期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
The effects of various factors on spontaneous imbibition in tight oil reservoirs
1
作者 Cheng Liu Tian-Ru Wang +3 位作者 Qing You Yue-Chun Du Guang Zhao Cai-Li Dai 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期315-326,共12页
Slickwater fracturing fluids have gained widespread application in the development of tight oil reservoirs. After the fracturing process, the active components present in slickwater can directly induce spontaneous imb... Slickwater fracturing fluids have gained widespread application in the development of tight oil reservoirs. After the fracturing process, the active components present in slickwater can directly induce spontaneous imbibition within the reservoir. Several variables influence the eventual recovery rate within this procedure, including slickwater composition, formation temperature, degree of reservoir fracture development, and the reservoir characteristics. Nonetheless, the underlying mechanisms governing these influences remain relatively understudied. In this investigation, using the Chang-7 block of the Changqing Oilfield as the study site, we employ EM-30 slickwater fracturing fluid to explore the effects of the drag-reducing agent concentration, imbibition temperature, core permeability, and core fracture development on spontaneous imbibition. An elevated drag-reducing agent concentration is observed to diminish the degree of medium and small pore utilization. Furthermore, higher temperatures and an augmented permeability enhance the fluid flow properties, thereby contributing to an increased utilization rate across all pore sizes. Reduced fracture development results in a lower fluid utilization across diverse pore types. This study deepens our understanding of the pivotal factors affecting spontaneous imbibition in tight reservoirs following fracturing. The findings act as theoretical, technical, and scientific foundations for optimizing fracturing strategies in tight oil reservoir transformations. 展开更多
关键词 Tight oil reservoir spontaneous imbibition Nuclear magnetic resonance Slickwater fracturing fluid Fluid utilization degree
下载PDF
Quantitative characterization of shale pore connectivity and controlling factors using spontaneous imbibition combined with nuclear magnetic resonance T_(2)and T_(1)-T_(2)
2
作者 Peng-Fei Zhang Shuang-Fang Lu +7 位作者 Jun-Qian Li Xiang-Chun Chang Jun-Jian Zhang Yu-Mao Pang Zi-Zhi Lin Guo Chen Ya-Jie Yin Yu-Qi Liu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期1947-1960,共14页
Shale oil can be extracted from shale by using interconnected pore networks.The migration of hydrocarbon molecules within the shale is controlled by pore connectivity.However,assessing the pore connectivity of shale o... Shale oil can be extracted from shale by using interconnected pore networks.The migration of hydrocarbon molecules within the shale is controlled by pore connectivity.However,assessing the pore connectivity of shale oil reservoirs is uncommon.To characterize pore connectivity and clarify its controlling factors,this study used spontaneous imbibition(SI)combined with nuclear magnetic resonance(NMR)T_(2)and T_(1)-T_(2)technologies on shale oil reservoirs selected from the Shahejie Formation in the Dongying Sag,Bohai Bay Basin.According to the findings,the SI processes of shales include fast-rising,slow-rising,and stable stages.The fast-rising stage denotes pore connectivity.The shales studied have poor connectivity,with lower imbibition slopes and connected porosity ratios,but large effective tortuosity.During the SI process,micropores have the highest imbibition saturation,followed by mesopores and macropores.Furthermore,n-dodecane ingested into micropores appears primarily as adsorbed,whereas n-dodecane appears primarily as free states in mesopores and macropores during the SI process.The pore connectivity of the shales under study is primarily controlled by inorganic minerals.Quartz and feldspar develop large and regular pores,resulting in better pore connectivity,whereas clay minerals and calcite with plenty of complex intragranular pores do not.Organic matter negatively influences pore connectivity because the dissolution of calcite by organic acid produced during hydrocarbon generation leads to a more complex and heterogeneous pore structure.This study sheds light on the pore connectivity and controlling factors of the shale oil reservoir and aids in the understanding of shale oil mobility. 展开更多
关键词 Pore connectivity spontaneous imbibition Nuclear magnetic resonance Mercury intrusion capillary pressure Shale oil reservoir
下载PDF
Enhancing the spontaneous imbibition rate of water in oil-wet dolomite rocks through boosting a wettability alteration process using carbonated smart brines 被引量:4
3
作者 Ehsan Ghandi Rafat Parsaei Masoud Riazi 《Petroleum Science》 SCIE CAS CSCD 2019年第6期1361-1373,共13页
Most fractured carbonate oil reservoirs have oil-wet rocks.Therefore,the process of imbibing water from the fractures into the matrix is usually poor or basically does not exist due to negative capillary pressure.To a... Most fractured carbonate oil reservoirs have oil-wet rocks.Therefore,the process of imbibing water from the fractures into the matrix is usually poor or basically does not exist due to negative capillary pressure.To achieve appropriate ultimate oil recovery in these reservoirs,a water-based enhanced oil recovery method must be capable of altering the wettability of matrix blocks.Previous studies showed that carbonated water can alter wettability of carbonate oil-wet rocks toward less oil-wet or neutral wettability conditions,but the degree of modification is not high enough to allow water to imbibe spontaneously into the matrix blocks at an effective rate.In this study,we manipulated carbonated brine chemistry to enhance its wettability alteration features and hence to improve water imbibition rate and ultimate oil recovery upon spontaneous imbibition in dolomite rocks.First,the contact angle and interfacial tension(IFT)of brine/crude oil systems were measured for several synthetic brine samples with different compositions.Thereafter,two solutions with a significant difference in WAI(wettability alteration index)but approximately equal brine/oil IFT were chosen for spontaneous imbibition experiments.In the next step,spontaneous imbibition experiments at ambient and high pressures were conducted to evaluate the ability of carbonated smart water in enhancing the spontaneous imbibition rate and ultimate oil recovery in dolomite rocks.Experimental results showed that an appropriate adjustment of the imbibition brine(i.e.,carbonated smart water)chemistry improves imbibition rate of carbonated water in oil-wet dolomite rocks as well as the ultimate oil recovery. 展开更多
关键词 spontaneous imbibition Carbonated smart water Wettability alteration Enhanced oil recovery Dolomite rocks
下载PDF
Mechanism of active silica nanofluids based on interface-regulated effect during spontaneous imbibition 被引量:2
4
作者 Xu-Guang Song Ming-Wei Zhao +2 位作者 Cai-Li Dai Xin-Ke Wang Wen-Jiao Lv 《Petroleum Science》 SCIE CAS CSCD 2021年第3期883-894,共12页
The ultra-low permeability reservoir is regarded as an important energy source for oil and gas resource development and is attracting more and more attention.In this work,the active silica nanofuids were prepared by m... The ultra-low permeability reservoir is regarded as an important energy source for oil and gas resource development and is attracting more and more attention.In this work,the active silica nanofuids were prepared by modifed active silica nanoparticles and surfactant BSSB-12.The dispersion stability tests showed that the hydraulic radius of nanofuids was 58.59 nm and the zeta potential was−48.39 mV.The active nanofuids can simultaneously regulate liquid-liquid interface and solid-liquid interface.The nanofuids can reduce the oil/water interfacial tension(IFT)from 23.5 to 6.7 mN/m,and the oil/water/solid contact angle was altered from 42°to 145°.The spontaneous imbibition tests showed that the oil recovery of 0.1 wt%active nanofuids was 20.5%and 8.5%higher than that of 3 wt%NaCl solution and 0.1 wt%BSSB-12 solution.Finally,the efects of nanofuids on dynamic contact angle,dynamic interfacial tension and moduli were studied from the adsorption behavior of nanofuids at solid-liquid and liquid-liquid interface.The oil detaching and transporting are completed by synergistic efect of wettability alteration and interfacial tension reduction.The fndings of this study can help in better understanding of active nanofuids for EOR in ultra-low permeability reservoirs. 展开更多
关键词 Active nanofuids Regulate interface Ultra-low permeability spontaneous imbibition
下载PDF
Spontaneous imbibition characteristics of shale oil reservoir under the influence of osmosis
5
作者 Yuliang Su Qinghao Sun +6 位作者 Wendong Wang Xincheng Guo Jilong Xu Guanqun Li Xiugang Pu Wenzhong Han Zhannan Shi 《International Journal of Coal Science & Technology》 EI CAS CSCD 2022年第5期48-58,共11页
The spontaneous imbibition(SI)process in shale oil reservoirs is not only infuenced by capillary force,but also by the osmotic pressure between the fracturing fuid and formation water in the nanopores media.In this st... The spontaneous imbibition(SI)process in shale oil reservoirs is not only infuenced by capillary force,but also by the osmotic pressure between the fracturing fuid and formation water in the nanopores media.In this study,experimental methods are used to investigate the mechanisms of osmosis in the SI,taking into account the presence of initial formation water in shale oil reservoirs.To investigate the efect of osmosis,SI experiments were performed on the fne-grained felsic shale of the Qikou sag of Dagang oilfeld.Low-feld NMR testers and high-precision electronic balances are utilized for the measuring of oil–water migration.The results show that,when Sw≠0,high-salinity fuid SI can be divided into four stages:initial imbibition stage,drainage stage,secondary imbibition stage and stationary stage;when Sw=0,there is no drainage stage of high-salinity fuid SI;when Sw≠0 or Sw=0,low-salinity fuid SI can be called the“osmosis-enhanced SI”;and we have found that“newly formed pores or microfractures”as well as reducing salinity can promote SI.This article presents a systematic study of SI of shale oil reservoirs under the infuence of osmosis,which provide useful information for reservoir numerical simulation and development program design. 展开更多
关键词 Shale oil spontaneous imbibition Osmosis Water saturation CAPILLARITY
下载PDF
Spontaneous Imbibition of Water and Determination of Effective Contact Angles in the Eagle Ford Shale Formation Using Neutron Imaging 被引量:1
6
作者 Victoria H.DiStefano Michael C.Cheshire +11 位作者 Joanna McFarlane Lindsay M.Kolbus Richard E.Hale Edmund Perfect Hassina Z.Bilheux Louis J.Santodonato Daniel S.Hussey David L.Jacobson Jacob M.LaManna Philip R.Bingham Vitaliy Starchenko Lawrence M.Anovitz 《Journal of Earth Science》 SCIE CAS CSCD 2017年第5期874-887,共14页
Understanding of fundamental processes and prediction of optimal parameters during the horizontal drilling and hydraulic fracturing process results in economically effective improvement of oil and natural gas extracti... Understanding of fundamental processes and prediction of optimal parameters during the horizontal drilling and hydraulic fracturing process results in economically effective improvement of oil and natural gas extraction. Although modern analytical and computational models can capture fracture growth, there is a lack of experimental data on spontaneous imbibition and wettability in oil and gas reservoirs for the validation of further model development. In this work, we used neutron imaging to measure the spontaneous imbibition of water into fractures of Eagle Ford shale with known geometries and fracture orientations. An analytical solution for a set of nonlinear second-order differential equations was applied to the measured imbibition data to determine effective contact angles. The analytical solution fit the measured imbibition data reasonably well and determined effective contact angles that were slightly higher than static contact angles due to effects of in-situ changes in velocity, surface roughness, and heterogeneity of mineral surfaces on the fracture surface. Additionally, small fracture widths may have retarded imbibition and affected model fits, which suggests that average fracture widths are not satisfactory for modeling imbibition in natural systems. 展开更多
关键词 spontaneous imbibition effective contact angle neutron imaging Eagle Ford shale rock fractures
原文传递
Enhanced oil recovery by low-salinity water spontaneous imbibition (LSW-SI) in a typical tight sandstone formation of mahu sag from core scale to field scale
7
作者 Bing Wei Lele Wang +2 位作者 Tao Song Mengying Zhong Mikhail A.Varfolomeev 《Petroleum》 CSCD 2021年第3期272-281,共10页
Accelerating mass exchange between matrix and fractures is the essence of enhanced oil recovery(EOR)in tight formations after natural depletion.Low salinity water(LSW)injection has been commerciallyproven in conventio... Accelerating mass exchange between matrix and fractures is the essence of enhanced oil recovery(EOR)in tight formations after natural depletion.Low salinity water(LSW)injection has been commerciallyproven in conventional reservoirs EOR,with scale projects in progress worldwide.There is,however,a lack of understanding of the EOR effect in tight formations.Therefore,in this work,we introduced LSWEOR to a target tight formation using huff-puff mode.Spontaneous imbibition(SI)tests were firstly performed on homogenous Berea sandstone cores with decreasing salinity brine to observe the production response.The results indicated that the oil recovery of the tight rock was boosted by tuning brine salinity.Of all the used brines with salinity ranging from 0.021%to 2.1%TDS(total dissolved salinity),the 0.21%TDS brine showed a rapid increase in oil production over imbibing time,which finally led to an incremental oil recovery of 4.5%OOIP(original oil in place).Core-scale modeling was conducted by history-matching the oil recovery dynamics of the SI results through modifying capillary pressure and relative permeability.A full-scale reservoir model was constructed using micro-seismic data to model fracture geometry combing fracturing results and scaling parameters obtained from core scale historymatching.It is proven that LSW huff-n-puff stimulated the oil production after natural depletion and improved MEE(mass exchange efficiency)of the target formation,but the EOR benefit was not comparable to CO2 and surfactant-assisted water huff-puff methods. 展开更多
关键词 Fractured tight formation Enhanced oil recovery Low-salinity effect spontaneous imbibition Huff-n-puff
原文传递
Countercurrent imbibition in low-permeability porous media: Nondiffusive behavior and implications in tight oil recovery
8
作者 Song-Chao Qi Hai-Yang Yu +6 位作者 Xiao-Bing Han Hang Xu Tian-Bo Liang Xu Jin Xue-Feng Qu Yu-Jing Du Ke Xu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期322-336,共15页
Countercurrent imbibition is an important mechanism for tight oil recovery,that is,water imbibes spontaneously from the fracture into the porous matrix while oil flows reversely into the fracture.Its significance over... Countercurrent imbibition is an important mechanism for tight oil recovery,that is,water imbibes spontaneously from the fracture into the porous matrix while oil flows reversely into the fracture.Its significance over cocurrent imbibition and forced imbibition is highlighted when permeability reduces.We used the computed tomography(CT)scanning to measure the one-dimensional evolution of water saturation profile and countercurrent imbibition distance(CID)at different fluid pressures,initial water saturations,and permeability.Surprisingly,experiments show that CID evolution for tight reservoir cores dramatically deviates from the classical diffusive rule(i.e.,evolutes proportional to square root of time,t^(0.5)).At early stage,CID extends faster than t^(0.5)(super-diffusive);while at late stage,CID extends much slower than t^(0.5)(sub-diffusive).After tens of hours,the CID change becomes too slow to be practically efficient for tight oil recovery.This research demonstrates that this deviation from classic theory is a result of(1)a much longer characteristic capillary length than effective invasion depth,which eliminates full development of a classical displacement front;and(2)non-zero flow at low water saturation,which was always neglected for conventional reservoir and is amplified in sub-mili-Darcy rocks.To well depict the details of the imbibition front in this situation,we introduce non-zero wetting phase fluidity at low saturation into classical countercurrent imbibition model and conduct numerical simulations,which successfully rationalizes the non-diffusive behavior and fits experimental data.Our data and theory imply an optimum soaking time in tight oil recovery by countercurrent imbibition,beyond which increasing exposed fracture surface area becomes a more efficient enhanced oil recovery(EOR)strategy than soaking for longer time. 展开更多
关键词 Countercurrent spontaneous imbibition Tight reservoir imbibition mechanism Tight oil development
下载PDF
The enhancement of performance and imbibition effect of slickwater-based fracturing fluid by using MoS_(2)nanosheets
9
作者 Hang Xu Yuan Li +6 位作者 Guo-Lin Yu Sa-Sa Yang Bo-Jun Li Fu-Jian Zhou Er-Dong Yao Hao Bai Zhi-Yu Liu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第4期2187-2201,共15页
Slickwater-based fracturing fluid has recently garnered significant attention as the major fluid for volumetric fracturing;however,lots of challenges and limitations such as low viscosity,poor salt tolerance,and possi... Slickwater-based fracturing fluid has recently garnered significant attention as the major fluid for volumetric fracturing;however,lots of challenges and limitations such as low viscosity,poor salt tolerance,and possible formation damage hinder the application of the conventional simple slickwater-based fracturing fluid.In addition,nanomaterials have proven to be potential solutions or improvements to a number of challenges associated with the slickwater.In this paper,molybdenum disulfide(MoS_(2))nanosheets were chemically synthesized by hydrothermal method and applied to improve the performance of conventional slickwater-based fracturing fluid.Firstly,the microstructure characteristics and crystal type of the MoS_(2)nanosheets were analyzed by SEM,EDS,TEM,XPS,and Raman spectroscopy techniques.Then,a series of evaluation experiments were carried out to compare the performance of MoS_(2)nanosheet-modified slickwater with the conventional slickwater,including rheology,drag reduction,and sand suspension.Finally,the enhanced imbibition capacity and potential mechanism of the nanosheet-modified slickwater were systematically investigated.The results showed that the self-synthesized MoS_(2)nanosheets displayed a distinct ultrathin flake-like morphology and a lateral size in the range of tens of nanometers.In the nano-composites,each MoS_(2)nanosheet plays the role of cross-linking point,so as to make the spatial structure of the entire system more compact.Moreover,nanosheet-modified slickwater demonstrates more excellent properties in rheology,drag reduction,and sand suspension.The nanosheet-modified slickwater has a higher apparent viscosity after shearing 120 min under 90℃ and 170 s^(−1).The maximum drag reduction rate achieved 76.3%at 20℃,and the sand settling time of proppants with different mesh in the nano-composites was prolonged.Spontaneous imbibition experiments showed that the gel-breaking fluid of nanosheet-modified slickwater exhibited excellent capability of oil-detaching,and increase the oil recovery to∼35.43%.By observing and analyzing the interfacial behavior of MoS_(2)nanosheets under stimulated reservoir conditions,it was found that the presence of an interfacial tension gradient and the formation of a climbing film may play an essential role in the spontaneous imbibition mechanism.This work innovatively uses two-dimensional MoS_(2)nanosheets to modify regular slickwater and confirms the feasibility of flake-like nanomaterials to improve the performance of slickwater.The study also reveals the underlying mechanism of enhanced imbibition efficiency of the nano-composites. 展开更多
关键词 Slickwater-based fracturing fluid MoS_(2)nanosheet Performance evaluation spontaneous imbibition Climbing film
下载PDF
Pore scale numerical investigation of counter-current spontaneous imbibition in multi-scaled pore networks
10
作者 Yuchen Wu Xiukun Wang +1 位作者 Chaofan Zhang Chenggang Xian 《Petroleum》 EI 2023年第4期558-571,共14页
The multi-scaled pore networks of shale or tight reservoirs are considerably different from the conventional sandstone reservoirs.After hydraulic fracturing treatment,the spontaneous imbibition process plays an import... The multi-scaled pore networks of shale or tight reservoirs are considerably different from the conventional sandstone reservoirs.After hydraulic fracturing treatment,the spontaneous imbibition process plays an important role in the productivity of the horizontal wells.Applying the color-gradient model of Lattice Boltzmann Method(LBM)accelerated with parallel computing,we studied the countercurrent spontaneous imbibition process in two kinds of pore structures with different interlacing distributions of large and small pores.The effect of geometry configuration of pore arrays with different pore-scale and the capillary number Ca on the mechanism of counter-current spontaneous imbibition as well as the corresponding oil recovery factor are studied.We found that the wetting phase tends to invade the small pore array under small Ca in both types of geometry configurations of different pore arrays of four pore arrays zones.The wetting phase also tends to invade the pore array near the inlet for injecting the wetting phase no matter if it is a large pore array or small pore array except for the situation when the Ca is large to a certain value.In this situation,the small pore arrays show resistance to the wetting phase,so the wetting phase doesn't invade the small pore near the inlet,but invades the large pore preferentially.Both the geometry configurations of different pore arrays and Ca have a significant effect on the oil recovery factor.This work will help to solve the doubt about the selectivity of the multi-scaled pores of the wetting phase and the role of pores with different sizes in imbibition and oil draining in countercurrent spontaneous imbibition processes. 展开更多
关键词 Countercurrent spontaneous imbibition Multi-scaled pore structures Selectivity of wetting phase to pore size Lattice Boltzmann method
原文传递
Quantitative investigation of nanofluid imbibition in tight oil reservoirs based on NMR technique
11
作者 Tian-Tian Zhang Zhi-Ping Li +3 位作者 Caspar Daniel Adenutsi Yong-Zhou Wei Zhen-Fu Ma Qing You 《Petroleum Science》 SCIE CAS CSCD 2022年第5期2185-2198,共14页
Nanofluids have been effective chemical additives for enhanced oil recovery(EOR)in tight oil reservoirs due to their special properties.However,oil imbibition recoveries vary for different nanofluids.The oil/water dis... Nanofluids have been effective chemical additives for enhanced oil recovery(EOR)in tight oil reservoirs due to their special properties.However,oil imbibition recoveries vary for different nanofluids.The oil/water distribution in rocks during imbibition using various nanofluids was less discussed in previous studies.In this study,we systematically examined the imbibition efficiencies of various nanofluids at60℃.Furthermore,the migration of nanofluids and oil distribution in the rock pores were monitored using nuclear magnetic resonance(NMR).The nanofluids were prepared by dispersing silica nanoparticles and five different types of surfactants i.e.,anionic-nonionic,anionic,nonionic,amphoteric and cationic surfactants in deionized(DI)water.Subsequently,interfacial tension(IFT)and contact angle measurements were conducted to reveal the underlying EOR mechanisms of various nanofluids.The experimental results showed that the EOR potential of the different types of nanofluids was in the order anionic-nonionic>anionic>nonionic>amphoteric>cationic>brine.Anionic-nonionic(sodium lauryl ether sulfate(SLES))and anionic(sodium dodecyl sulfonate(SDS))nanofluids exhibited excellent capability of wettability alteration,and increased oil recovery by 27.96%and 23.08%,respectively,compared to brine.The NMR results also showed that mesopores(0.1-1μm)were the dominant developed pores in the rocks,and contributed the most to imbibition efficiency.In addition,the imbibition of nanofluids initially took place in mesopores and micropores before moving into macropores.This study provides fundamental information on the selection of nanofluids for EOR in tight oil reservoirs.The study also improved the understanding of oil/water distribution during the imbibition of the proposed nanofluids. 展开更多
关键词 Nanofluids spontaneous imbibition Nuclear magnetic resonance(NMR) Oil migration Tight oil reservoir
下载PDF
A novel triple responsive smart fluid for tight oil fracturing-oil expulsion integration
12
作者 Ming-Wei Gao Ming-Shan Zhang +5 位作者 Heng-Yi Du Ming-Wei Zhao Cai-Li Dai Qing You Shun Liu Zhe-Hui Jin 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期982-992,共11页
The traditional multi-process to enhance tight oil recovery based on fracturing and huff-n-puff has obvious deficiencies,such as low recovery efficiency,rapid production decline,high cost,and complexity,etc.Therefore,... The traditional multi-process to enhance tight oil recovery based on fracturing and huff-n-puff has obvious deficiencies,such as low recovery efficiency,rapid production decline,high cost,and complexity,etc.Therefore,a new technology,the so-called fracturing-oil expulsion integration,which does not need flowback after fracturing while making full use of the fracturing energy and gel breaking fluids,are needed to enable efficient exploitation of tight oil.A novel triple-responsive smart fluid based on“pseudo-Gemini”zwitterionic viscoelastic surfactant(VES)consisting of N-erucylamidopropyl-N,N-dimethyl-3-ammonio-2-hydroxy-1-propane-sulfonate(EHSB),N,N,N′,N′-tetramethyl-1,3-propanediamine(TMEDA)and sodium p-toluenesulfonate(NaPts),is developed.Then,the rheology of smart fluid is systematically studied at varying conditions(CO_(2),temperature and pressure).Moreover,the mechanism of triple-response is discussed in detail.Finally,a series of fracturing and spontaneous imbibition performances are systematically investigated.The smart fluid shows excellent CO_(2)-,thermal-,and pressure-triple responsive behavior.It can meet the technical requirement of tight oil fracturing construction at 140°C in the presence of 3.5 MPa CO_(2).The gel breaking fluid shows excellent spontaneous imbibition oil expulsion(∼40%),salt resistance(1.2×104 mg/L Na+),temperature resistance(140°C)and aging stability(30 days). 展开更多
关键词 Fracturing-oil expulsion integration Tight oil Triple responsive smart fluid "Pseudo-gemini"zwitterionic surfactant Fracturing fluid spontaneous imbibition
下载PDF
Investigation of the effect of diethylene triamine pentaacetic acid chelating agent as an enhanced oil recovery fluid on wettability alteration of sandstone rocks
13
作者 PARHIZGAR KERADEH Mahsa TABATABAEI-NEZHAD Seyyed Alireza 《Petroleum Exploration and Development》 SCIE 2023年第3期675-687,共13页
This study used the diethylene triamine pentaacetic acid(DTPA)-seawater(SW)system to modify the sandstone rock wettability and enhance oil recovery.The investigation involved conducting wettability measurement,Zeta po... This study used the diethylene triamine pentaacetic acid(DTPA)-seawater(SW)system to modify the sandstone rock wettability and enhance oil recovery.The investigation involved conducting wettability measurement,Zeta potential measurement,and spontaneous imbibition experiment.The introduction of 5%DTPA-sW solution resulted in a significant decrease in the rock-oil contact angle from 143°to 23,along with a reduction in the Zeta potential from-2.29 mV to-13.06 mV,thereby altering the rock surface charge and shifting its wettability from an oil-wet state to a strongly water-wet state.The presence or absence of potential determining ions(Ca^(2+),Mg^(2+),SO_(4)^(2-))in the solution did not impact the effectiveness of DTPA in changing the rock wettability.However,by tripling the concentration of these ions in the solution,the performance of 5%DTPA-SW solution in changing wettability was impaired.Additionally,spontaneous imbibition tests demonstrated that the 5%DTPA-SW solution led to an increase in oil recovery up to 39.6%.Thus,the optimum mass fraction of DTPA for changing sandstone wettability was determined to be5%. 展开更多
关键词 wettability alteration DTPA chelating agent Zeta potential spontaneous imbibition enhanced oil recovery
下载PDF
The prediction of spontaneous oil-water imbibition in composite capillary
14
作者 Lin Wang Feiying Ma +1 位作者 Yongming He Dawei Liu 《Petroleum》 EI CSCD 2022年第1期84-91,共8页
In view of the classical Lucas-Washburn equation,which can only describe the spontaneous imbibition of single wetted capillary,a tilted composite capillary model with circular cross section,composed of different wetta... In view of the classical Lucas-Washburn equation,which can only describe the spontaneous imbibition of single wetted capillary,a tilted composite capillary model with circular cross section,composed of different wettability capillary wall was established.The model can describe the spontaneous oil-water imbibition of water-wet capillary,oil-wet capillary and mixed wetting capillary.Through numerical solution of the model equation,it is found that the component content of the capillary walls,the capillary radius and the oil-water viscosity ratio have great effects on the spontaneous oil-water imbibition.Effects of capillary inclination angle and inertia force on spontaneous oil-water imbibition are related to the capillary scale.Effects of capillary inclination angle and inertia force can be ignored in small radius capillary,while effects of inclination angle and inertia force can not be ignored in large radius capillary. 展开更多
关键词 Non-homogeneous wettability Composite capillary walls spontaneous imbibition Oil and water Lucas-Washburn equation
原文传递
Experimental study on preparation of nanoparticle-surfactant nanofluids and their effects on coal surface wettability 被引量:5
15
作者 Gang Wang Yanqing Li +3 位作者 Enmao Wang Qiming Huang Shibin Wang Huaixing Li 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2022年第2期387-397,共11页
To improve the efficiency of coal seam water injection,the influence of nanofluids on coal surface wettability was studied based on the nano drag reduction and injection enhancement technology in the field of tertiary... To improve the efficiency of coal seam water injection,the influence of nanofluids on coal surface wettability was studied based on the nano drag reduction and injection enhancement technology in the field of tertiary oil recovery.The composition optimization and performance evaluation of nanofluids with nano-silica and sodium lauryl sulfate as the main components were carried out,and the effects of the nanofluid with the optimal ratio on coal wettability were studied through spontaneous upward imbibition experiments.The results show that the composite nanofluid has a lower surface tension,and the lowest value of the interfacial tension is 15.79 m N/m.Therefore,the composite nanofluid can enhance the wettability of coal.However,its effects on coal samples with different metamorphic degrees is different,that is,low rank coal is the largest,middle rank coal is the second,and high rank coal is the least.In addition,a functional relationship between time and imbibition height is found for pulverized coal with different particle sizes.When the particle size of pulverized coal is 60–80 mesh,the wettability of nanofluid to coal is best.The findings in this paper provide a new perspective for improving the water injection efficiency for coal seams with low permeability. 展开更多
关键词 Silica nanoparticles Composite nanofluids Hydrophobic modification Surface tension spontaneous upward imbibition
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部