BACKGROUND Diabetic cardiomyopathy is considered as a chronic complication of diabetes mellitus(DM).Therefore,early detection of left ventricular systolic function(LVSF)damage in DM is essential.AIM To explore the use...BACKGROUND Diabetic cardiomyopathy is considered as a chronic complication of diabetes mellitus(DM).Therefore,early detection of left ventricular systolic function(LVSF)damage in DM is essential.AIM To explore the use of the three-dimensional speckle tracking technique(3D-STI)for measuring LVSF in DM patients via meta-analysis.METHODS The electronic databases were retrieved from the initial accessible time to 29 April 2023.The current study involved 9 studies,including 970 subjects.We carried out this meta-analysis to estimate myocardial function in DM compared with controls according to myocardial strain attained by 3D-STI.RESULTS Night articles including 970 subjects were included.No significant difference was detected in the left ventricular ejection fraction between the control and the diabetic group(P>0.05),while differences in global longitudinal strain,global circumferential strain,global radial strain,and global area strain were markedly different between the controls and DM patients(all P<0.05).CONCLUSION The 3D-STI could be applied to accurately measure early LVSF damage in patients with DM.展开更多
Structured illumination microscopy(SIM)is one of the most widely applied wide field super resolution imaging techniques with high temporal resolution and low phototoxicity.The spatial resolution of SIM is typically li...Structured illumination microscopy(SIM)is one of the most widely applied wide field super resolution imaging techniques with high temporal resolution and low phototoxicity.The spatial resolution of SIM is typically limited to two times of the diffraction limit and the depth of field is small.In this work,we propose and experimentally demonstrate a low cost,easy to implement,novel technique called speckle structured illumination endoscopy(SSIE)to enhance the resolution of a wide field endoscope with large depth of field.Here,speckle patterns are used to excite objects on the sample which is then followed by a blind-SIM algorithm for super resolution image reconstruction.Our approach is insensitive to the 3D morphology of the specimen,or the deformation of illuminations used.It greatly simplifies the experimental setup as there are no calibration protocols and no stringent control of illumination patterns nor focusing optics.We demonstrate that the SSIE can enhance the resolution 2–4.5 times that of a standard white light endoscopic(WLE)system.The SSIE presents a unique route to super resolution in endoscopic imaging at wide field of view and depth of field,which might be beneficial to the practice of clinical endoscopy.展开更多
Significant progress has been made in computational imaging(CI),in which deep convolutional neural networks(CNNs)have demonstrated that sparse speckle patterns can be reconstructed.However,due to the limited“local”k...Significant progress has been made in computational imaging(CI),in which deep convolutional neural networks(CNNs)have demonstrated that sparse speckle patterns can be reconstructed.However,due to the limited“local”kernel size of the convolutional operator,for the spatially dense patterns,such as the generic face images,the performance of CNNs is limited.Here,we propose a“non-local”model,termed the Speckle-Transformer(SpT)UNet,for speckle feature extraction of generic face images.It is worth noting that the lightweight SpT UNet reveals a high efficiency and strong comparative performance with Pearson Correlation Coefficient(PCC),and structural similarity measure(SSIM)exceeding 0.989,and 0.950,respectively.展开更多
The internal energy distribution of waves can be described using ocean-wave spectra.In many ways,obtaining wave spectra on a global scale is critical.Surface waves investigation and monitoring onboard the Chinese-Fren...The internal energy distribution of waves can be described using ocean-wave spectra.In many ways,obtaining wave spectra on a global scale is critical.Surface waves investigation and monitoring onboard the Chinese-French oceanography satellite is the first space-borne instrument for detecting wave spectra specially,which was launched on October 29,2018.It can avoid the shortage of synthetic aperture radar detection results while still having some problems,especially with the effects of speckle noise.In this study,a method to suppress the speckle noise is proposed.First,the empirical formula for background speckle noise is established.Second,many spatio-temporal representative fluctuation spectra are classified and averaged.Third,rational transfer function filtering is used to obtain speckle noise close to the along-track direction.Finally,a signal-to-noise ratio threshold is used to suppress the abnormal speckle noise.This method solves the problems existing in previous denoising methods,such as excessive denoising in the along-track direction and the inability of some abnormal noises to be denoised in the two-dimensional directional wave spectra.展开更多
A new mechanism for the generation of high intensity speckles by coupling of overlapping beams is discovered and studied in detail.Using three-dimensional simulations,the coupling of overlapping beams smoothed by phas...A new mechanism for the generation of high intensity speckles by coupling of overlapping beams is discovered and studied in detail.Using three-dimensional simulations,the coupling of overlapping beams smoothed by phase plates and by polarization smoothing are investigated in the regime relevant to inertial confinement fusion studies.It is found that the intensity distribution of the laser beam spot can be changed by nonuniform spatial phase modulation,and the speckles formed by the phase plate can be split into smaller speckles with higher intensities,which is favorable for the generation of laser plasma instabilities.Stimulated Brillouin scattering is compared in simulations with and without coupling of the overlapping incident beams,and the results confirm the enhancement of stimulated Brillouin scattering due to this mechanism.展开更多
In spite of the advancement in computerized imaging,many image modalities produce images with commotion influencing both the visual quality and upsetting quantitative image analysis.In this way,the research in the zone...In spite of the advancement in computerized imaging,many image modalities produce images with commotion influencing both the visual quality and upsetting quantitative image analysis.In this way,the research in the zone of image denoising is very dynamic.Among an extraordinary assortment of image restoration and denoising techniques the neural network system-based noise sup-pression is a basic and productive methodology.In this paper,Bilateral Filter(BF)based Modular Neural Networks(MNN)has been utilized for speckle noise sup-pression in the ultrasound image.Initial step the BFfilter is used tofilter the input image.From the output of BF,statistical features such as mean,standard devia-tion,median and kurtosis have been extracted and these features are used to train the MNN.Then,thefiltered images from the BF are again denoised using MNN.The ultrasound dataset from the Kaggle site is used for the training and testing process.The simulation outcomes demonstrate that the BF-MNNfiltering method performs better for the multiplicative noise concealment in UltraSound(US)images.From the simulation results,it has been observed that BF-MNN performs better than the existing techniques in terms of peak signal to noise ratio(34.89),Structural Similarity Index(0.89)and Edge Preservation Index(0.67).展开更多
In order to get an effective solution of the in-flight wing deformation measurement for high-wing aircrafts with high-aspect-ratio,a method based on three-dimensional(3D)speckle correlation technique is proposed.First...In order to get an effective solution of the in-flight wing deformation measurement for high-wing aircrafts with high-aspect-ratio,a method based on three-dimensional(3D)speckle correlation technique is proposed.Firstly,an in-flight wing deformation measurement system with two sets of conjugate cameras is designed based on structural characteristics and test requirements of high-wing aircrafts with large-aspect-ratio.Secondly,the in-flight wing deformation measurement method based on 3D speckle correlation technique is introduced including three aspects:measuring system and wing datum calibration,speckle image matching and 3D reconstruction,and wing deformation analysis.Fi-nally,ground simulation test of dynamic deformation measurement of a scaled model wing and flight test of dynamic deformation measurement of a large transport wing are carried out.The test results show that the measuring accuracy of single point coordinate in ground simulation test is better than 0.1 mm/m,in the airborne vibration environment,the static single-point positioning accuracy is bet-ter than 5 mm,and the in-flight wing deformation measurement data is well received by the flight test engineers.This method can satisfy the requirements of stability,reliability,high precision,non-con-tact and full-field measurement for dynamic deformation measurement of aircraft wing with high-as-pect-ratio.展开更多
When a surface is illuminated by laser,the field of diffusing reflective light can be described by Fresnel-Kirchhoff integration in the region of Fresnel.If the correlation,before and after the change of intensity fie...When a surface is illuminated by laser,the field of diffusing reflective light can be described by Fresnel-Kirchhoff integration in the region of Fresnel.If the correlation,before and after the change of intensity field,is analysed by statistical method,three governing equations for variations of intensity field and speckle movement formulas can be obtained.In these equations,the surface motion,deformation and wavelength change are all considered to cause the speckle movement.展开更多
The quality of ultrasound scanning images is usually damaged by speckle noise.This paper proposes a method based on local statistics extracted from a histogram to reduce ultrasound speckle through a region growing alg...The quality of ultrasound scanning images is usually damaged by speckle noise.This paper proposes a method based on local statistics extracted from a histogram to reduce ultrasound speckle through a region growing algorithm.Unlike single statistical moment-based speckle reduction algorithms,this method adaptively smooths the speckle regions while preserving the margin and tissue structure to achieve high detectability.The criterion of a speckle region is defined by the similarity value obtained by matching the histogram of the current processing window and the reference window derived from the speckle region in advance.Then,according to the similarity value and tissue characteristics,the entire image is divided into several levels of speckle-content regions,and adaptive smoothing is performed based on these classification characteristics and the corresponding window size determined by the proposed region growing technique.Tests conducted from phantoms and in vivo images have shown very promising results after a quantitative and qualitative comparison with existing work.展开更多
文摘BACKGROUND Diabetic cardiomyopathy is considered as a chronic complication of diabetes mellitus(DM).Therefore,early detection of left ventricular systolic function(LVSF)damage in DM is essential.AIM To explore the use of the three-dimensional speckle tracking technique(3D-STI)for measuring LVSF in DM patients via meta-analysis.METHODS The electronic databases were retrieved from the initial accessible time to 29 April 2023.The current study involved 9 studies,including 970 subjects.We carried out this meta-analysis to estimate myocardial function in DM compared with controls according to myocardial strain attained by 3D-STI.RESULTS Night articles including 970 subjects were included.No significant difference was detected in the left ventricular ejection fraction between the control and the diabetic group(P>0.05),while differences in global longitudinal strain,global circumferential strain,global radial strain,and global area strain were markedly different between the controls and DM patients(all P<0.05).CONCLUSION The 3D-STI could be applied to accurately measure early LVSF damage in patients with DM.
基金partially supported by the Gordon and Betty Moore Foundation Grant No.5722
文摘Structured illumination microscopy(SIM)is one of the most widely applied wide field super resolution imaging techniques with high temporal resolution and low phototoxicity.The spatial resolution of SIM is typically limited to two times of the diffraction limit and the depth of field is small.In this work,we propose and experimentally demonstrate a low cost,easy to implement,novel technique called speckle structured illumination endoscopy(SSIE)to enhance the resolution of a wide field endoscope with large depth of field.Here,speckle patterns are used to excite objects on the sample which is then followed by a blind-SIM algorithm for super resolution image reconstruction.Our approach is insensitive to the 3D morphology of the specimen,or the deformation of illuminations used.It greatly simplifies the experimental setup as there are no calibration protocols and no stringent control of illumination patterns nor focusing optics.We demonstrate that the SSIE can enhance the resolution 2–4.5 times that of a standard white light endoscopic(WLE)system.The SSIE presents a unique route to super resolution in endoscopic imaging at wide field of view and depth of field,which might be beneficial to the practice of clinical endoscopy.
基金funding support from the Science and Technology Commission of Shanghai Municipality(Grant No.21DZ1100500)the Shanghai Frontiers Science Center Program(2021-2025 No.20)+2 种基金the Zhangjiang National Innovation Demonstration Zone(Grant No.ZJ2019ZD-005)supported by a fellowship from the China Postdoctoral Science Foundation(2020M671169)the International Postdoctoral Exchange Program from the Administrative Committee of Post-Doctoral Researchers of China([2020]33)。
文摘Significant progress has been made in computational imaging(CI),in which deep convolutional neural networks(CNNs)have demonstrated that sparse speckle patterns can be reconstructed.However,due to the limited“local”kernel size of the convolutional operator,for the spatially dense patterns,such as the generic face images,the performance of CNNs is limited.Here,we propose a“non-local”model,termed the Speckle-Transformer(SpT)UNet,for speckle feature extraction of generic face images.It is worth noting that the lightweight SpT UNet reveals a high efficiency and strong comparative performance with Pearson Correlation Coefficient(PCC),and structural similarity measure(SSIM)exceeding 0.989,and 0.950,respectively.
文摘The internal energy distribution of waves can be described using ocean-wave spectra.In many ways,obtaining wave spectra on a global scale is critical.Surface waves investigation and monitoring onboard the Chinese-French oceanography satellite is the first space-borne instrument for detecting wave spectra specially,which was launched on October 29,2018.It can avoid the shortage of synthetic aperture radar detection results while still having some problems,especially with the effects of speckle noise.In this study,a method to suppress the speckle noise is proposed.First,the empirical formula for background speckle noise is established.Second,many spatio-temporal representative fluctuation spectra are classified and averaged.Third,rational transfer function filtering is used to obtain speckle noise close to the along-track direction.Finally,a signal-to-noise ratio threshold is used to suppress the abnormal speckle noise.This method solves the problems existing in previous denoising methods,such as excessive denoising in the along-track direction and the inability of some abnormal noises to be denoised in the two-dimensional directional wave spectra.
基金supported by the National Natural Sci-ence Foundation of China(Grant Nos.12275032,12035002,and 12205021)the Project supported by CAEP Foundation(Grant No.CX20210040).
文摘A new mechanism for the generation of high intensity speckles by coupling of overlapping beams is discovered and studied in detail.Using three-dimensional simulations,the coupling of overlapping beams smoothed by phase plates and by polarization smoothing are investigated in the regime relevant to inertial confinement fusion studies.It is found that the intensity distribution of the laser beam spot can be changed by nonuniform spatial phase modulation,and the speckles formed by the phase plate can be split into smaller speckles with higher intensities,which is favorable for the generation of laser plasma instabilities.Stimulated Brillouin scattering is compared in simulations with and without coupling of the overlapping incident beams,and the results confirm the enhancement of stimulated Brillouin scattering due to this mechanism.
文摘In spite of the advancement in computerized imaging,many image modalities produce images with commotion influencing both the visual quality and upsetting quantitative image analysis.In this way,the research in the zone of image denoising is very dynamic.Among an extraordinary assortment of image restoration and denoising techniques the neural network system-based noise sup-pression is a basic and productive methodology.In this paper,Bilateral Filter(BF)based Modular Neural Networks(MNN)has been utilized for speckle noise sup-pression in the ultrasound image.Initial step the BFfilter is used tofilter the input image.From the output of BF,statistical features such as mean,standard devia-tion,median and kurtosis have been extracted and these features are used to train the MNN.Then,thefiltered images from the BF are again denoised using MNN.The ultrasound dataset from the Kaggle site is used for the training and testing process.The simulation outcomes demonstrate that the BF-MNNfiltering method performs better for the multiplicative noise concealment in UltraSound(US)images.From the simulation results,it has been observed that BF-MNN performs better than the existing techniques in terms of peak signal to noise ratio(34.89),Structural Similarity Index(0.89)and Edge Preservation Index(0.67).
基金Supported by the National Natural Science Foundation of China(No.62271400).
文摘In order to get an effective solution of the in-flight wing deformation measurement for high-wing aircrafts with high-aspect-ratio,a method based on three-dimensional(3D)speckle correlation technique is proposed.Firstly,an in-flight wing deformation measurement system with two sets of conjugate cameras is designed based on structural characteristics and test requirements of high-wing aircrafts with large-aspect-ratio.Secondly,the in-flight wing deformation measurement method based on 3D speckle correlation technique is introduced including three aspects:measuring system and wing datum calibration,speckle image matching and 3D reconstruction,and wing deformation analysis.Fi-nally,ground simulation test of dynamic deformation measurement of a scaled model wing and flight test of dynamic deformation measurement of a large transport wing are carried out.The test results show that the measuring accuracy of single point coordinate in ground simulation test is better than 0.1 mm/m,in the airborne vibration environment,the static single-point positioning accuracy is bet-ter than 5 mm,and the in-flight wing deformation measurement data is well received by the flight test engineers.This method can satisfy the requirements of stability,reliability,high precision,non-con-tact and full-field measurement for dynamic deformation measurement of aircraft wing with high-as-pect-ratio.
基金The project supported by National Natural Science Foundation of China
文摘When a surface is illuminated by laser,the field of diffusing reflective light can be described by Fresnel-Kirchhoff integration in the region of Fresnel.If the correlation,before and after the change of intensity field,is analysed by statistical method,three governing equations for variations of intensity field and speckle movement formulas can be obtained.In these equations,the surface motion,deformation and wavelength change are all considered to cause the speckle movement.
基金This study is supported by the Chunhui Project(No.Z2015108)the Ministry of Education China,the Sichuan Science and Technology Program(No.2019YFG0196)+2 种基金the high-level personnel launch scientific research projects of Guizhou Institute of Technology(No.XJGC 20150105)the Science&Technology Department of Guizhou Province and Guizhou Institute of Technology Collaborative Fund LH(No.[2015]7104)the invitation for bid Project of Education Department of Guizhou Province KY(No.[2015]360).
文摘The quality of ultrasound scanning images is usually damaged by speckle noise.This paper proposes a method based on local statistics extracted from a histogram to reduce ultrasound speckle through a region growing algorithm.Unlike single statistical moment-based speckle reduction algorithms,this method adaptively smooths the speckle regions while preserving the margin and tissue structure to achieve high detectability.The criterion of a speckle region is defined by the similarity value obtained by matching the histogram of the current processing window and the reference window derived from the speckle region in advance.Then,according to the similarity value and tissue characteristics,the entire image is divided into several levels of speckle-content regions,and adaptive smoothing is performed based on these classification characteristics and the corresponding window size determined by the proposed region growing technique.Tests conducted from phantoms and in vivo images have shown very promising results after a quantitative and qualitative comparison with existing work.