Despite much research in the field of island biogeography,mechanisms regulating insular diversity remain elusive.Here,we aim to explore mechanisms underlying plant species-area relationships in two tropical archipelag...Despite much research in the field of island biogeography,mechanisms regulating insular diversity remain elusive.Here,we aim to explore mechanisms underlying plant species-area relationships in two tropical archipelagoes in the South China Sea.We found positive plant species-area relationships for both coral and continental archipelagoes.However,our results showed that different mechanisms contributed to similar plant species-area relationships between the two archipelagoes.For coral islands,soil nutrients and spatial distance among communities played major roles in shaping plant community structure and species diversity.By contrast,the direct effect of island area,and to a lesser extent,soil nutrients determined plant species richness on continental islands.Intriguingly,increasing soil nutrients availability(N,P,K)had opposite effects on plant diversity between the two archipelagoes.In summary,the habitat quality effect and dispersal limitation are important for regulating plant diversity on coral islands,whereas the passive sampling effect,and to a lesser extent,the habitat quality effect are important for regulating plant diversity on continental islands.More generally,our findings indicate that island plant species-area relationships are outcomes of the interplay of both niche and neutral processes,but the driving mechanisms behind these relationships depends on the type of islands.展开更多
Species-area relationships(SARs),also known as species-area curves,are fundamental scaling tools for biodiversity research.Sampling design and taxonomic groups affect the widely cited forms of species-area curves.Howe...Species-area relationships(SARs),also known as species-area curves,are fundamental scaling tools for biodiversity research.Sampling design and taxonomic groups affect the widely cited forms of species-area curves.However,the influence of sampling design and related environmental heterogeneity on SAR curves is rarely considered.Here,we investigated the SAR among different plant life forms(herbaceous plants,shrubs,and trees)in a 25.2-ha ForestGEO plot,the Wanglang Plot,in Sichuan,southwestern China,using a non-contiguous quadrat sampling method and power-law model.We compared the estimated parameters(the intercept c and the slope z)of the power-law models among different plant life forms,tested whether the SAR curve forms varied with sampling starting location,and assessed the effect of environmental heterogeneity accumulating with sampling area on curve variation.We found a wider range of variations in the SARs.The estimated c,z-values of power SAR were higher for the herbaceous plants than for the woody plants.A wider variation of SARs for the herbaceous plants than those for the woody plants.The selection of sampling starting location affected the SAR curve forms because of the roles of soil and topographic heterogeneity.We concluded that environmental heterogeneity regulates SAR curves sampled from different starting locations through spatial distribution of plant life forms.Thus,we recommend considering the design of sampling starting location when constructing SAR curves,especially in a heterogeneous habitat with unrandom distribution patterns of species.展开更多
As hydropower development expands across lowland tropical forests,flooding and concomitant insular fragmentation have become important threats to biodiversity.Newly created insular landscapes serve as natural laborato...As hydropower development expands across lowland tropical forests,flooding and concomitant insular fragmentation have become important threats to biodiversity.Newly created insular landscapes serve as natural laboratories to investigate biodiversity responses to fragmentation.One of these most iconic landscapes is the Balbina Hydroelectric Reservoir in Brazilian Amazonia,occupying>400000 ha and comprising>3500 forest islands.Here,we synthesise the current knowledge on responses of a wide range of biological groups to insular fragmentation at Balbina.Sampling has largely concentrated on a set of 22 islands and three mainland sites.In total,39 studies were conducted over nearly two decades,covering 17 vertebrate,invertebrate,and plant taxa.Although species responses varied according to taxonomic group,island area was consistently included and played a pivotal role in 66.7%of all studies examining patterns of species diversity.Species persistence was further affected by species traits,mostly related to species capacity to use/traverse the aquatic matrix or tolerate habitat degradation,as noted for species of vertebrates and orchid bees.Further research is needed to improve our understanding of such effects on wider ecosystem functioning.Environmental Impact Assessments must account for changes in both the remaining habitat amount and configuration,and subsequent long-term species losses.展开更多
We studied the mathematical relations between species abundance distributions (SADs) and species-area relationships (SARs) and found that a power-law SAR can be generally derived from a power-law SAD without a spe...We studied the mathematical relations between species abundance distributions (SADs) and species-area relationships (SARs) and found that a power-law SAR can be generally derived from a power-law SAD without a special assumption such as the "canonical hypothesis". In the present analysis, an SAR-exponent is obtained as a function of an SAD-exponent for a finite number of species. We also studied the inverse problem, from SARs to SADs, and found that a power-SAD can be derived from a power-SAR under the condition that the functional form of the corresponding SAD is invariant for changes in the number of species. We also discuss general relationships among lognormal SADs, the broken-stick model (exponential SADs), linear SARs and logarithmic SARs. These results suggest the existence of a common mechanism for SADs and SARs, which could prove a useful tool for theoretical and experimental studies on biodiversity and species coexistence.展开更多
Species richness and abundance are two important species diversity variables that have attracted particular attention because of their significance in determining present and future species composition conditions. Thi...Species richness and abundance are two important species diversity variables that have attracted particular attention because of their significance in determining present and future species composition conditions. This paper aims to explain the qualitative and quantitative relationships between species diversity pattern and grain size (i.e. size of the sampling unit), and species diversity pattern and sampling area, and to analyze species diversity variability on active sand dunes in the Horqin Sandy Land, northeastern Inner Mongolia, China. A 50 mx50 m sampling plot was selected on the windward slope, where the dominant species was annual herb Agriophyllum squarrosum. Species composition and abundance at five grain sizes were recorded, and the species-area curves were produced for thirteen grain sizes. The range of values for species abundance tended to increase with in- creasing grain size in the study area, whereas, generally, species richness did not follow this rule because of poor species richness on the windward slope of active sand dunes. However, the homogeneity of species richness in- creased significantly. With the increase in sampling area, species abundance increased linearly, but richness in- creased logarithmically. Furthermore, variograms showed that species diversity on the windward slope of active sand dunes was weakly anisotropic and the distribution pattern was random, according to the Moran Coefficient. The results also showed that species richness was low, with a random distribution pattern. This conflicts with the results of previous studies that showed spatial aggregation in lower richness in a sampling area within a community and inferred that the physical processes play a more important role in species diversity than distribution pattern on active sand dunes. Further research into different diversity patterns and mechanisms between active sand dunes and interdune lowlands should be conducted to better understand biodiversity conservation in sand dune fields.展开更多
The relationship and elevation is a hot issue between species richness in ecology and has been documented extensively. It is widely accepted that area size can significantly affect this relationship and thus mask the ...The relationship and elevation is a hot issue between species richness in ecology and has been documented extensively. It is widely accepted that area size can significantly affect this relationship and thus mask the effects of other predictors. Despite the importance of the relationship between species richness and elevation while accounting for the area effect, it is insufficiently studied. Here, we evaluated area-corrected species richness patterns of all vascular plants as well as six vascular plant subgroups (seed plants, ferns, trees, shrubs, herbs and vines) along a tropical elevational gradient (Hainan Island, China). If assessed in equal-elevation bands, uncorrected species richness showed bell-shaped curves, while area-corrected species richness assessed in equal-area bands appeared to increase monotonically due to the small proportion of highlands on Hainan Island. The mid-domain effect (MDE) was significantly correlated with both uncorrected and area-corrected species richness. On Hainan Island, the use of equal-area elevational bands increased the explanatory power of MDE.These findings provide useful insights to adjust for the area effect and highlight the need to use equal- area bands along the elevational gradient.展开更多
Background: Although the species-urban green area relationship (SARu) has been analyzed worldwide, the global consistency of its parameters, such as the fit and the slope of models, remains unexplored. Moreover,the SA...Background: Although the species-urban green area relationship (SARu) has been analyzed worldwide, the global consistency of its parameters, such as the fit and the slope of models, remains unexplored. Moreover,the SARu can be explained by 20 different models. Therefore, our objective was to evaluate which models provide a better explanation of SARus and, focusing on the power model,to evaluate the global heterogeneity in its fit and slope. Methods: We tested the performance of multiple statistical models in accounting for the way in which species richness increases with area, and examined whether variability in model form was associated with various methodological and environmental factors. Focusing on the power model, we analyzed the global heterogeneity in the fit and slope of the models through a meta-analysis. Results: Among 20 analyzed models, the linear model provided the best fit to the most datasets, was the top ranked model according to our efficiency criterion, and was the top overall ranked model.The Kobayashi and power models were the second and third overall ranked models, respectively.The number of green areas and the minimum number of species within a green area were the only significant variables explaining the variation in model form and performance, accounting for less than 10% of the variation. Based on the power model,there was a consistent overall fit (r2=0.50) and positive slope of 0.20 for the species richness increase with area worldwide.Conclusions:The good fit of the linear model to our SARu datasets contrasts with the non-linear SAR frequently found in true and non-urban habitat island systems;however, this finding may be a result of the small sample size of many SARu datasets. The overall power model slope of 0.20 suggests low levels of isolation among urban green patches, or alternatively that habitat specialist and area sensitive species have already been extirpated from urban green areas.展开更多
Natural karst forests can support very high level of biodiversity, but difference of species diversity between the natural karst forests and non-karst forests is still less concerned. To analyze the difference of spec...Natural karst forests can support very high level of biodiversity, but difference of species diversity between the natural karst forests and non-karst forests is still less concerned. To analyze the difference of species diversity of the natural karst forests and non-karst forests in subtropics, we made a census of all woody species with diameter at breast height (dbh) 〉 1 cm in a 1-ha plot in Mulun subtropical karst forests and a 1-ha plot in Maoershan subtropical non-karst forests, Guangxi of south-western China. Species richness in Mulun plot (120 species) was higher than that in Maoershan plot (116 species). Mulun plot contained more families and genera, more stems and a larger proportion of rare species (species of individuals less than or equal to 1 ha^-1). At smaller scale (〈4000 m^2), species accumulation rate in Mulun plot was lower than that in Maoershan plot, and it was reversed at larger scale (〉5000 m^2). Total basal area in Mulun plot (18.47 m2) was smaller than that in Maoershan plot (30.74 m^2). Size structure distribution of all woody species in the two plots showed insignificant difference. The ten most dominant species, families and genera were quite different in the two plots. In Muiun plot, the most important species and family were Sinosideroxylon wightianum and Sapindaceae, while in Maoershan plot, Castanopsis carlesii and Fagaceae were the most important species and family. All these results suggest that middle subtropical natural karst forest in Mulun supports diverse species with high spatial variability, and their species composition are quite different with non-karst forests. This study implies that special attention is needed on selecting suitable species in karst forest restoration and vegetation management strategies.展开更多
The small-island effect (SIE) has become more and more part of the theoretical framework of island biogeography and biodiversity research. However, previous methods for the detection of SlEs are often flawed in one ...The small-island effect (SIE) has become more and more part of the theoretical framework of island biogeography and biodiversity research. However, previous methods for the detection of SlEs are often flawed in one way or another, including not accounting for model complexity, not comparing all relevant models, and not including islands with no species. Therefore, the existence and the prevalence of the SIE may be dubious. In this study, after controlling for all these methodological shortcomings, we tested for the existence of the SlE in amphibian assemblages on subtropical landbridge islands created by the inundation of the Thousand Island Lake, China. We used the line transect method to determine the distribution of amphibian assemblages on 23 study islands during 3 breeding seasons from 2009 to 2011. To evaluate whether an SIE exists in amphibian assemblages, we compared the fit of a simple linearized power model with two most widely used breakpoint regression models. The information-theoretic multimodel inference approach based on Akaike's information criterion identified the left-horizontal SIE model as the best single model. Thus, we found strong evidence for the existence of an SIE in our system. The upper limit of the SlE for amphibian assemblages was 39.95 ha. Below this threshold area, amphibian richness varied independently of island size. The SlE in amphibian assemblages may be due to episodic disturbances, stochastic events, and nutrient subsidies from the lake. Our results indicate that all the islands 〉39.95 ha should be protected for the effective conservation of amphibian assemblages in our system.展开更多
As leaders calling for the conservation of the world's plants,botanical gardens protect plants within living collections.Many also study,manage and restore plants in natural habitats.Royal Botanical Gardens(Ontari...As leaders calling for the conservation of the world's plants,botanical gardens protect plants within living collections.Many also study,manage and restore plants in natural habitats.Royal Botanical Gardens(Ontario,Canada) has integrated both horticultural and natural heritage in its mission for decades.Envisioned by municipal leaders in the 1920s as a combination of nature sanctuaries and civic gardens,RBG now includes forests,wetlands and other habitats,gardens and built spaces.Today RBG is Canada's largest botanical garden on the basis of area.In the 1950s RBG began to inventory plant diversity.The checklist of spontaneous vascular plants now exceeds 1 170 species,of which 752 are native.This is 37% of Ontario's native vascular plants and 19% of the native vascular flora of Canada.The RBG nature sanctuaries are among the richest locations in Canada for species-level diversity.We examine the history of floristic exploration within RBG and compare plant species-area relationships among protected natural areas in Ontario.This comparison supports the contention that the nature sanctuaries,and in particular Cootes Paradise,could be considered an important area for plants in Canada,and relative to the nation's flora,a biodiversity hotspot.The fact that a candidate vascular plant hotspot for Canada lies within a major botanical garden presents opportunities for raising public awareness of the importance of plant diversity,as well as focusing attention on the scientific and conservation biology needs of communities and individual species in this area.展开更多
基金financially supported by the National Key Research and Development Program of China(2021YFC3100405)the Science and Technology Basic Works Program of the Ministry of Science and Technology of China(2013FY111200)+2 种基金the Guangdong Provincial Special Fund for Natural Resource Affairs on Ecology and Forestry Construction(GDZZDC20228704)the National Natural Science Foundation of China(32070222)the National Science Foundation of USA(DEB-1342754 and DEB-1856318)。
文摘Despite much research in the field of island biogeography,mechanisms regulating insular diversity remain elusive.Here,we aim to explore mechanisms underlying plant species-area relationships in two tropical archipelagoes in the South China Sea.We found positive plant species-area relationships for both coral and continental archipelagoes.However,our results showed that different mechanisms contributed to similar plant species-area relationships between the two archipelagoes.For coral islands,soil nutrients and spatial distance among communities played major roles in shaping plant community structure and species diversity.By contrast,the direct effect of island area,and to a lesser extent,soil nutrients determined plant species richness on continental islands.Intriguingly,increasing soil nutrients availability(N,P,K)had opposite effects on plant diversity between the two archipelagoes.In summary,the habitat quality effect and dispersal limitation are important for regulating plant diversity on coral islands,whereas the passive sampling effect,and to a lesser extent,the habitat quality effect are important for regulating plant diversity on continental islands.More generally,our findings indicate that island plant species-area relationships are outcomes of the interplay of both niche and neutral processes,but the driving mechanisms behind these relationships depends on the type of islands.
基金supported by the National Natural Science Foundation of China(Nos.31988102 and 31300450).
文摘Species-area relationships(SARs),also known as species-area curves,are fundamental scaling tools for biodiversity research.Sampling design and taxonomic groups affect the widely cited forms of species-area curves.However,the influence of sampling design and related environmental heterogeneity on SAR curves is rarely considered.Here,we investigated the SAR among different plant life forms(herbaceous plants,shrubs,and trees)in a 25.2-ha ForestGEO plot,the Wanglang Plot,in Sichuan,southwestern China,using a non-contiguous quadrat sampling method and power-law model.We compared the estimated parameters(the intercept c and the slope z)of the power-law models among different plant life forms,tested whether the SAR curve forms varied with sampling starting location,and assessed the effect of environmental heterogeneity accumulating with sampling area on curve variation.We found a wider range of variations in the SARs.The estimated c,z-values of power SAR were higher for the herbaceous plants than for the woody plants.A wider variation of SARs for the herbaceous plants than those for the woody plants.The selection of sampling starting location affected the SAR curve forms because of the roles of soil and topographic heterogeneity.We concluded that environmental heterogeneity regulates SAR curves sampled from different starting locations through spatial distribution of plant life forms.Thus,we recommend considering the design of sampling starting location when constructing SAR curves,especially in a heterogeneous habitat with unrandom distribution patterns of species.
基金supported byÁreas Protegidas da Amazônia(ARPA)Amazonas Distribuidora de Energia S.A.,and Associação Comunidade Waimiri Atroari+4 种基金Rufford Foundation(grant number 13675-1)the Conservation Food and Health Foundation,and Idea WildNational Geographic Society grant(NGS-93497C-22)awarded to CAP.I.J is funded through a UKRI Future Leaders Fellowship(MR/T019018/1)M.B received a productivity grant from CNPq(304189/2022-7)European Union’s Horizon 2020 research and innovation programme under the grant agreement No.854248(TROPIBIO)。
文摘As hydropower development expands across lowland tropical forests,flooding and concomitant insular fragmentation have become important threats to biodiversity.Newly created insular landscapes serve as natural laboratories to investigate biodiversity responses to fragmentation.One of these most iconic landscapes is the Balbina Hydroelectric Reservoir in Brazilian Amazonia,occupying>400000 ha and comprising>3500 forest islands.Here,we synthesise the current knowledge on responses of a wide range of biological groups to insular fragmentation at Balbina.Sampling has largely concentrated on a set of 22 islands and three mainland sites.In total,39 studies were conducted over nearly two decades,covering 17 vertebrate,invertebrate,and plant taxa.Although species responses varied according to taxonomic group,island area was consistently included and played a pivotal role in 66.7%of all studies examining patterns of species diversity.Species persistence was further affected by species traits,mostly related to species capacity to use/traverse the aquatic matrix or tolerate habitat degradation,as noted for species of vertebrates and orchid bees.Further research is needed to improve our understanding of such effects on wider ecosystem functioning.Environmental Impact Assessments must account for changes in both the remaining habitat amount and configuration,and subsequent long-term species losses.
文摘We studied the mathematical relations between species abundance distributions (SADs) and species-area relationships (SARs) and found that a power-law SAR can be generally derived from a power-law SAD without a special assumption such as the "canonical hypothesis". In the present analysis, an SAR-exponent is obtained as a function of an SAD-exponent for a finite number of species. We also studied the inverse problem, from SARs to SADs, and found that a power-SAD can be derived from a power-SAR under the condition that the functional form of the corresponding SAD is invariant for changes in the number of species. We also discuss general relationships among lognormal SADs, the broken-stick model (exponential SADs), linear SARs and logarithmic SARs. These results suggest the existence of a common mechanism for SADs and SARs, which could prove a useful tool for theoretical and experimental studies on biodiversity and species coexistence.
基金funded by the National Natural Science Foundation of China (41071187)the State Forestry Administration Industry Special Project (201004023)
文摘Species richness and abundance are two important species diversity variables that have attracted particular attention because of their significance in determining present and future species composition conditions. This paper aims to explain the qualitative and quantitative relationships between species diversity pattern and grain size (i.e. size of the sampling unit), and species diversity pattern and sampling area, and to analyze species diversity variability on active sand dunes in the Horqin Sandy Land, northeastern Inner Mongolia, China. A 50 mx50 m sampling plot was selected on the windward slope, where the dominant species was annual herb Agriophyllum squarrosum. Species composition and abundance at five grain sizes were recorded, and the species-area curves were produced for thirteen grain sizes. The range of values for species abundance tended to increase with in- creasing grain size in the study area, whereas, generally, species richness did not follow this rule because of poor species richness on the windward slope of active sand dunes. However, the homogeneity of species richness in- creased significantly. With the increase in sampling area, species abundance increased linearly, but richness in- creased logarithmically. Furthermore, variograms showed that species diversity on the windward slope of active sand dunes was weakly anisotropic and the distribution pattern was random, according to the Moran Coefficient. The results also showed that species richness was low, with a random distribution pattern. This conflicts with the results of previous studies that showed spatial aggregation in lower richness in a sampling area within a community and inferred that the physical processes play a more important role in species diversity than distribution pattern on active sand dunes. Further research into different diversity patterns and mechanisms between active sand dunes and interdune lowlands should be conducted to better understand biodiversity conservation in sand dune fields.
基金the support provided by the National Special Water Programs (Grant Nos. 2009ZX07210-009, 2015ZX07203-011, 2015ZX07204-007)the Department of Environmental Protection of Shandong Province (SDHBPJ-ZB-08)+2 种基金the ChinaScholarship Council (Grant No. 201306730020)the Chinese Natural Science Foundation (Grant No. 39560023)Queen Mary University of London
文摘The relationship and elevation is a hot issue between species richness in ecology and has been documented extensively. It is widely accepted that area size can significantly affect this relationship and thus mask the effects of other predictors. Despite the importance of the relationship between species richness and elevation while accounting for the area effect, it is insufficiently studied. Here, we evaluated area-corrected species richness patterns of all vascular plants as well as six vascular plant subgroups (seed plants, ferns, trees, shrubs, herbs and vines) along a tropical elevational gradient (Hainan Island, China). If assessed in equal-elevation bands, uncorrected species richness showed bell-shaped curves, while area-corrected species richness assessed in equal-area bands appeared to increase monotonically due to the small proportion of highlands on Hainan Island. The mid-domain effect (MDE) was significantly correlated with both uncorrected and area-corrected species richness. On Hainan Island, the use of equal-area elevational bands increased the explanatory power of MDE.These findings provide useful insights to adjust for the area effect and highlight the need to use equal- area bands along the elevational gradient.
基金funded by the Consejo Nacional de Investigaciones Científicas y Técnicas and the Universidad de Buenos Aires (Argentina)
文摘Background: Although the species-urban green area relationship (SARu) has been analyzed worldwide, the global consistency of its parameters, such as the fit and the slope of models, remains unexplored. Moreover,the SARu can be explained by 20 different models. Therefore, our objective was to evaluate which models provide a better explanation of SARus and, focusing on the power model,to evaluate the global heterogeneity in its fit and slope. Methods: We tested the performance of multiple statistical models in accounting for the way in which species richness increases with area, and examined whether variability in model form was associated with various methodological and environmental factors. Focusing on the power model, we analyzed the global heterogeneity in the fit and slope of the models through a meta-analysis. Results: Among 20 analyzed models, the linear model provided the best fit to the most datasets, was the top ranked model according to our efficiency criterion, and was the top overall ranked model.The Kobayashi and power models were the second and third overall ranked models, respectively.The number of green areas and the minimum number of species within a green area were the only significant variables explaining the variation in model form and performance, accounting for less than 10% of the variation. Based on the power model,there was a consistent overall fit (r2=0.50) and positive slope of 0.20 for the species richness increase with area worldwide.Conclusions:The good fit of the linear model to our SARu datasets contrasts with the non-linear SAR frequently found in true and non-urban habitat island systems;however, this finding may be a result of the small sample size of many SARu datasets. The overall power model slope of 0.20 suggests low levels of isolation among urban green patches, or alternatively that habitat specialist and area sensitive species have already been extirpated from urban green areas.
基金the National Key Technologies R&D Program of China(2011BAC09B02,2012BAC16B01)National Natural Science Foundation of China(No.31300359)Guangxi Science and Technology Project(1355007-3)
文摘Natural karst forests can support very high level of biodiversity, but difference of species diversity between the natural karst forests and non-karst forests is still less concerned. To analyze the difference of species diversity of the natural karst forests and non-karst forests in subtropics, we made a census of all woody species with diameter at breast height (dbh) 〉 1 cm in a 1-ha plot in Mulun subtropical karst forests and a 1-ha plot in Maoershan subtropical non-karst forests, Guangxi of south-western China. Species richness in Mulun plot (120 species) was higher than that in Maoershan plot (116 species). Mulun plot contained more families and genera, more stems and a larger proportion of rare species (species of individuals less than or equal to 1 ha^-1). At smaller scale (〈4000 m^2), species accumulation rate in Mulun plot was lower than that in Maoershan plot, and it was reversed at larger scale (〉5000 m^2). Total basal area in Mulun plot (18.47 m2) was smaller than that in Maoershan plot (30.74 m^2). Size structure distribution of all woody species in the two plots showed insignificant difference. The ten most dominant species, families and genera were quite different in the two plots. In Muiun plot, the most important species and family were Sinosideroxylon wightianum and Sapindaceae, while in Maoershan plot, Castanopsis carlesii and Fagaceae were the most important species and family. All these results suggest that middle subtropical natural karst forest in Mulun supports diverse species with high spatial variability, and their species composition are quite different with non-karst forests. This study implies that special attention is needed on selecting suitable species in karst forest restoration and vegetation management strategies.
基金The study was supported by the National Natural Science Foundation of China (31471981, 31100394, and 31210103908), the Project-sponsored by SRF for ROCS, SEM (J20130585) and the Fundamental Research Funds for the Central Universities (2016QNA6001 ).
文摘The small-island effect (SIE) has become more and more part of the theoretical framework of island biogeography and biodiversity research. However, previous methods for the detection of SlEs are often flawed in one way or another, including not accounting for model complexity, not comparing all relevant models, and not including islands with no species. Therefore, the existence and the prevalence of the SIE may be dubious. In this study, after controlling for all these methodological shortcomings, we tested for the existence of the SlE in amphibian assemblages on subtropical landbridge islands created by the inundation of the Thousand Island Lake, China. We used the line transect method to determine the distribution of amphibian assemblages on 23 study islands during 3 breeding seasons from 2009 to 2011. To evaluate whether an SIE exists in amphibian assemblages, we compared the fit of a simple linearized power model with two most widely used breakpoint regression models. The information-theoretic multimodel inference approach based on Akaike's information criterion identified the left-horizontal SIE model as the best single model. Thus, we found strong evidence for the existence of an SIE in our system. The upper limit of the SlE for amphibian assemblages was 39.95 ha. Below this threshold area, amphibian richness varied independently of island size. The SlE in amphibian assemblages may be due to episodic disturbances, stochastic events, and nutrient subsidies from the lake. Our results indicate that all the islands 〉39.95 ha should be protected for the effective conservation of amphibian assemblages in our system.
文摘As leaders calling for the conservation of the world's plants,botanical gardens protect plants within living collections.Many also study,manage and restore plants in natural habitats.Royal Botanical Gardens(Ontario,Canada) has integrated both horticultural and natural heritage in its mission for decades.Envisioned by municipal leaders in the 1920s as a combination of nature sanctuaries and civic gardens,RBG now includes forests,wetlands and other habitats,gardens and built spaces.Today RBG is Canada's largest botanical garden on the basis of area.In the 1950s RBG began to inventory plant diversity.The checklist of spontaneous vascular plants now exceeds 1 170 species,of which 752 are native.This is 37% of Ontario's native vascular plants and 19% of the native vascular flora of Canada.The RBG nature sanctuaries are among the richest locations in Canada for species-level diversity.We examine the history of floristic exploration within RBG and compare plant species-area relationships among protected natural areas in Ontario.This comparison supports the contention that the nature sanctuaries,and in particular Cootes Paradise,could be considered an important area for plants in Canada,and relative to the nation's flora,a biodiversity hotspot.The fact that a candidate vascular plant hotspot for Canada lies within a major botanical garden presents opportunities for raising public awareness of the importance of plant diversity,as well as focusing attention on the scientific and conservation biology needs of communities and individual species in this area.