期刊文献+
共找到105篇文章
< 1 2 6 >
每页显示 20 50 100
Multiple Uplift and Exhumation of the Southeastern Tibetan Plateau:Evidence from Low-Temperature Thermochronology 被引量:1
1
作者 WU Limin PENG Touping +6 位作者 FAN Weiming ZHAO Guochun GAO Jianfeng DONG Xiaohan PENG Shili MIN Kang Tin Aung MYINT 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第3期569-584,共16页
Since the Cenozoic,the Tibetan Plateau has experienced large-scale uplift and outgrowth due to the India-Asia collision.However,the mechanism and timing of these tectonic processes still remain debated.Here,using apat... Since the Cenozoic,the Tibetan Plateau has experienced large-scale uplift and outgrowth due to the India-Asia collision.However,the mechanism and timing of these tectonic processes still remain debated.Here,using apatite fission track dating and inverse thermal modeling,we explore the mechanism of different phases of rapid cooling for different batholiths and intrusions in the southeastern Tibetan Plateau.In contrast to previous views,we find that the coeval granitic batholith exposed in the same tectonic zone experienced differential fast uplift in different sites,indicating that the present Tibetan Plateau was the result of differential uplift rather than the entire lithosphere uplift related to lithospheric collapse during Cenozoic times.In addition,we also suggest that the 5-2 Ma mantle-related magmatism should be regarded as the critical trigger for the widely coeval cooling event in the southeastern Tibetan Plateau,because it led to the increase in atmospheric CO_(2)level and a hotter upper crust than before,which are efficient for suddenly fast rock weathering and erosion.Finally,we propose that the current landform of the southeastern Tibetan Plateau was the combined influences of tectonic and climate. 展开更多
关键词 apatite fission track rapid cooling differential uplift MAGMATISM southeastern tibetan plateau
下载PDF
Quantifying Contribution of Recycled Moisture to Precipitation in Temperate Glacier Region,Southeastern Tibetan Plateau,China
2
作者 MA Yanwei PU Tao +2 位作者 SHI Xiaoyi MA Xinggang YU Hongmei 《Chinese Geographical Science》 SCIE CSCD 2024年第4期764-776,共13页
Recycled moisture is an important indicator of the renewal capacity of regional water resources.Due to the existence of Yulong Snow Mountain,Lijiang in Yunnan Province,southeast of the Qinghai-Tibet Plateau,China,is t... Recycled moisture is an important indicator of the renewal capacity of regional water resources.Due to the existence of Yulong Snow Mountain,Lijiang in Yunnan Province,southeast of the Qinghai-Tibet Plateau,China,is the closest ocean glacier area to the equator in Eurasia.Daily precipitation samples were collected from 2017 to 2018 in Lijiang to quantify the effect of sub-cloud evaporation and recycled moisture on precipitation combined with the d-excess model during monsoon and non-monsoon periods.The results indicated that the d-excess values of precipitation fluctuated between–35.6‰and 16.0‰,with an arithmetic mean of 3.5‰.The local meteoric water line(LMWL)wasδD=7.91δ^(18)O+2.50,with a slope slightly lower than the global meteoric water line(GMWL).Subcloud evaporation was higher during the non-monsoon season than during the monsoon season.It tended to peak in March and was primarily influenced by the relative humidity.The source of the water vapour affected the proportion of recycled moisture.According to the results of the Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)model,the main sources of water vapour in Lijiang area during the monsoon period were the southwest and southeast monsoons.During the non-monsoon period,water vapour was transported by a southwesterly flow.The recycled moisture in Lijiang area between March and October 2017 was 10.62%.Large variations were observed between the monsoon and non-monsoon seasons,with values of 5.48%and 25.65%,respectively.These differences were primarily attributed to variations in the advection of water vapour.The recycled moisture has played a supplementary role in the precipitation of Lijiang area. 展开更多
关键词 recycled moisture stable isotope PRECIPITATION d-excess Hybrid Single-Particle Lagrangian Integrated Trajectory(HYSPLIT)model southeastern tibetan plateau China
下载PDF
Provenance and Paleogeography of the Late Cretaceous Mengyejing Formation,Simao Basin,Southeastern Tibetan Plateau 被引量:3
3
作者 WANG Licheng LIU Chenglin +1 位作者 GAO Xiang ZHANG Hua 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第S1期255-256,共2页
The Mengyejing potash salt deposit(MPSD)is the only pre-Quaternary potash salt deposit in China.The MPSD is located in the southern Simao Basin,southeastern Tibetan Plateau.The MPSD,along with rock salts and clastic r... The Mengyejing potash salt deposit(MPSD)is the only pre-Quaternary potash salt deposit in China.The MPSD is located in the southern Simao Basin,southeastern Tibetan Plateau.The MPSD,along with rock salts and clastic rocks, 展开更多
关键词 Si Th Provenance and Paleogeography of the Late Cretaceous Mengyejing Formation Simao Basin southeastern tibetan plateau ROCK EU
下载PDF
Late Cretaceous Adakitic Granites of the Southeastern Tibetan Plateau: Garnet Fractional Crystallization of Arc-Like Magmas at the Thickened Neo-Tethyan Continental Margin 被引量:1
4
作者 XIANG Kun XUE Chuandong +4 位作者 YANG Tiannan XIE Zhipeng XIN Di JIANG Lili LAI Ruijuan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第4期857-873,共17页
The tectonic setting of Cretaceous granitoids in the southeastern Tibet Plateau,east of the Eastern Himalaya Syntax,is debated.Exploration and mining of the Laba Mo–Cu porphyry-type deposit in the area has revealed L... The tectonic setting of Cretaceous granitoids in the southeastern Tibet Plateau,east of the Eastern Himalaya Syntax,is debated.Exploration and mining of the Laba Mo–Cu porphyry-type deposit in the area has revealed Late Cretaceous granites.New and previously published zircon U–Pb dating indicate that the Laba granite crystallized at 89–85 Ma.Bulk-rock geochemistry,Sr–Nd isotopic data and in situ zircon Hf isotopic data indicate that the granite is adakitic and was formed by partial melting of thickened lower crust.The Ca,Fe,and Al contents decrease with increasing SiO2 content.These and other geochemical characteristics indicate that fractional crystallization of garnet under high-pressure conditions resulted in the adakitic nature of the Laba granite.Cretaceous granitoids are widespread throughout the Tibetan Plateau including its southeastern area,forming an intact curved belt along the southern margin of Eurasia.This belt is curved due to indenting by the Indian continent during Cenozoic,but strikes parallel to both the Indus–Yarlung suture zone and the Main Frontal Thrust belt.It is therefore likely that Cretaceous granitoids in both the Gangdese and southeastern Tibetan Plateau areas resulted from subduction of Neo-Tethyan lithosphere. 展开更多
关键词 adakitic granite geochemistry garnet fractional crystallization Cretaceous Neo-Tethyan subduction southeastern tibetan plateau
下载PDF
Crustal strain rates of southeastern Tibetan Plateau derived from GPS measurements and implications to lithospheric deformation of the Shan-Thai terrane 被引量:7
5
作者 KeLiang Zhang ShiMing Liang WeiJun Gan 《Earth and Planetary Physics》 CSCD 2019年第1期45-52,共8页
The link between the crustal deformation and mantle kinematics in the Tibetan Plateau has been well known thanks to dense GPS measurements and the relatively detailed anisotropy structure of the lithospheric mantle.Ho... The link between the crustal deformation and mantle kinematics in the Tibetan Plateau has been well known thanks to dense GPS measurements and the relatively detailed anisotropy structure of the lithospheric mantle.However, whether the crust deforms coherently with the upper mantle in the Shan-Thai terrane(also known as the Shan-Thai block) remains unclear.In this study, we investigate the deformation patterns through strain rate tensors in the southeastern Tibetan Plateau derived from the latest GPS measurements and find that in the Shan-Thai terrane the upper crust may be coupled with the lower crust and the upper mantle.The GPS-derived strain rate tensors are in agreement with the slipping patterns and rates of major strike-slip faults in the region.The most prominent shear zone, whose shear strain rates are larger than 100×10^(–9) a^(–1), is about 1000-km-long in the west, trending northward along Sagaing fault to the Eastern Himalayan Syntaxis in the north, with maximum rate of compressive strain up to –240×10^(–9) a^(–1).A secondary shear zone along the Anninghe-Xiaojiang Fault in the east shows segmented shear zones near several conjunctions.While the strain rate along RRF is relatively low due to the low slip rate and low seismicity there, in Lijiang and Tengchong several local shear zones are present under an extensional dominated stress regime that is related to normal faulting earthquakes and volcanism, respectively.Furthermore, by comparing GPS-derived strain rate tensors with earthquake focal mechanisms, we find that 75.8%(100 out of 132) of the earthquake T-axes are consistent with the GPS-derived strain rates.Moreover, we find that the Fast Velocity Direction(FVDs) at three depths beneath the Shan-Thai terrane are consistent with extensional strain rate with gradually increasing angular differences, which are likely resulting from the basal shear forces induced by asthenospheric flow associated with the oblique subduction of the India plate beneath the Shan-Thai terrane.Therefore, in this region the upper crust deformation may be coherent with that of the lower crust and the lithospheric mantle. 展开更多
关键词 strain rate TENSOR GPS measurement LITHOSPHERIC deformation southeastern tibetan plateau Shan-Thai TERRANE
下载PDF
Two thin middle-crust low-velocity zones imaged in the Chuan-Dian region of southeastern Tibetan Plateau and their tectonic implications
6
作者 Long LI Xin WANG +2 位作者 Guangbing HOU Yuan LING Yinshuang AI 《Science China Earth Sciences》 SCIE EI CAS CSCD 2024年第5期1675-1686,共12页
Intracrustal low-velocity zones(LVZs)indicate a mechanically weak crust and are widely observed in the southeast margin of the Tibetan Plateau.However,their spatial distributions and formation mechanisms remain contro... Intracrustal low-velocity zones(LVZs)indicate a mechanically weak crust and are widely observed in the southeast margin of the Tibetan Plateau.However,their spatial distributions and formation mechanisms remain controversial.To investigate their distribution and detailed morphology of the LVZs in the southeastern Tibetan Plateau,here we used teleseismic events and continuous waveform data recorded by 40 broadband seismic stations newly deployed in the Sichuan-Yunnan region from December 2018 to October 2020.A total of 12,924 high-quality P-wave receiver functions and 5–40 s fundamental Rayleigh surface wave phase velocity dispersion curves from ambient noise cross-correlation functions were obtained.The Swave velocity model at a depth interval of 0–100 km in the study area was inverted by using the trans-dimensional Markov chain Monte Carlo strategy to jointly invert the complementary data of the receiver function waveform and Rayleigh surface wave phase velocity dispersion.Our results show that there are two separate LVZs(~3.5 km/s)surrounding the rigid Daliangshan subblock at crustal depths of approximately 30–40 km,providing new constraints on the geometry of the LVZs in our study region.The two LVZs obtained in this study may represent the middle crustal flow channels,through which the material in the center of the Tibetan Plateau extrudes to its southeast margin.Blocked by the rigid Sichuan Basin and the spindle-like Daliangshan subblock,the material continues to flow southward through the mechanically weak middle crustal channels surrounding the Daliangshan subblock.In addition,the existence of thin LVZs in the middle crust plays an important role in understanding the decoupling between the upper and lower crust in the study area.It also provides new constraint on the complex tectonic deformation process of the southeastern margin of the Tibetan Plateau caused by the collision and compression of the Indian and the Eurasian plates. 展开更多
关键词 southeastern tibetan plateau Joint inversion Intracrustal low-velocity zone Mid-crustal channel flow
原文传递
Accelerated glacier mass loss in the southeastern Tibetan Plateau since the 1970s
7
作者 Lan-Hua LUO Chang-Qing KE +1 位作者 Yu-Bin FAN Zi-Fei WANG 《Advances in Climate Change Research》 SCIE CSCD 2023年第3期372-386,共15页
The southeastern Tibetan Plateau(SETP)is a region in High Mountain Asia with the most serious glacier mass loss.However,long-term and large regional-scale studies that estimate glacier mass balance in this area remain... The southeastern Tibetan Plateau(SETP)is a region in High Mountain Asia with the most serious glacier mass loss.However,long-term and large regional-scale studies that estimate glacier mass balance in this area remain limited.In this study,we generated a KH-9 Digital Elevation Model(DEM)(covering 87.6%of the glacier area)for the 1970s from KH-9 Hexagon imagery and quantified geodetic glacier mass over the SETP from the 1970s to 2020 using KH-9 DEM,NASADEM and ICESat-2 ATL06 data.The results show that the SETP was in a state of serious mass loss(at a rate of−0.35±0.03 m w.e.per year)from the 1970s to 2020,and the rate of mass loss accelerated from−0.15±0.05 to−0.56±0.10 m w.e.per year between the 1970s–2000 and 2000–2020.Within the SETP,the glacier mass balance revealed a remarkable spatial heterogeneity.The maximum mean glacier mass loss rate was observed in the Hengduan Shan.Nyainqentanglha exhibited the highest acceleration in the mass loss rate since the 1970s.The warming of air temperature and decreasing snowfall can partly explain the accelerated glacier mass loss in the SETP.The study provides a new long-term glacier mass balance estimation covering almost the entire SETP that suggests the acceleration in glacier mass loss observed in the SETP since the 1970s is a regional tendency,which is crucial for understanding the relationship between glaciers and climate changes. 展开更多
关键词 Glacier mass balance KH-9 hexagon imagery NASADEM ICESat-2 southeastern tibetan plateau
原文传递
3D v_P and v_S models of southeastern margin of the Tibetan plateau from joint inversion of body-wave arrival times and surface-wave dispersion data 被引量:2
8
作者 Lina Gao Haijiang Zhang +1 位作者 Huajian Yao Hui Huang 《Earthquake Science》 CSCD 2017年第1期17-32,共16页
A new 3D velocity model of the crust and upper mantle in the southeastern (SE) margin of the Tibetan plateau was obtained by joint inversion of body- and sur- face-wave data. For the body-wave data, we used 7190 eve... A new 3D velocity model of the crust and upper mantle in the southeastern (SE) margin of the Tibetan plateau was obtained by joint inversion of body- and sur- face-wave data. For the body-wave data, we used 7190 events recorded by 102 stations in the SE margin of the Tibetan plateau. The surface-wave data consist of Rayleigh wave phase velocity dispersion curves obtained from ambient noise cross-correlation analysis recorded by a dense array in the SE margin of the Tibetan plateau. The joint inversion clearly improves the Vs model because it is constrained by both data types. The results show that at around 10 km depth there are two low-velocity anomalies embedded within three high-velocity bodies along the Longmenshan fault system. These high-velocity bodies correspond well with the Precambrian massifs, and the two located to the northeast of 2013 Ms 7.0 Lushan earthquake are associated with high fault slip areas during the 2008 Wenchuan earthquake. The aftershock gap between 2013 Lushan earthquake and 2008 Wenchuan earthquake is associated with low-velocity anomalies, which also acts as a barrier zone for ruptures of two earthquakes. Generally large earthquakes (M 〉 5) in the region occurring from 2008 to 2015 are located around the high-velocity zones, indicating that they may act as asperities for these large earthquakes. Joint inversion results also clearly show that there exist low-velocity or weak zones in the mid-lower crust, which are not evenly distributed beneath the SE margin of Tibetan plateau. 展开更多
关键词 Joint inversion - Body waves Surface waves Aftershock gap The southeastern margin of tibetan plateau
下载PDF
New Discovery of Holocene Activity along the Weixi-Qiaohou Fault in Southeastern Margin of the Tibetan Plateau and its Neotectonic Significance 被引量:11
9
作者 CHANG Zufeng ZANG Yang and CHANG Hao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2018年第6期2464-2465,共2页
Objective The lateral extrusion eastward of the Tibetan Plateau leads to the formation of the Sichuan–Yunnan block, which is the most representative active block in the southeastern margin of the Tibetan Plateau, cha... Objective The lateral extrusion eastward of the Tibetan Plateau leads to the formation of the Sichuan–Yunnan block, which is the most representative active block in the southeastern margin of the Tibetan Plateau, characterized by strong and frequent seismicity(Li Ping et al., 1975; Zhang Peizhen et al., 2003; Li Yong et al., 2017). Its eastern boundary is composed of sinistral faults including the Xianshuihe, Xiaojiang faults, etc., and the western 展开更多
关键词 New Discovery of Holocene Activity along the Weixi-Qiaohou Fault in southeastern Margin of the tibetan plateau and its Neotectonic Significance
下载PDF
New insights of the Cenozoic Rotational Deformation of Crustal Blocks on the Southeastern Margin of the Tibetan Plateau and its Tectonic Implications 被引量:2
10
作者 TONG Yabo ZHAO Yue PU Zongwen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第2期735-736,共2页
Objective The lateral extrusion of southeastern edge of the crustal materials around the Tibetan Plateau since the Oligocene is believed to be one of the main inducements of-1300 km latitudinal crustal convergence in... Objective The lateral extrusion of southeastern edge of the crustal materials around the Tibetan Plateau since the Oligocene is believed to be one of the main inducements of-1300 km latitudinal crustal convergence in the Tibetan Plateau, since the collision of India and Eurasia in the Paleogene. Two end-member models were used to describe the process of lateral extrusion of crustal material on the southeastern edge of the Tibetan Plateau. The "tectonic escape" model suggests the Indochina Block, Chuandian Fragment and Shan-Thai Block have experienced lateral extrusion along strike-slip fault systems, and the "crustal flow" model suggests that the upper crust has undergone southeastward escape in the form of ductile deformation, driven by viscous lower crustal flow channels. In addition, the GPS observations surrounding the Tibetan Plateau indicate that crustal materials currently experience clockwise rotation around the Eastern Himalaya syntaxis. This work conducted paleomagnetic studies in the Cretaceous and Paleogene red-beds along the southeastern margin of Tibetan Plateau, 展开更多
关键词 In New insights of the Cenozoic Rotational Deformation of Crustal Blocks on the southeastern Margin of the tibetan plateau and its Tectonic Implications
下载PDF
CENOZOIC FAULTING ALONG THE SOUTHEASTERN EDGE OF THE TIBETAN PLATEAU IN THE YANYUAN AREA AND ITS TECTONIC IMPLICATIONS
11
作者 Wang Erchie 1, Burchfiel B. Clark 2 2 Department of Earth, Atmospheric and Planetary Sciences, MIT,Cambridge, MA 02139,UK) 《地学前缘》 EI CAS CSCD 2000年第S1期269-269,共1页
The southeastern edge of the Tibetan plateau is marked by several thrust sheets trending roughly in E\|W direction. The Yanyuan thrust sheet is bounded by three arcuate thrust belts, marked by high mountain ranges wit... The southeastern edge of the Tibetan plateau is marked by several thrust sheets trending roughly in E\|W direction. The Yanyuan thrust sheet is bounded by three arcuate thrust belts, marked by high mountain ranges with the Jinhe belt on the north, the Qianhe belt on the south and the Ninglang belt on the west. Within the Yanyuan thrust belt are sedimentary cover rocks of the Yangtze platform, with ages ranging from Sinian to Triassic. In the north, the thrust sheet is overlain by the Muli thrust sheet along the Jinhe belt, while in the south, it is underlain by the Kangdian paleoland along the Qianhe belt. The youngest rocks on the foot wall are late Eocene to Oligocene in age, indicating that the thrusting occurred in the late Tertiary. The top of the Yanyuan thrust belt is truncated by a flat erosion surface similar to that on the plateau to the north. Along a north\|dipping normal fault bordering the Yanyuan basin on the south, the erosion surface is tilted to the south against Triassic rocks. The basin is filled with coal\|bearing clastic sediments of Pliocene and early Pleistocene age, which gives the timing of the normal faulting. Based on the faulting pattern, we propose that the southeastern edge of the Tibetan plateau underwent a large amount of N\|S shortening and uplift along the Yanyuan thrust sheet in the late Tertiary, while the subsequent normal faulting that had occurred along the Yanyuan basin during the Pliocene and Pliocene can be interpreted to have accommodated gravitational collapse of the crust. 展开更多
关键词 southeastern EDGE of the tibetan plateau Yanyuan thrust shee t CRUSTAL SHORTENING and UPLIFT normal FAULTING gravitational collapse
下载PDF
Eocene Basins on the SE Tibetan Plateau: Markers of Minor Offset along the Xuelongshan–Diancangshan–Ailaoshan Structural System 被引量:6
12
作者 LIAO Cheng YANG Tiannan +10 位作者 XUE Chuandong LIANG Mingjuan XIN Di XIANG Kun JIANG Lili SHI Pengliang ZHU Wenbin WAN Liangchun TANG Jing YU Jing WU Pinglei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第4期1020-1041,共22页
The offset of geological bodies provides robust evidence of displacement along a fault or ductile shear zone. The amount of displacement along the Xuelongshan–Diancangshan–Ailaoshan structural system, southeastern T... The offset of geological bodies provides robust evidence of displacement along a fault or ductile shear zone. The amount of displacement along the Xuelongshan–Diancangshan–Ailaoshan structural system, southeastern Tibetan Plateau, is uncertain because of the lack of offset geological markers. This NNW–SSE-trending system is developed in three isolated metamorphic complexes and interjacent nonmetamorphosed rocks. They are expected to record similar post-Eocene strain, although their structural patterns should be distinct. Geological mapping in the area between the Xuelongshan and Diancangshan metamorphic complexes has revealed a small Eocene basin, the Madeng Basin, located to the west of the structural system. The sedimentary and volcanic successions of the Madeng Basin are comparable to those of the Jianchuan Basin, which is located to the east of the structural system. Zircon U–Pb geochronological and bulk geochemical data demonstrate that the volcanic rocks of both basins formed during 37–34 Ma and share the same geochemical features. These data suggest that the Madeng and Jianchuan basins previously constituted a single basin, with the distribution of high-K volcanic rocks in the basins defining an ENE–WSW-trending volcanic belt that shows a limited dextral offset of ≤20 km across the Xuelongshan–Diancangshan–Ailaoshan structural system. Therefore, the northern segment of the structural system records no evidence of large-scale lateral movement/displacement. The results suggest that the Indochina block, which is bounded by the Xuelongshan–Diancangshan–Ailaoshan structural system to the east and the Sagaing Fault to the west, has not extruded southward as a whole but rather has been deformed by pervasive crustal shortening. 展开更多
关键词 offset marker Eocene basin Xuelongshan–Diancangshan–Ailaoshan structural system southeastern tibetan plateau India–Eurasia collision
下载PDF
Crustal Structure of the Chuan-Dian Block Revealed by Deep Seismic Sounding and its Implications for the Outward Expansion of the East Tibetan Plateau 被引量:4
13
作者 XIONG Xiaosong WANG Guan +4 位作者 LI Qiusheng LU Zhanwu GAO Rui FENG Shaoying WU Guowei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第6期1932-1944,共13页
The Chuan-Dian Block(CDB)is located in the southeastern margin of the Tibetan Plateau,with a complex geological structure and active regional faults.The present tectonic condition with strong crustal deformation is cl... The Chuan-Dian Block(CDB)is located in the southeastern margin of the Tibetan Plateau,with a complex geological structure and active regional faults.The present tectonic condition with strong crustal deformation is closely related to the ongoing collision of the India and Eurasia plates since 65 Ma.The study of the crustal structure of this area is key to revealing the evolution and deep geodynamics of the lateral collision zone of the Tibetan Plateau.Deep seismic sounding is the most efficient method with which to unravel the velocity structure of the whole crust.Since the 1980s,19 deep seismic sounding profiles have been captured within the CDB area.In this study,we systematically integrate the research results of the 19 profiles in this area,then image the 3D crustal velocity,by sampling with a 5 km spacing and 2D/3D Kriging interpolation.The results show the following.(1)The Moho depth in the study area deepens from 30 km in the south to 66 km in the north,whereas there is no apparent variation from west to east.The Pn wave velocity is higher in stable tectonic units,such as 7.95 km/s in the Lanping-Simao block and 7.94 km/s in the western margin of the Yangtze block,than in active or mobile tectonic units,such as 7.81 km/s in the Baoshan block,7.72 km/s in the Tengchong block and 7.82 km/s in the Zhongdian block.(2)The crustal nature of the Tengchong block,the northern Lanping-Simao block and the Zhongdian block reflects a type of orogenic belt,having relatively strong tectonic activities,whereas the crustal nature of the central Lanping-Simao block and the western margin of the Yangtze block represents a type of platform.The different features of the upper-middle crust velocity,Moho depth and Pn wave velocity to both sides of the Red River fault zone and the Xianshuihe fault zone,reflect that they are clearly ultra-crustal.(3)Based on the distribution of the low velocity zones in the crust,the crustal material of the Tibetan Plateau is flowing in a NW–SE direction to the north of 26°N and to the west of 101°E,then diverting to flowing eastwards to the east of 101°E. 展开更多
关键词 deep seismic sounding crustal structure outward expansion Chuan-Dian Block southeastern margin of the tibetan plateau
下载PDF
藏东南墨脱地区降水特征分析 被引量:1
14
作者 李冉 王改利 +1 位作者 张永华 郭在华 《气象》 CSCD 北大核心 2024年第3期303-317,共15页
墨脱位于藏东南雅鲁藏布大峡谷水汽通道入口处,是青藏高原年降水量最多的地区。本研究使用墨脱云降水综合观测试验以来三年(2019—2021年)的自动雨量计数据,分析了墨脱降水的月变化和日变化特征。然后基于同址的降水天气现象仪和X波段... 墨脱位于藏东南雅鲁藏布大峡谷水汽通道入口处,是青藏高原年降水量最多的地区。本研究使用墨脱云降水综合观测试验以来三年(2019—2021年)的自动雨量计数据,分析了墨脱降水的月变化和日变化特征。然后基于同址的降水天气现象仪和X波段双偏振相控阵雷达观测数据,探究墨脱两次强降水过程的发展演变特征。结果表明:从统计结果来看,墨脱降水天数超过全年的70%,以降水率<5 mm·h^(-1)的弱降雨为主,日降水量<10 mm的小雨的发生率最高,但10 mm≤日降水量<25 mm的中雨产生的降水量最大。墨脱降水存在明显的月变化和日变化特征,受印度洋季风影响,降水主要发生在6—9月。受山谷风影响,降水主要发生在夜间。对于降水过程而言,由高原涡和南支槽影响下的系统性暴雨,范围大、持续时间长,降水主要由直径小于2 mm的雨滴产生,雷达反射率因子普遍不超过35 dBz。而由地形强迫引起的局地短时强对流降水过程,雨滴谱分布更宽,雨滴浓度更高,直径大于2 mm的雨滴对降水量的贡献最大,雷达反射率因子超过45 dBz,风暴的后向传播形成“列车效应”。 展开更多
关键词 藏东南 降水现象仪 X波段双偏振相控阵雷达 降水特征 演变特征
下载PDF
青藏高原东南缘三维S波速度和径向各向异性及泸定M_(S)6.8和芦山M_(S)7.0地震孕震环境探讨
15
作者 孙回归 王兴臣 常利军 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第1期108-127,共20页
利用青藏高原东南缘布设的684个流动地震台和150个固定地震台的连续背景噪声波形数据,提取了周期5~50 s的Rayleigh波和Love波相速度频散,并反演获得了该区域下方0~70 km三维S波速度和径向各向异性结构.结果表明:(1)受川滇地块南部高速... 利用青藏高原东南缘布设的684个流动地震台和150个固定地震台的连续背景噪声波形数据,提取了周期5~50 s的Rayleigh波和Love波相速度频散,并反演获得了该区域下方0~70 km三维S波速度和径向各向异性结构.结果表明:(1)受川滇地块南部高速体的阻挡,东南缘中下地壳内存在两条空间分布独立的低速带.西侧(L1)从川滇地块北部向南延伸至滇西南地块,其中下地壳平均V_(S)小于3.4 km·s^(-1)并表现为正径向各向异性结构,反映了高原中下地壳可能存在部分熔融和韧性变形;东侧低速带(L2)沿着小江断层南北分布,受到红河断层的阻挡,弱物质不太可能进入滇西南地块,该区域下地壳和上地幔顶部均显示较强的正各向异性,推测其更可能是沿小江断层相互驱动的块体在横向挤压过程中引起的地壳部分熔融而导致.(2)芦山M_(S)7.0地震位于龙门山逆冲断层南段,泸定M_(S)6.8地震位于鲜水河走滑断层东南段,两者都发生在地壳浅层高低速异常过渡带上,但其深部孕震环境有所不同.芦山震区西北部中下地壳低速体为负各向异性,推测韧性物质沿着龙门山下方陡倾断层向上运移,上地壳积累应力并通过薄弱区域释放导致了芦山地震的发生;泸定震区为正各向异性的中下地壳韧性变形促进了川滇地块SE向的水平运动,受刚性的四川盆地阻挡,加剧了上地壳发震断层的滑动变形和应力积累,脆性上地壳突然破裂导致了泸定地震的发生. 展开更多
关键词 青藏高原东南缘 背景噪声成像 S波速度 径向各向异性 泸定M_(S)6.8地震 芦山M_(S)7.0地震
下载PDF
青藏高原东南部楚雄盆地构造-热演化史及其与油气关系
16
作者 杨鹏 任战利 +3 位作者 田涛 崔军平 刘池洋 吴汉宁 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2023年第12期5057-5073,共17页
青藏高原东南部是构造最为活跃、变形最强烈的地区之一.楚雄盆地作为青藏高原东南部重要的中生代含油气叠合盆地,其演化历史复杂,后期改造强烈,热演化史研究薄弱.恢复楚雄盆地构造-热演化史对系统评价盆地油气资源和深入认识青藏高原东... 青藏高原东南部是构造最为活跃、变形最强烈的地区之一.楚雄盆地作为青藏高原东南部重要的中生代含油气叠合盆地,其演化历史复杂,后期改造强烈,热演化史研究薄弱.恢复楚雄盆地构造-热演化史对系统评价盆地油气资源和深入认识青藏高原东南部的构造变形过程有重要意义.本文研究在楚雄盆地全盆地系统采集了裂变径迹样品,分析确定了盆地的抬升过程,结合大量镜质体反射率(RO)、包裹体测温等古温标,系统恢复了楚雄盆地构造-热演化史.裂变径迹研究结果表明楚雄断裂以西靠近哀牢山—红河断裂带地区的冷却年龄在41.9~72.7 Ma之间,主要为始新世41.9~55.5 Ma;楚雄断裂以东冷却年龄在20.0~38.4 Ma之间,主要为渐新世-早中新世.楚雄盆地抬升过程总体具有西早东晚的特征,主体部位20~38.4 Ma以来有一次快速抬升冷却过程.楚雄盆地三叠系热演化程度高,RO异常高值与火成岩活动密切相关.热演化史研究表明三叠系最大古地温在上新世之前达到,最高古地温梯度可达30℃·km^(-1).三叠系烃源岩在侏罗纪开始生烃,白垩纪为主要生烃期,古新世-始新世主要为过成熟生干气阶段.渐新世以来盆地整体抬升,地层温度降低,生烃作用减弱.楚雄盆地构造-热演化史除了受火成岩影响外,还与印度和欧亚板块的碰撞及哀牢山—红河断裂带的活动密切相关. 展开更多
关键词 裂变径迹 镜质体反射率 古地温 地温梯度 热事件 构造-热演化 楚雄盆地 青藏高原东南部
下载PDF
青藏高原东南缘金沙江下游新生代构造与地貌演化
17
作者 王岸 王国灿 +4 位作者 王团乐 施炎 魏杰 李皓若 吕甘雨 《地质力学学报》 CSCD 北大核心 2023年第4期453-464,共12页
青藏高原东南缘发育数十万平方千米的广阔地貌过渡带与大面积低起伏地貌面,独特的地貌提供了解读高原构造拓展与地表隆升时间、过程以及机制的理想窗口。为揭示青藏高原东南缘新生代构造变形响应和地貌演化过程,通过构造解析、构造地貌... 青藏高原东南缘发育数十万平方千米的广阔地貌过渡带与大面积低起伏地貌面,独特的地貌提供了解读高原构造拓展与地表隆升时间、过程以及机制的理想窗口。为揭示青藏高原东南缘新生代构造变形响应和地貌演化过程,通过构造解析、构造地貌以及低温热年代学数据分析对金沙江下游流域进行综合研究。结果表明青藏高原东南缘早在始新世即已处于北西向为主的区域性挤压条件下而发生广泛褶皱变形。尽管始新世存在区域性变形响应,但青藏高原东南缘金沙江下游地区在古近纪为低海拔丘陵地貌,地表隆升幅度极为有限。晚渐新世—早中新世研究区总体处于长期的低剥蚀速率环境,促进了低海拔平缓地貌的形成。晚新近纪以来,青藏高原东南缘发生区域性缩短变形与显著地表隆升,大型水系同步下蚀,共同塑造形成现今较高海拔的低起伏地貌面与深切峡谷并存的特征性地貌。研究结果支持青藏高原东南缘晚新近纪以来的隆升与地壳构造缩短及增厚密切相关,而中下地壳塑性流动增厚机制并非必不可少。 展开更多
关键词 青藏高原东南缘 构造解析 热年代学 构造地貌 裂变径迹
下载PDF
小江断裂带巧家段晚第四纪走滑速率研究 被引量:5
18
作者 胡萌萌 吴中海 +1 位作者 李家存 黄小龙 《地质学报》 EI CAS CSCD 北大核心 2023年第1期16-29,共14页
鲜水河-小江左旋走滑断裂系是调节青藏高原东南部物质向东南挤出的大型边界断裂。云南巧家断裂作为小江断裂带北段,其晚第四纪走滑速率是认识川滇地块东部边界应变调节方式的关键。本文利用无人机航摄和地面激光扫描技术,获取了该断裂... 鲜水河-小江左旋走滑断裂系是调节青藏高原东南部物质向东南挤出的大型边界断裂。云南巧家断裂作为小江断裂带北段,其晚第四纪走滑速率是认识川滇地块东部边界应变调节方式的关键。本文利用无人机航摄和地面激光扫描技术,获取了该断裂段穿过金沙江河谷区红路和蒙姑两处的高分辨率地形数据,恢复出断层错动T2和T3两期阶地陡坎上缘的左旋位错量分别为120±5~128±1 m和193±1~202±1 m。根据T3中次生碳酸盐的AMS-14C法测年结果,结合已有的类似阶地年龄数据,并经气候曲线校正后认为,区域上T2和T3被废弃应分别发生在冰后期和末次盛冰期末期,时间为8.5~11.2 ka BP和18.6~21.4 ka BP。据此估算,小江断裂带巧家段的晚第四纪平均走滑速率为10~13 mm/a。进一步统计分析小江断裂带的晚第四纪走滑速率,发现巧家至宜良以北的段落,总体保持着10~15 mm/a的高走滑速率。但从宜良向南,断裂走滑速率出现了分段递减的特征,至建水以南快速减小到中-北段的近十分之一。小江断裂带中-北段的高走滑速率以及向南的分段式递减现象,反映在宜良以北,小江断裂带的走滑剪切作用是调节川滇地块向东南旋转-挤出运动的主要方式,但向南伴随变形分解作用,调节方式转变为了伸展、旋转和逆冲等多种方式共存的复杂形式。因此,进一步精细化定量限定川滇地块东部边界断裂的应变分解作用,是深入认识青藏高原物质挤出方式及其机制的关键。 展开更多
关键词 青藏高原东缘 小江断裂带 晚第四纪走滑速率 川滇地块 断块挤出与旋转
下载PDF
藏东南多依弄巴流域冰湖溃决危险性评价 被引量:3
19
作者 陈兰 范宣梅 +2 位作者 熊俊麟 王欣 窦向阳 《地质科技通报》 CAS CSCD 北大核心 2023年第2期258-266,共9页
冰湖溃决灾害是指冰湖坝体突然破坏引发溃决洪水或溃决泥石流的现象,对下游人类活动和自然环境造成严重影响。近年来,藏东南地区冰川快速退缩,冰湖数量和规模显著增加,冰湖溃决事件广泛发生。基于1995-2021年多时相Landsat系列遥感影像... 冰湖溃决灾害是指冰湖坝体突然破坏引发溃决洪水或溃决泥石流的现象,对下游人类活动和自然环境造成严重影响。近年来,藏东南地区冰川快速退缩,冰湖数量和规模显著增加,冰湖溃决事件广泛发生。基于1995-2021年多时相Landsat系列遥感影像、Sentinel-2A遥感影像,结合RAMMS水文动力学模型方法,对藏东南地区多依弄巴流域内冰湖、冰川进行动态变化分析,模拟冰崩危险体触发冰湖溃决和冰湖溃决泥石流的演进过程,根据泥石流模拟中的流速和流深对冰湖溃决可能影响的区域进行危险性分区。结果表明:流域内冰川面积由1995年的14.05 km^(2)退缩为2021年的9.43 km^(2),年均退缩率约为0.15 km^(2)/a。流域内共发育3处冰崩危险体,均可能触发冰湖溃决。潜在危险冰湖在全溃情况下,溃决泥石流会冲出沟口堵塞然乌湖湖口和帕隆藏布主河道,对下游居民和道路造成影响,影响范围约4.05 km^(2),其中高危险性区域约2.55 km^(2)。危险性评价结果可为多依弄巴流域未来土地利用规划和防灾减灾提供依据,也能为藏东南地区冰湖溃决型泥石流危险评估提供参考。 展开更多
关键词 冰湖溃决灾害 RAMMS 危险性评价 冰崩 藏东南
下载PDF
MT约束的青藏高原东南缘上地幔热结构研究——以兰坪-贵阳剖面为例 被引量:1
20
作者 王雪雨 朱涛 郭颖星 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2023年第8期3335-3352,共18页
青藏高原东南缘是青藏高原软弱物质运移的关键位置,研究其深部结构有助于理解青藏高原的扩张机制.本文利用穿过青藏高原东南缘的一条起始于兰坪—思茅块体,穿过川滇菱形块体,终止于华南块体的长约750 km的大地电磁测深(MT)剖面的电阻率... 青藏高原东南缘是青藏高原软弱物质运移的关键位置,研究其深部结构有助于理解青藏高原的扩张机制.本文利用穿过青藏高原东南缘的一条起始于兰坪—思茅块体,穿过川滇菱形块体,终止于华南块体的长约750 km的大地电磁测深(MT)剖面的电阻率结构,基于上地幔矿物和熔融体温度与电导率的关系,获得了研究区上地幔温度结构与熔融百分比分布.结果表明,采用随深度变化的含水熔融上地幔矿物组分模型才能合理地获得整个上地幔温度;上地幔全岩含水量约4.69(40 km深度)~0.13 wt%(150 km深度),矿物熔融百分比约0~1.4%之间,并在70 km深度附近出现了较明显的局部熔融带;上地幔温度位于400~1300℃之间,随深度加深而逐渐增加;70 km以浅的温度表现出相对强烈的横向变化,且川滇和兰坪—思茅块体的上地幔温度和矿物熔融百分比的深度平均值明显高于华南块体. 展开更多
关键词 青藏高原东南缘 上地幔 热结构 熔融百分比
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部