Solution and quenching heat treatments are generally carried out in a roller hearth furnace for large-scale thick aluminum alloy plates.However,the asymmetric or uneven spray water flow rate is inevitable under indust...Solution and quenching heat treatments are generally carried out in a roller hearth furnace for large-scale thick aluminum alloy plates.However,the asymmetric or uneven spray water flow rate is inevitable under industrial production conditions,which leads to an asymmetric residual stress distribution.The spray quenching treatment was conducted on self-designed spray equipment,and the residual stress along the thickness direction was measured by a layer removal method based on deflections.Under the asymmetric spray quenching condition,the subsurface stress of the high-flow rate surface was lower than that of the low-flow rate surface,and the difference between the two subsurface stresses increased with the increase in the difference in water flow rates.The subsurface stress underneath the surface with a water flow rate of 0.60 m^(3)/h was 15.38 MPa less than that of 0.15 m^(3)/h.The simulated residual stress by finite element(FE)method of the high heat transfer coefficient(HTC)surface was less than that of the low HTC surface,which is consistent with the experimental results.The FE model can be used to analyze the strain and stress evolution and predict the quenched stress magnitude and distribution.展开更多
A finite element method (FEM) procedure was developed in order to simulatethe quenching process for drilling pipe (DP). The calculating model was based ontime-temperature-transformation (TTT) diagrams, and incorporate...A finite element method (FEM) procedure was developed in order to simulatethe quenching process for drilling pipe (DP). The calculating model was based ontime-temperature-transformation (TTT) diagrams, and incorporated with material properties dependenton temperature. The procedure was used to calculate the temperature-time histories, describe thephase transformations of atomizing spray quenching for DP in the welding zone, and predict thehardness distribution in radius direction after quenching in the zone. The calculated results metwell with that of experiments. It was easy to determine the parameters such as volume and pressureof the cooling water and compressed gas by use of the numerical calculation and experiments, becausethe value of convection coefficient was decided greatly by the mixture of the cooling water andcompressed gas. Moreover, the simulating results were helpful not only to design the quenchingequipment, but also to optimize the quenching process for DP's welding zone.展开更多
基金financially supported by the National Key Research and Development Program of China(No.2020YFF0218200)。
文摘Solution and quenching heat treatments are generally carried out in a roller hearth furnace for large-scale thick aluminum alloy plates.However,the asymmetric or uneven spray water flow rate is inevitable under industrial production conditions,which leads to an asymmetric residual stress distribution.The spray quenching treatment was conducted on self-designed spray equipment,and the residual stress along the thickness direction was measured by a layer removal method based on deflections.Under the asymmetric spray quenching condition,the subsurface stress of the high-flow rate surface was lower than that of the low-flow rate surface,and the difference between the two subsurface stresses increased with the increase in the difference in water flow rates.The subsurface stress underneath the surface with a water flow rate of 0.60 m^(3)/h was 15.38 MPa less than that of 0.15 m^(3)/h.The simulated residual stress by finite element(FE)method of the high heat transfer coefficient(HTC)surface was less than that of the low HTC surface,which is consistent with the experimental results.The FE model can be used to analyze the strain and stress evolution and predict the quenched stress magnitude and distribution.
文摘A finite element method (FEM) procedure was developed in order to simulatethe quenching process for drilling pipe (DP). The calculating model was based ontime-temperature-transformation (TTT) diagrams, and incorporated with material properties dependenton temperature. The procedure was used to calculate the temperature-time histories, describe thephase transformations of atomizing spray quenching for DP in the welding zone, and predict thehardness distribution in radius direction after quenching in the zone. The calculated results metwell with that of experiments. It was easy to determine the parameters such as volume and pressureof the cooling water and compressed gas by use of the numerical calculation and experiments, becausethe value of convection coefficient was decided greatly by the mixture of the cooling water andcompressed gas. Moreover, the simulating results were helpful not only to design the quenchingequipment, but also to optimize the quenching process for DP's welding zone.