-mafic dikes and calc-alkaline granites. The metallogenic geodynamic process is constrained by the tectonic evolution of eastern North China Block during Late Mesozoic, and it is the result of the interaction between mantle and crust as the boundary plates are playing role on the block.
基金Project supported by National Natural Science Foundation of China(41030423)Geological Survey Projects of China Geological Survey(1212011220924)
文摘The Huachanggou gold deposit is located in the south part of the Mian-Lue suture zone in the Qinling orogenic belt. Rare earth element (REE) concentrations determined by ICP-MS are shown to characterize the ore samples and their wall rocks in three ore zones in order to reveal the origin of ore-forming materials and fluid. In AuI, REE chondrite normalized patterns of ore are similar to those of ore-controlling spilite; the ore-forming materials originated from deep magma, and magmatic activity offered main hydrothermal source for gold mineralization. The REE characteristics of AuII and AuIII are similar, and most of the ore samples are similar with the wall rocks. The ore-forming fluids of AuII and AuIII were metamorphic hydrothermal fluids which had extracted ore-forming materials part from the wall rocks, and part from the spilite in AuI.