Detailed mineralogical and gemological records were conducted on 340 unheated spinels from the Horana, Eheliyagoda, Ratnapura, and Okkampatiya mining areas in Sri Lanka. The color of Sri Lankan spinel varies greatly: ...Detailed mineralogical and gemological records were conducted on 340 unheated spinels from the Horana, Eheliyagoda, Ratnapura, and Okkampatiya mining areas in Sri Lanka. The color of Sri Lankan spinel varies greatly: in addition to the mainstream pink to purple pink, green and blue can also be seen. Compared with spinel from other regions such as Myanmar, Vietnam, and Tanzania, Sri Lanka's spinel has more abundant inclusions: several mining areas generally have inclusions such as dolomite, apatite, zircon, and chondrodite. Minerals such as graphite and forsterite are also found in spinel produced in the Horana region;graphite and rutile have been found in spinel produced in the Okkamptiya region. Partially healed fissures are most common in spinel in the Okkampatiya mining area;Unlike Vietnamese spinel, dislocations and growth structures are almost absent in Sri Lankan spinel. The LA-ICP-MS analysis results showed that there were no significant differences among the mining areas. LA-ICP-MS analysis of 5 Sri Lankan cobalt blue spinels showed a variation of 11 to 120 ppm in this chromogenic element. The UV visible absorption spectrum results show that Sri Lankan spinel has a combination spectra with variable ratios of the spectral components Cr 3+ , V 3+ and Fe 2+ from pink to red, orange, purple to purple, and blue-green. The results of infrared spectroscopy and laser Raman spectroscopy analysis showed that all samples showed no indications for heat treatment.展开更多
The densification and microstructure of different spinelized magnesium aluminate spinels(MAS) were studied adding Sc_2O_3 as additive. Sintered products were then characterized in terms of densification, phase analy...The densification and microstructure of different spinelized magnesium aluminate spinels(MAS) were studied adding Sc_2O_3 as additive. Sintered products were then characterized in terms of densification, phase analysis, quantitative elemental analysis and microstructure. The results show that Sc_2O_3 is found to be beneficial for the densification of MAS. Sc_2O_3 has a more significant effect on the densification of partially spinelized MAS batch than that of fully spinelized MAS batch. At the sintering temperature of 1650 °C, the bulk density of sintered products of partially spinelized powders increases by 0.243 g/cm3 as the Sc_2O_3 content increases from 0 to 4%(mass fraction) and that of fully spinelized powder increases by 0.14 g/cm3. Compared with the sintered samples prepared from the fully spinelized powder, the sintered samples using the partially spinelized powders as raw materials have more compact microstructures.展开更多
The magnetic properties of inverse ferrite Fe_(3+) Fe_(3+)Co_(2+) O^(2-)_4, Fe^(3+) Fe^(3+)Cu^(2+) O^2_(-4), Fe^(3+) Fe^(3+)Fe^(2+) O^2_(-4),and Fe^(3+) Fe^(3+)Ni^(2+) O^(2-)_4spinels have been studied using Monte Car...The magnetic properties of inverse ferrite Fe_(3+) Fe_(3+)Co_(2+) O^(2-)_4, Fe^(3+) Fe^(3+)Cu^(2+) O^2_(-4), Fe^(3+) Fe^(3+)Fe^(2+) O^2_(-4),and Fe^(3+) Fe^(3+)Ni^(2+) O^(2-)_4spinels have been studied using Monte Carlo simulation. We have also calculated the critical and Curie Weiss temperatures from the thermal magnetizations and inverse of magnetic susceptibilities for each system.Magnetic hysteresis cycles have been found for the four systems. Finally, we found the critical exponents associated with magnetization, magnetic susceptibility, and external magnetic field. Our results of critical and Curie Weiss temperatures are similar to those obtained by experiment results. The critical exponents are similar to those of known 3 D-Ising model.展开更多
New types of refractory materials need to be developed for designing the man-made ledge of the Hall-Heroult cell for aluminum electrolysis, which are currently constructed by frozen ledge.Magnesium aluminate spinel (...New types of refractory materials need to be developed for designing the man-made ledge of the Hall-Heroult cell for aluminum electrolysis, which are currently constructed by frozen ledge.Magnesium aluminate spinel (MAS) as potential candidate materials was prepared by two-step sintering. The densification and grain growth of the MAS wereinvestigatedbytheArchimedes drainage method and scanning electron microscope (SEM). All the specimens were corroded in aNa3AlF6-AlF3-CaF2-Al2O3bath to assess the corrosion resistance. The results show that a MAS material with a high relative density of 99.2% and ahomogeneous microstructure is achieved under two-step sintering conditions. The corrosion mechanisms of MAS inNa3AlF6-AlF3-CaF2-Al2O3 bathare mainly proposed by dissolution of MAS, formation of aluminum oxide, and diffusion of fluorides. The MAS prepared by two-step sintering exhibits good corrosion resistance to theNa3AlF6-AlF3-CaF2-Al2O3bath.展开更多
A series of manganese spinels LiMn2-yMeyO4 (Me = Li, A1, Mg) were prepared and examined by XRD and electrochemical methods. The spinels doped with Li or high content of A1 can exhibit discharge capacity in the 5 V r...A series of manganese spinels LiMn2-yMeyO4 (Me = Li, A1, Mg) were prepared and examined by XRD and electrochemical methods. The spinels doped with Li or high content of A1 can exhibit discharge capacity in the 5 V region, but spinels doped with Mg do not exhibit any 5 V discharge capacity. It is also observed that the 5 V discharge capacity of Li/A1 doped spinels will be greatly suppressed once calcinated at temperatures above 900 ℃ in preparation. It is suggested that the 5 V discharge capacity of Li/A1 doped spinels may be originated from the special chemical/structural characteristics of spinel phases containing Li or high content of A1 prepared at temperatures below 900 ℃.展开更多
Listwaenite,carbonate-talc schist,and serpentinite of Sartohay ophioliticmélange,Xinjiang,northwestern China,contain variably altered chromian spinels.During the hydrothermal alteration from serpentinite to listw...Listwaenite,carbonate-talc schist,and serpentinite of Sartohay ophioliticmélange,Xinjiang,northwestern China,contain variably altered chromian spinels.During the hydrothermal alteration from serpentinite to listwaenite展开更多
LiMnOand LiNiAlyMnO(x= 0.50;y = 0.05-0.50) powders have been synthesized via facile solgel method using Behenic acid as active cheiating agent.The synthesized samples are subjected to physical characterizations such...LiMnOand LiNiAlyMnO(x= 0.50;y = 0.05-0.50) powders have been synthesized via facile solgel method using Behenic acid as active cheiating agent.The synthesized samples are subjected to physical characterizations such as thermo gravimetric analysis(TG/DTA),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),field-emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM) and electrochemical studies viz.,galvanostatic cycling properties,electrochemical impedance spectroscopy(EIS) and differential capacity curves(dQ/dE).Finger print XRD patterns of LiMnOand LiNiAlMnOfortify the high degree of crystallinity with better phase purity.FESEM images of the undoped pristine spinel illustrate uniform spherical grains surface morphology with an average particle size of 0.5 μm while Ni doped particles depict the spherical grains growth(50nm) with ice-cube surface morphology.TEM images of the spinel LiMnOshows the uniform spherical morphology with particle size of(100 nm) while low level of Al-doping spinel(LiNio.5Alo.05Mn1.45O4) displaying cloudy particles with agglomerated particles of(50nm).The LiMnOsamples calcined at 850℃ deliver the discharge capacity of 130 mAh/g in the first cycle corresponds to 94%coiumbic efficiency with capacity fade of 1.5 mAh/g/cycle over the investigated 10 cycles.Among all four dopant compositions investigated,LiNiAlMnOdelivers the maximum discharge capacity of 126 mAh/g during the first cycle and shows the stable cycling performance with low capacity fade of 1 mAh/g/cycle(capacity retention of 92%) over the investigated 10 cycles.Electrochemical impedance studies of spinel LiMnOand LiNiAlMnOdepict the high and low real polarization of 1562 and 1100 Ω.展开更多
From the UV?Vis absorption spectra,the FT-IR absorption spectra and the Raman spectra,it is deduced that Co ionsprimarily occupy the tetrahedral(A)site,with a minor number of them entering into the octahedral(B)site i...From the UV?Vis absorption spectra,the FT-IR absorption spectra and the Raman spectra,it is deduced that Co ionsprimarily occupy the tetrahedral(A)site,with a minor number of them entering into the octahedral(B)site in the Ni1?xCoxCr2O4compounds.The origin of the position disorder of the Co ions is consistent with the similar ionic radii of the Co ion(0.65?)and theCr ion(0.62?)at B site.The FT-IR peak at about510cm?1shifts towards high frequency side with the increasing cobalt content.Itis resulted from the reduction of the cation?oxygen distance in the octahedron by the replacement of the Ni2+with the Co2+ions.Themagnetic measurement shows that Curie temperatures(TC)are75and90K for the compounds with x=0.2and0.8,respectively.展开更多
A rigid-ion model is used to calculate the force constants and effective dynamical charges of sulphide and selenide spinels. The Raman and infrared phonon modes of normal cubic sulphide spinels MCr2S4 (M = Mn, Co, Fe...A rigid-ion model is used to calculate the force constants and effective dynamical charges of sulphide and selenide spinels. The Raman and infrared phonon modes of normal cubic sulphide spinels MCr2S4 (M = Mn, Co, Fe, Hg, Zn, and Cd) and selenide spinels MCr2Se4 (M = Hg, Zn, and Cd) are calculated at the first Brillouin zone-centre using above model, The significant outcome of the present work is (i) the interatomic interaction between Cr-S (Se) dominates over the Cr-S(Se) and S-S(Se-Se) type of interatomic interactions, (ii) the effective dynamical charges of the bivalent metal ions are nearly zero, and (iii) the selenide spinels are less ionic than the sulphide spinels and the ionicity decreases as MnCr2S4 〉 FeCr2S4 〉 CoCr2S4 〉 and CdOr2C4 〉 ZnCr2C4 〉 HgCr2C4 (C = S and Se). The zone-center phonon frequencies, calculated using these parameters, are found to be in very good agreement with the observed results.展开更多
: The colours and chemical composition variations of 160 spinels in peridotite and pyroxenite xenoliths from Cenozoic basalts in eastern China and their petrogeneses have been studied in detail. The relationships betw...: The colours and chemical composition variations of 160 spinels in peridotite and pyroxenite xenoliths from Cenozoic basalts in eastern China and their petrogeneses have been studied in detail. The relationships between major elements of spinels are discussed. The equilibrium temperatures, pressures and oxygen fugacities of spinels and their coexisting olivines, orthopyroxenes and clinopyroxenes have been determined using the Brey—kohler's T—P calculation methods (1990) and Ballhaus' fo2 calculation method (1991). The relationships between the composition and the equilibrium temperatures, pressures or oxygen fugacities of spinels in peridotite xenoliths from the basalts and the stable field of the spinels in the upper mantle have been shown.展开更多
With satisfactory high temperature properties,thermal shock resistance and mechanical properties,refractories in the MgO-Al_(2)O_(3) system have become promising alternative to MgO-Cr_(2)O_(3) counterpart used as RH s...With satisfactory high temperature properties,thermal shock resistance and mechanical properties,refractories in the MgO-Al_(2)O_(3) system have become promising alternative to MgO-Cr_(2)O_(3) counterpart used as RH snorkel lining.High purity dead burned magnesia,fused magnesia and sintered spinel were used as raw materials and sulfite pulp waste as the binder,specimens of the refractories in the Mg0-Al_(2)O_(3) system were prepared for the purpose of investigating the influences in terms of the addition of three kinds of spinels,with Al_(2)O_(3) 50%,66% and 78%,by mass,respectively,and the size of MA50 spinel on properties of the specimens.Relatively superior comprehensive properties can be achieved when 16%of MA50 spinel with sizes under 1mm is adopted.展开更多
Half-metallic ferromagnetism,mechanical as well as thermoelectric properties for rare earth-based spinels MgHo_(2)Z_(4)(Z=S,Se)were investigated using density functional theory(DFT).Structural optimization was done wi...Half-metallic ferromagnetism,mechanical as well as thermoelectric properties for rare earth-based spinels MgHo_(2)Z_(4)(Z=S,Se)were investigated using density functional theory(DFT).Structural optimization was done with Perdew-Burke-Ehrenzorf(PBE)sol-generalized gradient approximation(GGA)to calculate the lattice constant of both spinels comparable to experimental data.In addition,Born stability criteria and negative formation energy show that our studied spinels are also structurally and dynamically stable in the cubic phase.For ferromagnetic(FM)state stability,we also calculated the energy differences among FM,antiferromagnetic(AFM),and non-magnetic(NM)states.Additionally,Curie temperatures of ferromagnetic phases were also estimated.We used Trans-Blaha improved BeckeJohnson(TB-mBJ)potential functional for electronics as well as magnetic characteristics,which lead to the consistent explanation of half-metallic ferromagnetism,representing the whole band-occupancy in material with exact detail of density of states(DOS).The stable FM state was examined in spinels due to the exchange splitting of Ho cation consisting of p-d hybridizations compatible with the result achieved for electronics band structure and DOS.Further,spin magnetic moment was explained in terms of anion,cation,and sharing charge on studied spinels.In addition,the calculated thermoelectric properties clearly show that operation range of these systems may be utilized by future experimental works for identifying the potential applications of these systems.展开更多
Urea holds promise as an alternative water-oxidation substrate in electrolytic cells.High-valence nickelbased spinel,especially after heteroatom doping,excels in urea oxidation reactions(UOR).However,traditional spine...Urea holds promise as an alternative water-oxidation substrate in electrolytic cells.High-valence nickelbased spinel,especially after heteroatom doping,excels in urea oxidation reactions(UOR).However,traditional spinel synthesis methods with prolonged high-temperature reactions lack kinetic precision,hindering the balance between controlled doping and highly active two-dimensional(2D)porous structures design.This significantly impedes the identification of electron configuration-dependent active sites in doped 2D nickel-based spinels.Herein,we present a microwave shock method for the preparation of 2D porous NiCo_(2)O_(4)spinel.Utilizing the transient on-off property of microwave pulses for precise heteroatom doping and 2D porous structural design,non-metal doping(boron,phosphorus,and sulfur)with distinct extranuclear electron disparities serves as straightforward examples for investigation.Precise tuning of lattice parameter reveals the impact of covalent bond strength on NiCo_(2)O_(4)structural stability.The introduced defect levels induce unpaired d-electrons in transition metals,enhancing the adsorption of electron-donating amino groups in urea molecules.Simultaneously,Bode plots confirm the impact mechanism of rapid electron migration caused by reduced band gaps on UOR activity.The prepared phosphorus-doped 2D porous NiCo_(2)O_(4),with optimal electron configuration control,outperforms most reported spinels.This controlled modification strategy advances understanding theoretical structure-activity mechanisms of high-performance 2D spinels in UOR.展开更多
Spinel metal oxides containing Mn,Co,or Fe(AB_(2)O_(4),A/B=Mn/Fe/Co)are one of the most promising nonPt electrocatalysts for oxygen reduction reaction(ORR)in alkaline conditions.However,the low conductivity of metal o...Spinel metal oxides containing Mn,Co,or Fe(AB_(2)O_(4),A/B=Mn/Fe/Co)are one of the most promising nonPt electrocatalysts for oxygen reduction reaction(ORR)in alkaline conditions.However,the low conductivity of metal oxides and the poor intrinsic activities of transition metal sites lead to unsatisfactory ORR performance.In this study,eutectic molten salt(EMS)treatment is employed to reconstruct the atomic arrangement of MnFe_(2)O_(4)electrocatalyst as a prototype for enhancing ORR performance.Comprehensive analyses by using XAFS,soft XAS,XPS,and electrochemical methods reveal that the EMS treatment reduces the oxygen vacancies and spinel inverse in MnFe_(2)O_(4)effectively,which improves the electric conductivity and increases the population of more catalytically active Mn^(2+)sites with tetrahedral coordination.Moreover,the enhanced Mn-O interaction after EMS treatment is conducive to the adsorption and activation of O_(2),which promotes the first electron transfer step(generally considered as the ratedetermining step)of the ORR process.As a result,the EMS treated MnFe_(2)O_(4)catalyst delivers a positive shift of 40 mV in the ORR half-wave potential and a two-fold enhanced mass/specific activity.This work provides a convenient approach to manipulate the atomic architecture and local electronic structure of spinel oxides as ORR electrocatalysts and a comprehensive understanding of the structureperformance relationship from the molecular/atomic scale.展开更多
Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimen...Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimental environmental issues.To prevent chromium pollution,the effects of iron oxide on crystallization behavior and spatial distribution of spinel were investigated in this work.The results revealed that FeO was more conducive to the growth of spinels compared with Fe2O3 and Fe3O4.Spinels were found to be mainly distrib-uted at the top and bottom of slag.The amount of spinel phase at the bottom decreased with the increasing FeO content,while that at the top increased.The average particle size of spinel in the slag with 18wt%FeO content was 12.8μm.Meanwhile,no notable structural changes were observed with a further increase in FeO content.In other words,the spatial distribution of spinel changed when the content of iron oxide varied in the range of 8wt%to 18wt%.Finally,less spinel was found at the bottom of slag with a FeO content of 23wt%.展开更多
Spinel cobalt oxide(Co_(3)O_(4)),consisting of tetrahedral Co^(2+)(CoTd)and octahedral Co^(3+)(CoOh),is considered as promising earth-abundant electrocatalyst for chlorine evolution reaction(CER).Identifying the catal...Spinel cobalt oxide(Co_(3)O_(4)),consisting of tetrahedral Co^(2+)(CoTd)and octahedral Co^(3+)(CoOh),is considered as promising earth-abundant electrocatalyst for chlorine evolution reaction(CER).Identifying the catalytic contribution of geometric Co site in the electrocatalytic CER plays a pivotal role to precisely modulate electronic configuration of active Co sites to boost CER.Herein,combining density functional theory calculations and experiment results assisted with operando analysis,we found that the Co_(Oh) site acts as the main active site for CER in spinel Co_(3)O_(4),which shows better Cl^(-)adsorption and more moderate intermediate adsorption toward CER than CoTd site,and does not undergo redox transition under CER condition at applied potentials.Guided by above findings,the oxygen vacancies were further introduced into the Co_(3)O_(4) to precisely manipulate the electronic configuration of Co_(Oh) to boost Cl^(-)adsorption and optimize the reaction path of CER and thus to enhance the intrinsic CER activity significantly.Our work figures out the importance of geometric configuration dependent CER activity,shedding light on the rational design of advanced electrocatalysts from geometric configuration optimization at the atomic level.展开更多
Developing stable and efficient nonprecious-metal-based oxygen evolution catalysts in the neutral electrolyte is a challenging but essential goal for various electrochemical systems.Particularly,cobalt-based spinels h...Developing stable and efficient nonprecious-metal-based oxygen evolution catalysts in the neutral electrolyte is a challenging but essential goal for various electrochemical systems.Particularly,cobalt-based spinels have drawn a considerable amount of attention but most of them operate in alkali solutions.However,the frequently studied Co-Fe spinel system never exhibits appreciable stability in nonbasic conditions,not to mention attract further investigation on its key structural motif and transition states for activity loss.Herein,we report exceptional stable Co-Fe spinel oxygen evolution catalysts(~30%Fe is optimal)in a neutral electrolyte,owing to its unique metal ion arrangements in the crystal lattice.The introduced iron content enters both the octahedral and tetrahedral sites of the spinel as Fe^(2+)and Fe^(3+)(with Co ions having mixed distribution as well).Combining density functional theory calculations,we find that the introduction of Fe to Co_(3)O_(4)lowers the covalency of metal-oxygen bonds and can help suppress the oxidation of Co^(2+/3+)and 0^(2-).It implies that the Co-Fe spinel will have minor surface reconstruction and less lattice oxygen loss during the oxygen evolution reaction process in comparison with Co_(3)O_(4)and hence show much better stability.These findings suggest that there is still much chance for the spinel structures,especially using reasonable sublattices engineering via multimetal doping to develop advanced oxygen evolution catalysts.展开更多
In gemmology,the term“Alexandrite effect”is used to describe colour change phenomenon when a gemstone is observed under different light sources,usually between daylight and incandescent light.The definition of the A...In gemmology,the term“Alexandrite effect”is used to describe colour change phenomenon when a gemstone is observed under different light sources,usually between daylight and incandescent light.The definition of the Alexandrite effect is constantly being broadened with new discovery of gem resource.The traditional definition of the Alexandrite effect attributing the colour change phenomenon to the presence of two maximum transmission regions and a maximum absorption region in the absorption spectra.In this study,7 blue spinels and 5 blue gemstones(including tanzanite,kyanite,fluorite,and 2 sapphires)showing the Alexandrite effect were investigated.The goal is to explain the cause of blue-to-violet Alexandrite effect and the spectral features causing such colour change.In the UV-Vis spectra,all samples showed a maximum absorption peak in the range of 534-610 nm,within the green region to orange region.The traditional explanation of green to red Alexandrite effect required a transmission window in the red region;however,some of our samples did not show this transmission window and the blue-to-violet Alexandrite effect was still visible.Therefore,it is incomplete to explain the mechanism of the Alexandrite effect according to their characteristic absorption spectra,a systematic study based on modern colour science and colour perception in human vision is required to elucidate the blue-to-violet Alexandrite effect.展开更多
Ammonium dinitramide(ADN)based liquid monopropellants have been identified as environmentally benign substitutes for hydrazine monopropellant.However,new catalysts are to be developed for making ADN monopropellants co...Ammonium dinitramide(ADN)based liquid monopropellants have been identified as environmentally benign substitutes for hydrazine monopropellant.However,new catalysts are to be developed for making ADN monopropellants cold-start capable.In the present study,performance of Co and Ba doped CuCr_2O_4 nanocatalysts prepared by hydrothermal method was evaluated on the decomposition of aqueous ADN solution and ADN liquid monopropellant(LMP103X).The catalysts were characterized by PXRD(Powder X-ray Diffraction),FTIR(Fourier Transform Infrared spectroscopy),SEM(Scanning Electron Microscopy),TEM(Transmission Electron Microscopy),EDS(Energy Dispersive X-ray Spectroscopy),and XPS(X-ray Photoelectron Spectroscopy).The nanosize was confirmed by SEM and TEM,while the nanoflake morphology was confirmed by the SEM analysis.Further,we obtained the elemental composition from the EDS analysis.We investigated the catalytic activity of the catalysts by thermogravimetric(TG)analysis and the developed catalysts lowered the decomposition temperature of ADN monopropellant by about 55℃.The XPS analysis confirmed the presence of metal ions with different chemical states.Apparently,increase in the surface area of the catalysts and the mixed active sites as well as the development of oxygen vacancy on the catalyst surface introduced by metal doping are influencing the decomposition temperature of ADN samples.展开更多
Spinel LiNi_(0.5)Mn_(1.5)O_(4)(LNMO),a 5 V class high voltage cathode,has been regarded as an attractive candidate to further improve the energy density of lithium-ion battery.The issue simultaneously enabling side st...Spinel LiNi_(0.5)Mn_(1.5)O_(4)(LNMO),a 5 V class high voltage cathode,has been regarded as an attractive candidate to further improve the energy density of lithium-ion battery.The issue simultaneously enabling side stability and maintaining high interfacial kinetics,however,has not yet been resolved.Herein,we design a coherent Li_(1.3)A_(l0.3)Ti_(1.7)(PO)_(4)(LATP)layer that is crystally connected to the spinel LNMO host lattices,which offers fast lithium ions transportation as well as enhances the mechanical stability that prevents the particle fracture.Furthermore,the inactive Li_(3)BO_(3)(LBO)coating layer inhibits the corrosion of transition metals and continuous side reactions.Consequently,the coherent-engineered LNMO-LATPLBO cathode material exhibits superior electrochemical cycling stability in a window of 3.0–5.0 V,for example a high-capacity retention that is 89.7%after 500 cycles at 200 m A g-1obtained and enhanced rate performance(85.1 m A h g^(-1)at 800 m A g^(-1))when tested with a LiPF6-based carbonate electrolyte.Our work presents a new approach of engineering 5 V class spinel oxide cathode that combines interfacial coherent crystal lattice design and surface coating.展开更多
文摘Detailed mineralogical and gemological records were conducted on 340 unheated spinels from the Horana, Eheliyagoda, Ratnapura, and Okkampatiya mining areas in Sri Lanka. The color of Sri Lankan spinel varies greatly: in addition to the mainstream pink to purple pink, green and blue can also be seen. Compared with spinel from other regions such as Myanmar, Vietnam, and Tanzania, Sri Lanka's spinel has more abundant inclusions: several mining areas generally have inclusions such as dolomite, apatite, zircon, and chondrodite. Minerals such as graphite and forsterite are also found in spinel produced in the Horana region;graphite and rutile have been found in spinel produced in the Okkamptiya region. Partially healed fissures are most common in spinel in the Okkampatiya mining area;Unlike Vietnamese spinel, dislocations and growth structures are almost absent in Sri Lankan spinel. The LA-ICP-MS analysis results showed that there were no significant differences among the mining areas. LA-ICP-MS analysis of 5 Sri Lankan cobalt blue spinels showed a variation of 11 to 120 ppm in this chromogenic element. The UV visible absorption spectrum results show that Sri Lankan spinel has a combination spectra with variable ratios of the spectral components Cr 3+ , V 3+ and Fe 2+ from pink to red, orange, purple to purple, and blue-green. The results of infrared spectroscopy and laser Raman spectroscopy analysis showed that all samples showed no indications for heat treatment.
基金Project(51374240) supported by the National Natural Science Foundation of ChinaProject(2012BAE08B02) supported by the National Science and Technology Pillar Program of China
文摘The densification and microstructure of different spinelized magnesium aluminate spinels(MAS) were studied adding Sc_2O_3 as additive. Sintered products were then characterized in terms of densification, phase analysis, quantitative elemental analysis and microstructure. The results show that Sc_2O_3 is found to be beneficial for the densification of MAS. Sc_2O_3 has a more significant effect on the densification of partially spinelized MAS batch than that of fully spinelized MAS batch. At the sintering temperature of 1650 °C, the bulk density of sintered products of partially spinelized powders increases by 0.243 g/cm3 as the Sc_2O_3 content increases from 0 to 4%(mass fraction) and that of fully spinelized powder increases by 0.14 g/cm3. Compared with the sintered samples prepared from the fully spinelized powder, the sintered samples using the partially spinelized powders as raw materials have more compact microstructures.
文摘The magnetic properties of inverse ferrite Fe_(3+) Fe_(3+)Co_(2+) O^(2-)_4, Fe^(3+) Fe^(3+)Cu^(2+) O^2_(-4), Fe^(3+) Fe^(3+)Fe^(2+) O^2_(-4),and Fe^(3+) Fe^(3+)Ni^(2+) O^(2-)_4spinels have been studied using Monte Carlo simulation. We have also calculated the critical and Curie Weiss temperatures from the thermal magnetizations and inverse of magnetic susceptibilities for each system.Magnetic hysteresis cycles have been found for the four systems. Finally, we found the critical exponents associated with magnetization, magnetic susceptibility, and external magnetic field. Our results of critical and Curie Weiss temperatures are similar to those obtained by experiment results. The critical exponents are similar to those of known 3 D-Ising model.
基金Project(51374240)supported by the National Natural Science Foundation of ChinaProject(2012BAE08B02)supported by the National Science and Technology Pillar Program of China
文摘New types of refractory materials need to be developed for designing the man-made ledge of the Hall-Heroult cell for aluminum electrolysis, which are currently constructed by frozen ledge.Magnesium aluminate spinel (MAS) as potential candidate materials was prepared by two-step sintering. The densification and grain growth of the MAS wereinvestigatedbytheArchimedes drainage method and scanning electron microscope (SEM). All the specimens were corroded in aNa3AlF6-AlF3-CaF2-Al2O3bath to assess the corrosion resistance. The results show that a MAS material with a high relative density of 99.2% and ahomogeneous microstructure is achieved under two-step sintering conditions. The corrosion mechanisms of MAS inNa3AlF6-AlF3-CaF2-Al2O3 bathare mainly proposed by dissolution of MAS, formation of aluminum oxide, and diffusion of fluorides. The MAS prepared by two-step sintering exhibits good corrosion resistance to theNa3AlF6-AlF3-CaF2-Al2O3bath.
基金Funded partly by the Fundamental Research Funds for the Central Universities (No.WHUT-2012-Ia-029)the Foundation of the Ministry of Education of China for Returned Scholars (No.2007-24)
文摘A series of manganese spinels LiMn2-yMeyO4 (Me = Li, A1, Mg) were prepared and examined by XRD and electrochemical methods. The spinels doped with Li or high content of A1 can exhibit discharge capacity in the 5 V region, but spinels doped with Mg do not exhibit any 5 V discharge capacity. It is also observed that the 5 V discharge capacity of Li/A1 doped spinels will be greatly suppressed once calcinated at temperatures above 900 ℃ in preparation. It is suggested that the 5 V discharge capacity of Li/A1 doped spinels may be originated from the special chemical/structural characteristics of spinel phases containing Li or high content of A1 prepared at temperatures below 900 ℃.
文摘Listwaenite,carbonate-talc schist,and serpentinite of Sartohay ophioliticmélange,Xinjiang,northwestern China,contain variably altered chromian spinels.During the hydrothermal alteration from serpentinite to listwaenite
基金support given under the "Brain Pool Program of the Korean Federation of Science and Technology Societies" (KOFST), Republic of South Koreasupported by the Human Resources Development Program (No. 20124010203270) of the Korea Institute of Energy Technology EvaluationPlanning (KETEP) grant funded by the Korea Government Ministry of Trade, Industry and Energy
文摘LiMnOand LiNiAlyMnO(x= 0.50;y = 0.05-0.50) powders have been synthesized via facile solgel method using Behenic acid as active cheiating agent.The synthesized samples are subjected to physical characterizations such as thermo gravimetric analysis(TG/DTA),X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FT-IR),field-emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM) and electrochemical studies viz.,galvanostatic cycling properties,electrochemical impedance spectroscopy(EIS) and differential capacity curves(dQ/dE).Finger print XRD patterns of LiMnOand LiNiAlMnOfortify the high degree of crystallinity with better phase purity.FESEM images of the undoped pristine spinel illustrate uniform spherical grains surface morphology with an average particle size of 0.5 μm while Ni doped particles depict the spherical grains growth(50nm) with ice-cube surface morphology.TEM images of the spinel LiMnOshows the uniform spherical morphology with particle size of(100 nm) while low level of Al-doping spinel(LiNio.5Alo.05Mn1.45O4) displaying cloudy particles with agglomerated particles of(50nm).The LiMnOsamples calcined at 850℃ deliver the discharge capacity of 130 mAh/g in the first cycle corresponds to 94%coiumbic efficiency with capacity fade of 1.5 mAh/g/cycle over the investigated 10 cycles.Among all four dopant compositions investigated,LiNiAlMnOdelivers the maximum discharge capacity of 126 mAh/g during the first cycle and shows the stable cycling performance with low capacity fade of 1 mAh/g/cycle(capacity retention of 92%) over the investigated 10 cycles.Electrochemical impedance studies of spinel LiMnOand LiNiAlMnOdepict the high and low real polarization of 1562 and 1100 Ω.
基金Project(11264024)supported by the National Natural Science Foundation of ChinaProjects(2015MS0102,2015MS0524)supported by Natural Science Foundation of Inner Mongolia,China
文摘From the UV?Vis absorption spectra,the FT-IR absorption spectra and the Raman spectra,it is deduced that Co ionsprimarily occupy the tetrahedral(A)site,with a minor number of them entering into the octahedral(B)site in the Ni1?xCoxCr2O4compounds.The origin of the position disorder of the Co ions is consistent with the similar ionic radii of the Co ion(0.65?)and theCr ion(0.62?)at B site.The FT-IR peak at about510cm?1shifts towards high frequency side with the increasing cobalt content.Itis resulted from the reduction of the cation?oxygen distance in the octahedron by the replacement of the Ni2+with the Co2+ions.Themagnetic measurement shows that Curie temperatures(TC)are75and90K for the compounds with x=0.2and0.8,respectively.
文摘A rigid-ion model is used to calculate the force constants and effective dynamical charges of sulphide and selenide spinels. The Raman and infrared phonon modes of normal cubic sulphide spinels MCr2S4 (M = Mn, Co, Fe, Hg, Zn, and Cd) and selenide spinels MCr2Se4 (M = Hg, Zn, and Cd) are calculated at the first Brillouin zone-centre using above model, The significant outcome of the present work is (i) the interatomic interaction between Cr-S (Se) dominates over the Cr-S(Se) and S-S(Se-Se) type of interatomic interactions, (ii) the effective dynamical charges of the bivalent metal ions are nearly zero, and (iii) the selenide spinels are less ionic than the sulphide spinels and the ionicity decreases as MnCr2S4 〉 FeCr2S4 〉 CoCr2S4 〉 and CdOr2C4 〉 ZnCr2C4 〉 HgCr2C4 (C = S and Se). The zone-center phonon frequencies, calculated using these parameters, are found to be in very good agreement with the observed results.
文摘: The colours and chemical composition variations of 160 spinels in peridotite and pyroxenite xenoliths from Cenozoic basalts in eastern China and their petrogeneses have been studied in detail. The relationships between major elements of spinels are discussed. The equilibrium temperatures, pressures and oxygen fugacities of spinels and their coexisting olivines, orthopyroxenes and clinopyroxenes have been determined using the Brey—kohler's T—P calculation methods (1990) and Ballhaus' fo2 calculation method (1991). The relationships between the composition and the equilibrium temperatures, pressures or oxygen fugacities of spinels in peridotite xenoliths from the basalts and the stable field of the spinels in the upper mantle have been shown.
文摘With satisfactory high temperature properties,thermal shock resistance and mechanical properties,refractories in the MgO-Al_(2)O_(3) system have become promising alternative to MgO-Cr_(2)O_(3) counterpart used as RH snorkel lining.High purity dead burned magnesia,fused magnesia and sintered spinel were used as raw materials and sulfite pulp waste as the binder,specimens of the refractories in the Mg0-Al_(2)O_(3) system were prepared for the purpose of investigating the influences in terms of the addition of three kinds of spinels,with Al_(2)O_(3) 50%,66% and 78%,by mass,respectively,and the size of MA50 spinel on properties of the specimens.Relatively superior comprehensive properties can be achieved when 16%of MA50 spinel with sizes under 1mm is adopted.
基金the Deanship of Scientific Research at King Khalid University for funding this work through the small Groups Project under grant number(R.G.P.1/153/43)。
文摘Half-metallic ferromagnetism,mechanical as well as thermoelectric properties for rare earth-based spinels MgHo_(2)Z_(4)(Z=S,Se)were investigated using density functional theory(DFT).Structural optimization was done with Perdew-Burke-Ehrenzorf(PBE)sol-generalized gradient approximation(GGA)to calculate the lattice constant of both spinels comparable to experimental data.In addition,Born stability criteria and negative formation energy show that our studied spinels are also structurally and dynamically stable in the cubic phase.For ferromagnetic(FM)state stability,we also calculated the energy differences among FM,antiferromagnetic(AFM),and non-magnetic(NM)states.Additionally,Curie temperatures of ferromagnetic phases were also estimated.We used Trans-Blaha improved BeckeJohnson(TB-mBJ)potential functional for electronics as well as magnetic characteristics,which lead to the consistent explanation of half-metallic ferromagnetism,representing the whole band-occupancy in material with exact detail of density of states(DOS).The stable FM state was examined in spinels due to the exchange splitting of Ho cation consisting of p-d hybridizations compatible with the result achieved for electronics band structure and DOS.Further,spin magnetic moment was explained in terms of anion,cation,and sharing charge on studied spinels.In addition,the calculated thermoelectric properties clearly show that operation range of these systems may be utilized by future experimental works for identifying the potential applications of these systems.
基金financial support from the National Natural Science Foundation of China(52203070)the Open Fund of State Key Laboratory of New Textile Materials and Advanced Processing Technologies(FZ2022005)+2 种基金the Open Fund of Hubei Key Laboratory of Biomass Fiber and Ecological Dyeing and Finishing(STRZ202203)the financial support provided by the China Scholarship Council(CSC)Visiting Scholar Programfinancial support from Institute for Sustainability,Energy and Resources,The University of Adelaide,Future Making Fellowship。
文摘Urea holds promise as an alternative water-oxidation substrate in electrolytic cells.High-valence nickelbased spinel,especially after heteroatom doping,excels in urea oxidation reactions(UOR).However,traditional spinel synthesis methods with prolonged high-temperature reactions lack kinetic precision,hindering the balance between controlled doping and highly active two-dimensional(2D)porous structures design.This significantly impedes the identification of electron configuration-dependent active sites in doped 2D nickel-based spinels.Herein,we present a microwave shock method for the preparation of 2D porous NiCo_(2)O_(4)spinel.Utilizing the transient on-off property of microwave pulses for precise heteroatom doping and 2D porous structural design,non-metal doping(boron,phosphorus,and sulfur)with distinct extranuclear electron disparities serves as straightforward examples for investigation.Precise tuning of lattice parameter reveals the impact of covalent bond strength on NiCo_(2)O_(4)structural stability.The introduced defect levels induce unpaired d-electrons in transition metals,enhancing the adsorption of electron-donating amino groups in urea molecules.Simultaneously,Bode plots confirm the impact mechanism of rapid electron migration caused by reduced band gaps on UOR activity.The prepared phosphorus-doped 2D porous NiCo_(2)O_(4),with optimal electron configuration control,outperforms most reported spinels.This controlled modification strategy advances understanding theoretical structure-activity mechanisms of high-performance 2D spinels in UOR.
基金supported by the National Natural Science Foundation of China (12241502,52002367)the Fundamental Research Funds for the Central Universities (20720220010)the National Key Research and Development Program of China (2019YFA0405602)。
文摘Spinel metal oxides containing Mn,Co,or Fe(AB_(2)O_(4),A/B=Mn/Fe/Co)are one of the most promising nonPt electrocatalysts for oxygen reduction reaction(ORR)in alkaline conditions.However,the low conductivity of metal oxides and the poor intrinsic activities of transition metal sites lead to unsatisfactory ORR performance.In this study,eutectic molten salt(EMS)treatment is employed to reconstruct the atomic arrangement of MnFe_(2)O_(4)electrocatalyst as a prototype for enhancing ORR performance.Comprehensive analyses by using XAFS,soft XAS,XPS,and electrochemical methods reveal that the EMS treatment reduces the oxygen vacancies and spinel inverse in MnFe_(2)O_(4)effectively,which improves the electric conductivity and increases the population of more catalytically active Mn^(2+)sites with tetrahedral coordination.Moreover,the enhanced Mn-O interaction after EMS treatment is conducive to the adsorption and activation of O_(2),which promotes the first electron transfer step(generally considered as the ratedetermining step)of the ORR process.As a result,the EMS treated MnFe_(2)O_(4)catalyst delivers a positive shift of 40 mV in the ORR half-wave potential and a two-fold enhanced mass/specific activity.This work provides a convenient approach to manipulate the atomic architecture and local electronic structure of spinel oxides as ORR electrocatalysts and a comprehensive understanding of the structureperformance relationship from the molecular/atomic scale.
基金the National Natural Science Foundation of China(Nos.52074078 and 52374327)the Applied Fundamental Research Program of Liaoning Province(No.2023JH2/101600002)+2 种基金the Shenyang Young Middle-Aged Scientific and Technological Innovation Talent Support Program(No.RC220491)the Liaoning Province Steel Industry-University-Research Innovation Alliance Cooperation Project of Bensteel Group(No.KJBLM202202)the Fundamental Research Funds for the Central Universities(Nos.N2201023 and N2325009).
文摘Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter.However,the re-lease of chromium from stainless steel slag(SSS)during SSS stockpiling causes detrimental environmental issues.To prevent chromium pollution,the effects of iron oxide on crystallization behavior and spatial distribution of spinel were investigated in this work.The results revealed that FeO was more conducive to the growth of spinels compared with Fe2O3 and Fe3O4.Spinels were found to be mainly distrib-uted at the top and bottom of slag.The amount of spinel phase at the bottom decreased with the increasing FeO content,while that at the top increased.The average particle size of spinel in the slag with 18wt%FeO content was 12.8μm.Meanwhile,no notable structural changes were observed with a further increase in FeO content.In other words,the spatial distribution of spinel changed when the content of iron oxide varied in the range of 8wt%to 18wt%.Finally,less spinel was found at the bottom of slag with a FeO content of 23wt%.
基金the National Natural Science Foundation of China(U21A20286,22206054 and 21805069)Natural Science Foundation of Hubei(2021CFB094)the Fundamental Research Funds for the Central China Normal University(CCNU)for financial support。
文摘Spinel cobalt oxide(Co_(3)O_(4)),consisting of tetrahedral Co^(2+)(CoTd)and octahedral Co^(3+)(CoOh),is considered as promising earth-abundant electrocatalyst for chlorine evolution reaction(CER).Identifying the catalytic contribution of geometric Co site in the electrocatalytic CER plays a pivotal role to precisely modulate electronic configuration of active Co sites to boost CER.Herein,combining density functional theory calculations and experiment results assisted with operando analysis,we found that the Co_(Oh) site acts as the main active site for CER in spinel Co_(3)O_(4),which shows better Cl^(-)adsorption and more moderate intermediate adsorption toward CER than CoTd site,and does not undergo redox transition under CER condition at applied potentials.Guided by above findings,the oxygen vacancies were further introduced into the Co_(3)O_(4) to precisely manipulate the electronic configuration of Co_(Oh) to boost Cl^(-)adsorption and optimize the reaction path of CER and thus to enhance the intrinsic CER activity significantly.Our work figures out the importance of geometric configuration dependent CER activity,shedding light on the rational design of advanced electrocatalysts from geometric configuration optimization at the atomic level.
基金the financial support by the National Natural Science Foundation of China(NSFC,grant nos.21905288 and 51904288)Zhejiang Provincial Natural Science Foundation(LZ21B030001)+3 种基金K.C.Wong Education Foundation(GJTD-2019-13)Ningbo major special projects of the Plan“Science and Technology Innovation 2025”(grant nos.2018B10056 and 2019B10046)Ningbo 3315 ProgramYongjiang Talent Introduction Program(no.2021A-115-G)
文摘Developing stable and efficient nonprecious-metal-based oxygen evolution catalysts in the neutral electrolyte is a challenging but essential goal for various electrochemical systems.Particularly,cobalt-based spinels have drawn a considerable amount of attention but most of them operate in alkali solutions.However,the frequently studied Co-Fe spinel system never exhibits appreciable stability in nonbasic conditions,not to mention attract further investigation on its key structural motif and transition states for activity loss.Herein,we report exceptional stable Co-Fe spinel oxygen evolution catalysts(~30%Fe is optimal)in a neutral electrolyte,owing to its unique metal ion arrangements in the crystal lattice.The introduced iron content enters both the octahedral and tetrahedral sites of the spinel as Fe^(2+)and Fe^(3+)(with Co ions having mixed distribution as well).Combining density functional theory calculations,we find that the introduction of Fe to Co_(3)O_(4)lowers the covalency of metal-oxygen bonds and can help suppress the oxidation of Co^(2+/3+)and 0^(2-).It implies that the Co-Fe spinel will have minor surface reconstruction and less lattice oxygen loss during the oxygen evolution reaction process in comparison with Co_(3)O_(4)and hence show much better stability.These findings suggest that there is still much chance for the spinel structures,especially using reasonable sublattices engineering via multimetal doping to develop advanced oxygen evolution catalysts.
基金This research was funded by the Youth Foundation Project,Basic and Applied Research Foundation of Guangdong Province of China(2022A1515110780)China Postdoctoral Science Foundation(2023M743293)China Univerisity of Geosciences(Wuhan)Gemmological Institute research project(GICTXM-04-S202103).
文摘In gemmology,the term“Alexandrite effect”is used to describe colour change phenomenon when a gemstone is observed under different light sources,usually between daylight and incandescent light.The definition of the Alexandrite effect is constantly being broadened with new discovery of gem resource.The traditional definition of the Alexandrite effect attributing the colour change phenomenon to the presence of two maximum transmission regions and a maximum absorption region in the absorption spectra.In this study,7 blue spinels and 5 blue gemstones(including tanzanite,kyanite,fluorite,and 2 sapphires)showing the Alexandrite effect were investigated.The goal is to explain the cause of blue-to-violet Alexandrite effect and the spectral features causing such colour change.In the UV-Vis spectra,all samples showed a maximum absorption peak in the range of 534-610 nm,within the green region to orange region.The traditional explanation of green to red Alexandrite effect required a transmission window in the red region;however,some of our samples did not show this transmission window and the blue-to-violet Alexandrite effect was still visible.Therefore,it is incomplete to explain the mechanism of the Alexandrite effect according to their characteristic absorption spectra,a systematic study based on modern colour science and colour perception in human vision is required to elucidate the blue-to-violet Alexandrite effect.
基金financial support by DST-SERB (Grant No.SRG/2021/001182)DRDO (Grant No.ARMREB/HEM/2021/241)is gratefully acknowledged。
文摘Ammonium dinitramide(ADN)based liquid monopropellants have been identified as environmentally benign substitutes for hydrazine monopropellant.However,new catalysts are to be developed for making ADN monopropellants cold-start capable.In the present study,performance of Co and Ba doped CuCr_2O_4 nanocatalysts prepared by hydrothermal method was evaluated on the decomposition of aqueous ADN solution and ADN liquid monopropellant(LMP103X).The catalysts were characterized by PXRD(Powder X-ray Diffraction),FTIR(Fourier Transform Infrared spectroscopy),SEM(Scanning Electron Microscopy),TEM(Transmission Electron Microscopy),EDS(Energy Dispersive X-ray Spectroscopy),and XPS(X-ray Photoelectron Spectroscopy).The nanosize was confirmed by SEM and TEM,while the nanoflake morphology was confirmed by the SEM analysis.Further,we obtained the elemental composition from the EDS analysis.We investigated the catalytic activity of the catalysts by thermogravimetric(TG)analysis and the developed catalysts lowered the decomposition temperature of ADN monopropellant by about 55℃.The XPS analysis confirmed the presence of metal ions with different chemical states.Apparently,increase in the surface area of the catalysts and the mixed active sites as well as the development of oxygen vacancy on the catalyst surface introduced by metal doping are influencing the decomposition temperature of ADN samples.
基金supported by the Natural Science Foundation of Jiangsu Province(BK20200800)the National Natural Science Foundation of China(22209075,51902165,12004145)+1 种基金the Natural Science Foundation of Jiangxi Province(20212BAB214032,20192ACBL20048)the Key Science and Technology Plan Project of Ji’an City(20211-015311)。
文摘Spinel LiNi_(0.5)Mn_(1.5)O_(4)(LNMO),a 5 V class high voltage cathode,has been regarded as an attractive candidate to further improve the energy density of lithium-ion battery.The issue simultaneously enabling side stability and maintaining high interfacial kinetics,however,has not yet been resolved.Herein,we design a coherent Li_(1.3)A_(l0.3)Ti_(1.7)(PO)_(4)(LATP)layer that is crystally connected to the spinel LNMO host lattices,which offers fast lithium ions transportation as well as enhances the mechanical stability that prevents the particle fracture.Furthermore,the inactive Li_(3)BO_(3)(LBO)coating layer inhibits the corrosion of transition metals and continuous side reactions.Consequently,the coherent-engineered LNMO-LATPLBO cathode material exhibits superior electrochemical cycling stability in a window of 3.0–5.0 V,for example a high-capacity retention that is 89.7%after 500 cycles at 200 m A g-1obtained and enhanced rate performance(85.1 m A h g^(-1)at 800 m A g^(-1))when tested with a LiPF6-based carbonate electrolyte.Our work presents a new approach of engineering 5 V class spinel oxide cathode that combines interfacial coherent crystal lattice design and surface coating.