Assessing the impact of climate change(CC)on agricultural production systems is mainly done using crop models associated with climate model outputs.This review is one of the few,with the main objective of providing a ...Assessing the impact of climate change(CC)on agricultural production systems is mainly done using crop models associated with climate model outputs.This review is one of the few,with the main objective of providing a recent compendium of CC impact studies on irrigation needs and rice yields for a better understanding and use of climate and crop models.We discuss the strengths and weaknesses of climate impact studies on agricultural production systems,with a particular focus on uncertainty and sensitivity analyses of crop models.Although the new generation global climate models(GCMs)are more robust than previous ones,there is still a need to consider the effect of climate uncertainty on estimates when using them.Current GCMs cannot directly simulate the agro-climatic variables of interest for future irrigation assessment,hence the use of intelligent climate tools.Therefore,sensitivity and uncertainty analyses must be applied to crop models,especially for their calibration under different conditions.The impacts of CC on irrigation needs and rice yields vary across regions,seasons,varieties and crop models.Finally,integrated assessments,the use of remote sensing data,climate smart tools,CO_(2)enrichment experiments,consideration of changing crop management practices and multi-scale crop modeling,seem to be the approaches to be pursued for future climate impact assessments for agricultural systems。展开更多
Worldwide,forests are vital in the regulation of the water cycle regulation and in water balance allocation.Knowledge of ecohydrological responses of production forests is essential to support management strategies,es...Worldwide,forests are vital in the regulation of the water cycle regulation and in water balance allocation.Knowledge of ecohydrological responses of production forests is essential to support management strategies,especially where water is already scarce.Shifting climatological patterns are expected to impact thermopluviometric regimes,water cycle components,hydrological responses,and plant physiology,evapotranspiration rates,crop productivity and land management operations.This work(1)assessed the impacts of different predicted climate conditions on water yield;(2)inferred the impacts of climate change on biomass production on eucalypt-to-eucalypt succes sion.To this end,the widely accepted Soil and Water Assessment Tool(SWAT)was run with the RCA,HIRHAM5 and RACMO climate models for two emission scenarios(RCP 4.5 and8.5).Three 12-year periods were considered to simulate tree growth under coppice regime.The results revealed an overall reduction in streamflow and water yield in the catchment in line with the projected reduction in total annual precipitation.Moreover,HIRHAM5 and RACMO models forecast a slight shift in seasonal streamflow of up to 2 months(for2024-2048)in line with the projected increase in precipitation from May to September.For biomass production,the extreme climate model(RCA)and severe emis sion scenario(RCP 8.5)predicted a decrease up to 46%.However,in the less extreme and more-correlated(with actual catchment climate conditions)climate models(RACMO and HIRHAM5)and in the less extreme emission scenario(RCP 4.5),biomass production increased(up to 20%),and the growth cycle was slightly reduced.SWAT was proven to be a valuable tool to assess climate change impacts on a eucalypt-dominated catchment and is a suitable decision-support tool for forest managers.展开更多
Pile foundations are challenging to build due to subsurface obstacles, contractor ignorance, and difficulties with site planning. Given the unpredictable environment of the construction site, productivity losses durin...Pile foundations are challenging to build due to subsurface obstacles, contractor ignorance, and difficulties with site planning. Given the unpredictable environment of the construction site, productivity losses during pile work are to be thought possible. Prior to finishing a site pre-investigation, a foundation’s area is usually sampled for statistical reasons. There are studies on pile construction outside of Bangladesh that are supported by relevant empirical data in the literature. Since Bangladesh, which is regarded as a third-world country, is ignored in this regard, the literature currently available about pile building and the associated productivity loss is unable to provide adequate information or appropriate empirical data. Due to this pile-building sector in Bangladesh has been experiencing a decline in production for quite some time now. Before attempting to increase productivity in pile construction, it is essential to investigate the potential losses and the variables that might have an influence. This study aims to accomplish the following objectives: 1) identify the primary factors that have an impact on pile construction;2) develop an SVR model that accurately predicts productivity loss;and 3) figure out the projected loss by basing it on the historical scenario that is the most comparable to the current one. A Support Vector Regression (SVR) model was developed after a study of the relevant literature. This model enabled the collection of 110 pile building projects from five significant locations in Bangladesh. The model was constructed using a list of eight inputs in addition to a list of five macro elements (labor, management, environment, material, and equipment) (soil condition, pile type, pile material, project size, project location, pile depth, pile quantity, and equipment quantity). Using 10-way cross validation, the SVR achieves an accuracy of 87.2% in its predictions. On the basis of what has occurred in the past, we are able to estimate that there will be a loss of around 18.55 percent of the total output. A new perspective for engineers studying the delay factors with productivity loss is provided by the outcome of important tasks as it relates to loss in productivity and overall factors faced. In the building construction industry, effective management should place more emphasis on the correlation between productivity loss and the factors that cause it. Therefore, to represent the effect on productivity loss, real factors can be summed up as a decline in productivity loss. The findings of the study would urge specialists to concentrate on waste as a means of increasing overall production.展开更多
Data-driven surrogate models that assist with efficient evolutionary algorithms to find the optimal development scheme have been widely used to solve reservoir production optimization problems.However,existing researc...Data-driven surrogate models that assist with efficient evolutionary algorithms to find the optimal development scheme have been widely used to solve reservoir production optimization problems.However,existing research suggests that the effectiveness of a surrogate model can vary depending on the complexity of the design problem.A surrogate model that has demonstrated success in one scenario may not perform as well in others.In the absence of prior knowledge,finding a promising surrogate model that performs well for an unknown reservoir is challenging.Moreover,the optimization process often relies on a single evolutionary algorithm,which can yield varying results across different cases.To address these limitations,this paper introduces a novel approach called the multi-surrogate framework with an adaptive selection mechanism(MSFASM)to tackle production optimization problems.MSFASM consists of two stages.In the first stage,a reduced-dimensional broad learning system(BLS)is used to adaptively select the evolutionary algorithm with the best performance during the current optimization period.In the second stage,the multi-objective algorithm,non-dominated sorting genetic algorithm II(NSGA-II),is used as an optimizer to find a set of Pareto solutions with good performance on multiple surrogate models.A novel optimal point criterion is utilized in this stage to select the Pareto solutions,thereby obtaining the desired development schemes without increasing the computational load of the numerical simulator.The two stages are combined using sequential transfer learning.From the two most important perspectives of an evolutionary algorithm and a surrogate model,the proposed method improves adaptability to optimization problems of various reservoir types.To verify the effectiveness of the proposed method,four 100-dimensional benchmark functions and two reservoir models are tested,and the results are compared with those obtained by six other surrogate-model-based methods.The results demonstrate that our approach can obtain the maximum net present value(NPV)of the target production optimization problems.展开更多
Background:As the market demands change,SMEs(small and medium-sized enterprises)have long faced many design issues,including high costs,lengthy cycles,and insufficient innovation.These issues are especially noticeable...Background:As the market demands change,SMEs(small and medium-sized enterprises)have long faced many design issues,including high costs,lengthy cycles,and insufficient innovation.These issues are especially noticeable in the domain of cosmetic packaging design.Objective:To explore innovative product family modeling methods and configuration design processes to improve the efficiency of enterprise cosmetic packaging design and develop the design for mass customization.Methods:To accomplish this objective,the basic-element theory has been introduced and applied to the design and development system of the product family.Results:By examining the mapping relationships between the demand domain,functional domain,technology domain,and structure domain,four interrelated models have been developed,including the demand model,functional model,technology model,and structure model.Together,these models form the mechanism and methodology of product family modeling,specifically for cosmetic packaging design.Through an analysis of a case study on men’s cosmetic packaging design,the feasibility of the proposed product family modeling technology has been demonstrated in terms of customized cosmetic packaging design,and the design efficiency has been enhanced.Conclusion:The product family modeling technology employs a formalized element as a module configuration design language,permeating throughout the entire development cycle of cosmetic packaging design,thus facilitating a structured and modularized configuration design process for the product family system.The application of the basic-element principle in product family modeling technology contributes to the enrichment of the research field surrounding cosmetic packaging product family configuration design,while also providing valuable methods and references for enterprises aiming to elevate the efficiency of cosmetic packaging design for the mass customization product model.展开更多
Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction ...Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction of production.In this new method,the annual production of old and new wells is predicted by year first and then is summed up to yield the production for the planning period.It shows that the changes in the production of old wells in old blocks can be fitted and predicted using the vapor pressure model(VPM),with precision of 80%e95%,which is 6.6%e13.2%higher than that of other life cycle models.Furthermore,a new production prediction process and method for new wells have been established based on this life cycle model to predict the production of medium-to-shallow gas reservoirs in western Sichuan Basin,with predication error of production rate in 2021 and 2022 being 6%and 3%respectively.The new method can be used to guide the medium-and long-term planning or annual scheme preparation for gas development.It is also applicable to planning for large single gas blocks that require continuous infill drilling and adjustment to improve gas recovery.展开更多
Climate change and forest management are recognized as pivotal factors influencing forest ecosystem services and thus multifunctionality.However,the magnitude and the relative importance of climate change and forest m...Climate change and forest management are recognized as pivotal factors influencing forest ecosystem services and thus multifunctionality.However,the magnitude and the relative importance of climate change and forest management effects on the multifunctionality remain unclear,especially for natural mixed forests.In this study,our objective is to address this gap by utilizing simulations of climate-sensitive transition matrix growth models based on national forest inventory plot data.We evaluated the effects of seven management scenarios(combinations of various cutting methods and intensities)on the future provision of ecosystem services and multifunctionality in mixed conifer-broad-leaved forests in northeastern China,under four climate scenarios(SSP1-2.6,SSP2-4.5,SSP5-8.5,and constant climate).Provisioning,regulating,cultural,and supporting services were described by timber production,carbon storage,carbon sequestration,tree species diversity,deadwood volume,and the number of large living trees.Our findings indicated that timber production was significantly influenced by management scenarios,while tree species diversity,deadwood volume,and large living trees were impacted by both climate and management separately.Carbon storage and sequestration were notably influenced by both management and the interaction of climate and management.These findings emphasized the profound impact of forest management on ecosystem services,outweighing that of climate scenarios alone.We found no single management scenario maximized all six ecosystem service indicators.The upper story thinning by 5%intensity with 5-year interval(UST5)management strategy emerged with the highest multifunctionality,surpassing the lowest values by more than 20%across all climate scenarios.In conclusion,our results underlined the potential of climate-sensitive transition matrix growth models as a decision support tool and provided recommendations for long-term strategies for multifunctional forest management under future climate change context.Ecosystem services and multifunctionality of forests could be enhanced by implementing appropriate management measures amidst a changing climate.展开更多
Since chemical processes are highly non-linear and multiscale,it is vital to deeply mine the multiscale coupling relationships embedded in the massive process data for the prediction and anomaly tracing of crucial pro...Since chemical processes are highly non-linear and multiscale,it is vital to deeply mine the multiscale coupling relationships embedded in the massive process data for the prediction and anomaly tracing of crucial process parameters and production indicators.While the integrated method of adaptive signal decomposition combined with time series models could effectively predict process variables,it does have limitations in capturing the high-frequency detail of the operation state when applied to complex chemical processes.In light of this,a novel Multiscale Multi-radius Multi-step Convolutional Neural Network(Msrt Net)is proposed for mining spatiotemporal multiscale information.First,the industrial data from the Fluid Catalytic Cracking(FCC)process decomposition using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)extract the multi-energy scale information of the feature subset.Then,convolution kernels with varying stride and padding structures are established to decouple the long-period operation process information encapsulated within the multi-energy scale data.Finally,a reconciliation network is trained to reconstruct the multiscale prediction results and obtain the final output.Msrt Net is initially assessed for its capability to untangle the spatiotemporal multiscale relationships among variables in the Tennessee Eastman Process(TEP).Subsequently,the performance of Msrt Net is evaluated in predicting product yield for a 2.80×10^(6) t/a FCC unit,taking diesel and gasoline yield as examples.In conclusion,Msrt Net can decouple and effectively extract spatiotemporal multiscale information from chemical process data and achieve a approximately reduction of 30%in prediction error compared to other time-series models.Furthermore,its robustness and transferability underscore its promising potential for broader applications.展开更多
Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory...Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory of tortuous capillary bundles and can take into account multiple gas flow mechanisms at the micrometer and nanometer scales,as well as the flow characteristics in different types of thin layers(tight sandstone gas,shale gas,and coalbed gas).Moreover,a source-sink function concept and a pressure drop superposition principle are utilized to introduce a coupled flow model in the reservoir.A semi-analytical solution for the production rate is obtained using a matrix iteration method.A specific well is selected for fitting dynamic production data,and the calculation results show that the tight sandstone has the highest gas production per unit thickness compared with the other types of reservoirs.Moreover,desorption and diffusion of coalbed gas and shale gas can significantly contribute to gas production,and the daily production of these two gases decreases rapidly with decreasing reservoir pressure.Interestingly,the gas production from fractures exhibits an approximately U-shaped distribution,indicating the need to optimize the spacing between clusters during hydraulic fracturing to reduce the area of overlapping fracture control.The coal matrix water saturation significantly affects the coalbed gas production,with higher water saturation leading to lower production.展开更多
The production capacity of shale oil reservoirs after hydraulic fracturing is influenced by a complex interplay involving geological characteristics,engineering quality,and well conditions.These relationships,nonlinea...The production capacity of shale oil reservoirs after hydraulic fracturing is influenced by a complex interplay involving geological characteristics,engineering quality,and well conditions.These relationships,nonlinear in nature,pose challenges for accurate description through physical models.While field data provides insights into real-world effects,its limited volume and quality restrict its utility.Complementing this,numerical simulation models offer effective support.To harness the strengths of both data-driven and model-driven approaches,this study established a shale oil production capacity prediction model based on a machine learning combination model.Leveraging fracturing development data from 236 wells in the field,a data-driven method employing the random forest algorithm is implemented to identify the main controlling factors for different types of shale oil reservoirs.Through the combination model integrating support vector machine(SVM)algorithm and back propagation neural network(BPNN),a model-driven shale oil production capacity prediction model is developed,capable of swiftly responding to shale oil development performance under varying geological,fluid,and well conditions.The results of numerical experiments show that the proposed method demonstrates a notable enhancement in R2 by 22.5%and 5.8%compared to singular machine learning models like SVM and BPNN,showcasing its superior precision in predicting shale oil production capacity across diverse datasets.展开更多
To improve the productivity of oil wells,perforation technology is usually used to improve the productivity of horizontal wells in oilfield exploitation.After the perforation operation,the perforation channel around t...To improve the productivity of oil wells,perforation technology is usually used to improve the productivity of horizontal wells in oilfield exploitation.After the perforation operation,the perforation channel around the wellbore will form a near-well high-permeability reservoir area with the penetration depth as the radius,that is,the formation has different permeability characteristics with the perforation depth as the dividing line.Generally,the permeability is measured by the permeability tester,but this approach has a high workload and limited application.In this paper,according to the reservoir characteristics of perforated horizontal wells,the reservoir is divided into two areas:the original reservoir area and the near-well high permeability reservoir area.Based on the theory of seepage mechanics and the formula of open hole productivity,the permeability calculation formula of near-well high permeability reservoir area with perforation parameters is deduced.According to the principle of seepage continuity,the seepage is regarded as the synthesis of two directions:the horizontal plane elliptic seepage field and the vertical plane radial seepage field,and the oil well productivity prediction model of the perforated horizontal well is established by partition.The model comparison demonstrates that the model is reasonable and feasible.To calculate and analyze the effect of oil well production and the law of influencing factors,actual production data of the oilfield are substituted into the oil well productivity formula.It can effectively guide the technical process design and effect prediction of perforated horizontal wells.展开更多
Tea is a very important cash crop in Rwanda, as it provides crucial income and employment for farmers in poor rural areas. From 2017 to 2020, this study was intended to determine the impact of seasonal rainfall on tea...Tea is a very important cash crop in Rwanda, as it provides crucial income and employment for farmers in poor rural areas. From 2017 to 2020, this study was intended to determine the impact of seasonal rainfall on tea output in Rwanda while still considering temperature, plot size (land), and fertiliser for tea plantations in three of Rwanda’s western, southern, and northern provinces, western province with “Gisovu” and “Nyabihu”, southern with “Kitabi”, and northern with “Mulindi” tea company. The study tested the level of statistical significance of all considered variables in different formulation of panel data models to assess individual behaviour of independent variables that would affect tea production. According to this study, a positive change in rainfall of 1 mm will increase tea production by 0.215 percentage points of tons of fresh leaves. Rainfall is a statistically significant variable among all variables with a positive impact on tea output Qitin Rwanda’s Western, Southern, and Northern provinces. Rainfall availability favourably affects tea output and supports our claim. Therefore, there is a need for collaboration efforts towards developing sustainable adaptation and mitigation options against climate change, targeting tea farming and the government to ensure that tea policy reforms are targeted towards raising the competitiveness of Rwandan tea at local and global market.展开更多
Hydrocarbon production in oil and gas fields generally progresses through stages of production ramp-up,plateau(peak),and decline during field development,with the whole process primarily modeled and forecasted using l...Hydrocarbon production in oil and gas fields generally progresses through stages of production ramp-up,plateau(peak),and decline during field development,with the whole process primarily modeled and forecasted using lifecycle models.SINOPEC's conventional gas reservoirs are dominated by carbonates,low-permeability tight sandstone,condensate,volcanic rocks,and medium-to-high-permeability sandstone.This study identifies the optimal production forecasting models by comparing the fitting coefficients of different models and calculating the relative errors in technically recoverable reserves.To improve forecast precision,it suggests substituting exponential smoothing method-derived predictions for anomalous data caused by subjective influences like market dynamics and maintenance activities.The preferred models for carbonate gas reservoir production forecasts are the generalized Weng's,Beta,Class-I generalized mathematical,and Hu-Chen models.The Vapor pressure and Beta models are optimal for forecasting the annual productivity of wells(APW)from gas-bearing low-permeability tight sandstone reservoirs.The Wang-Li,Beta,and Yu QT tb models are apt for moderate-to-small-reserves,single low-permeability tight sandstone gas reservoirs.The Rayleigh,Hu-Chen,and generalized Weng's models are suitable for condensate gas reservoirs.For medium-to-high-permeability sandstone gas reservoirs,the lognormal,generalized gamma,and Beta models are recommended.展开更多
Hydrogen production by proton exchange membrane electrolysis has good fluctuation adaptability,making it suitable for hydrogen production by electrolysis in fluctuating power sources such as wind power.However,current...Hydrogen production by proton exchange membrane electrolysis has good fluctuation adaptability,making it suitable for hydrogen production by electrolysis in fluctuating power sources such as wind power.However,current research on the durability of proton exchange membrane electrolyzers is insufficient.Studying the typical operating conditions of wind power electrolysis for hydrogen production can provide boundary conditions for performance and degradation tests of electrolysis stacks.In this study,the operating condition spectrum of an electrolysis stack degradation test cycle was proposed.Based on the rate of change of the wind farm output power and the time-averaged peak-valley difference,a fluctuation output power sample set was formed.The characteristic quantities that played an important role in the degradation of the electrolysis stack were selected.Dimensionality reduction of the operating data was performed using principal component analysis.Clustering analysis of the data segments was completed using an improved Gaussian mixture clustering algorithm.Taking the annual output power data of wind farms in Northwest China with a sampling rate of 1 min as an example,the cyclic operating condition spectrum of the proton-exchange membrane electrolysis stack degradation test was constructed.After preliminary simulation analysis,the typical operating condition proposed in this paper effectively reflects the impact of the original curve on the performance degradation of the electrolysis stack.This study provides a method for evaluating the degradation characteristics and system efficiency of an electrolysis stack due to fluctuations in renewable energy.展开更多
城市作战的重要性日益凸显,城市作战路径规划也受到了更多的关注。如何在城市复杂的环境和众多危险区中寻找安全迅速的路径是非常重要的。为保障作战安全,提出了一种基于选拔科特鸟和路径缩减的不规则危险区路径规划算法。首先,结合城...城市作战的重要性日益凸显,城市作战路径规划也受到了更多的关注。如何在城市复杂的环境和众多危险区中寻找安全迅速的路径是非常重要的。为保障作战安全,提出了一种基于选拔科特鸟和路径缩减的不规则危险区路径规划算法。首先,结合城市危险区特征和受限情况以构建更符合真实战场的不规则危险区数学模型。其次,建立路径空间缩减模型对路径威胁度进行评估和量化,以剔除掉高威胁路径来降低作战风险。最后,基于选拔策略的科特鸟优化算法(COOT Bird Optimization Algorithm based on Selection Strategy,SS-COOT)结合优质个体以提高算法的寻优效率。经实验验证,该算法在结合不规则危险区的城市路径规划问题上具有搜索速度快、寻优效果好的特点。展开更多
This present research work focuses on the valorization of pig droppings for production of biogas in mono digestion and co-digestion with proportions of cow dung from the urban commune of N’Zérékoré. It...This present research work focuses on the valorization of pig droppings for production of biogas in mono digestion and co-digestion with proportions of cow dung from the urban commune of N’Zérékoré. It was carried out in December 2020 in the Physics laboratory of the University of N’Zérékoré. The anaerobic digestion process took 25 days in an almost constant ambient temperature of 25˚C. Five digesters were loaded on 12/06/2020, two of which with 1 kg of pig dung and 1 kg of cow dung both in mono-digestion. The 3 other digesters in co-digestion with different proportions of pig manure and cow dung. The substrate in each digester is diluted in 2 liters of water, with a proportion of (1/2). The main results obtained are: 1) the evolution of the temperature and pH during digestion process, 2) the average biogas productions 0.61 liters for (D1);1.20 liter for (D2);1.65 liter for (D3);1.51 liter for (D4) and 1.31 liter for (D5). The cumulative amounts of biogas are respectively: D1 (7.95 liters), D2 (15.60 liters), D3 (21.50 liters), D4 (19.65 liters) and D5 (17.05 liters). The total cumulative production is 81.75 liters at the end of the process. The originality of this research work is that the proposed model examines the relation between the daily biogas production and the variation of temperature, pH and pressure. The combustibility test showed the biogas produced during the first week was no combustible (contains less than 50% methane). Combustion started from the biogas produced from the 15th day and it is from the 20th day that a significant amount of stable yellow/blue flame was observed. The results of this study show the combination of pig manure and cow dung presents advantages for optimal biogas production.展开更多
Homogeneous binary function products are frequently encountered in the sub-universes modeled by databases,spanning from genealogical trees and sports to education and healthcare,etc.Their properties must be discovered...Homogeneous binary function products are frequently encountered in the sub-universes modeled by databases,spanning from genealogical trees and sports to education and healthcare,etc.Their properties must be discovered and enforced by the software applications managing such data to guarantee plausibility.The(Elementary)Mathematical Data Model provides 17 types of dyadic-based homogeneous binary function product constraint categories.MatBase,an intelligent data and knowledge base management system prototype,allows database designers to simply declare them by only clicking corresponding checkboxes and automatically generates code for enforcing them.This paper describes the algorithms that MatBase uses for enforcing all 17 types of homogeneous binary function product constraint,which may also be employed by developers without access to MatBase.展开更多
This study takes the virtual business society environment(VBSE)practical training course as a case study and applies the theoretical framework of the context,input,process,product(CIPP)model to construct an evaluation...This study takes the virtual business society environment(VBSE)practical training course as a case study and applies the theoretical framework of the context,input,process,product(CIPP)model to construct an evaluation indicator system for the application of civic and politics in professional practice courses.The context evaluation is measured from the support of the VBSE practical training course into course civic and politics,teachers’cognition,and the integration of course objectives;the input evaluation is measured from the matching degree of teachers’civic and political competence,and the matching degree of teaching resources;the process evaluation is measured from the degree of implementation of civic and politics teaching and the degree of students’acceptance;and the product evaluation is measured from the degree of impact of civic and politics teaching.展开更多
This article reports on the design and implementation of feature modelling system for the CAPP of rotational symmetric components. The work deals with design by features, feature parts database design, and parts infor...This article reports on the design and implementation of feature modelling system for the CAPP of rotational symmetric components. The work deals with design by features, feature parts database design, and parts information modelling techniques realized in Personal Computer. The modular software provides utilities such as interactive component synthesis, dimensioning, tolerancing and graphical display.展开更多
With the increased competition of modern economy and globalization,consumer creation which based on the analysis of consumer behavior was more and more attentioned and respected by business.Based on the meaning and ch...With the increased competition of modern economy and globalization,consumer creation which based on the analysis of consumer behavior was more and more attentioned and respected by business.Based on the meaning and characteristics of agricultural product consumer creation,index system of value model of agricultural product consumer creation was put forward through analytical hierarchy process(AHP).The weights of the indicators and related indicators of impact on the value were analyzed,and value models of agricultural product consumer creation were constructed to provide ideas for development of agricultural product consumer market and research of consumer value.Consumer creation was constructed to provide ideas for development of agricultural product consumer market and research of consumer value.展开更多
基金financially supported by the Strategic Support Program for Scientific Research (PASRES), C?te d’Ivoire, Project N202, 2nd session 2018
文摘Assessing the impact of climate change(CC)on agricultural production systems is mainly done using crop models associated with climate model outputs.This review is one of the few,with the main objective of providing a recent compendium of CC impact studies on irrigation needs and rice yields for a better understanding and use of climate and crop models.We discuss the strengths and weaknesses of climate impact studies on agricultural production systems,with a particular focus on uncertainty and sensitivity analyses of crop models.Although the new generation global climate models(GCMs)are more robust than previous ones,there is still a need to consider the effect of climate uncertainty on estimates when using them.Current GCMs cannot directly simulate the agro-climatic variables of interest for future irrigation assessment,hence the use of intelligent climate tools.Therefore,sensitivity and uncertainty analyses must be applied to crop models,especially for their calibration under different conditions.The impacts of CC on irrigation needs and rice yields vary across regions,seasons,varieties and crop models.Finally,integrated assessments,the use of remote sensing data,climate smart tools,CO_(2)enrichment experiments,consideration of changing crop management practices and multi-scale crop modeling,seem to be the approaches to be pursued for future climate impact assessments for agricultural systems。
基金particilly (Dalila Serpa,Jan Jacob Keizer)supported by CESAM (UIDP/50017/2020+UIDB/50017/2020+LA/P/0094/2020)by FCT/MCTES,through national fundsthe project WAFLE (PTDC/ASP-SIL/31573/2017)funded by FEDER,through COMPETE2020–Programa OperacionalCompetitividade e Internacionalizacao (POCI)by national funds (OE),through FCT/MCTES。
文摘Worldwide,forests are vital in the regulation of the water cycle regulation and in water balance allocation.Knowledge of ecohydrological responses of production forests is essential to support management strategies,especially where water is already scarce.Shifting climatological patterns are expected to impact thermopluviometric regimes,water cycle components,hydrological responses,and plant physiology,evapotranspiration rates,crop productivity and land management operations.This work(1)assessed the impacts of different predicted climate conditions on water yield;(2)inferred the impacts of climate change on biomass production on eucalypt-to-eucalypt succes sion.To this end,the widely accepted Soil and Water Assessment Tool(SWAT)was run with the RCA,HIRHAM5 and RACMO climate models for two emission scenarios(RCP 4.5 and8.5).Three 12-year periods were considered to simulate tree growth under coppice regime.The results revealed an overall reduction in streamflow and water yield in the catchment in line with the projected reduction in total annual precipitation.Moreover,HIRHAM5 and RACMO models forecast a slight shift in seasonal streamflow of up to 2 months(for2024-2048)in line with the projected increase in precipitation from May to September.For biomass production,the extreme climate model(RCA)and severe emis sion scenario(RCP 8.5)predicted a decrease up to 46%.However,in the less extreme and more-correlated(with actual catchment climate conditions)climate models(RACMO and HIRHAM5)and in the less extreme emission scenario(RCP 4.5),biomass production increased(up to 20%),and the growth cycle was slightly reduced.SWAT was proven to be a valuable tool to assess climate change impacts on a eucalypt-dominated catchment and is a suitable decision-support tool for forest managers.
文摘Pile foundations are challenging to build due to subsurface obstacles, contractor ignorance, and difficulties with site planning. Given the unpredictable environment of the construction site, productivity losses during pile work are to be thought possible. Prior to finishing a site pre-investigation, a foundation’s area is usually sampled for statistical reasons. There are studies on pile construction outside of Bangladesh that are supported by relevant empirical data in the literature. Since Bangladesh, which is regarded as a third-world country, is ignored in this regard, the literature currently available about pile building and the associated productivity loss is unable to provide adequate information or appropriate empirical data. Due to this pile-building sector in Bangladesh has been experiencing a decline in production for quite some time now. Before attempting to increase productivity in pile construction, it is essential to investigate the potential losses and the variables that might have an influence. This study aims to accomplish the following objectives: 1) identify the primary factors that have an impact on pile construction;2) develop an SVR model that accurately predicts productivity loss;and 3) figure out the projected loss by basing it on the historical scenario that is the most comparable to the current one. A Support Vector Regression (SVR) model was developed after a study of the relevant literature. This model enabled the collection of 110 pile building projects from five significant locations in Bangladesh. The model was constructed using a list of eight inputs in addition to a list of five macro elements (labor, management, environment, material, and equipment) (soil condition, pile type, pile material, project size, project location, pile depth, pile quantity, and equipment quantity). Using 10-way cross validation, the SVR achieves an accuracy of 87.2% in its predictions. On the basis of what has occurred in the past, we are able to estimate that there will be a loss of around 18.55 percent of the total output. A new perspective for engineers studying the delay factors with productivity loss is provided by the outcome of important tasks as it relates to loss in productivity and overall factors faced. In the building construction industry, effective management should place more emphasis on the correlation between productivity loss and the factors that cause it. Therefore, to represent the effect on productivity loss, real factors can be summed up as a decline in productivity loss. The findings of the study would urge specialists to concentrate on waste as a means of increasing overall production.
基金This work is supported by the National Natural Science Foundation of China under Grant 52274057,52074340 and 51874335the Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-008+2 种基金the Major Scientific and Technological Projects of CNOOC under Grant CCL2022RCPS0397RSNthe Science and Technology Support Plan for Youth Innovation of University in Shandong Province under Grant 2019KJH002111 Project under Grant B08028.
文摘Data-driven surrogate models that assist with efficient evolutionary algorithms to find the optimal development scheme have been widely used to solve reservoir production optimization problems.However,existing research suggests that the effectiveness of a surrogate model can vary depending on the complexity of the design problem.A surrogate model that has demonstrated success in one scenario may not perform as well in others.In the absence of prior knowledge,finding a promising surrogate model that performs well for an unknown reservoir is challenging.Moreover,the optimization process often relies on a single evolutionary algorithm,which can yield varying results across different cases.To address these limitations,this paper introduces a novel approach called the multi-surrogate framework with an adaptive selection mechanism(MSFASM)to tackle production optimization problems.MSFASM consists of two stages.In the first stage,a reduced-dimensional broad learning system(BLS)is used to adaptively select the evolutionary algorithm with the best performance during the current optimization period.In the second stage,the multi-objective algorithm,non-dominated sorting genetic algorithm II(NSGA-II),is used as an optimizer to find a set of Pareto solutions with good performance on multiple surrogate models.A novel optimal point criterion is utilized in this stage to select the Pareto solutions,thereby obtaining the desired development schemes without increasing the computational load of the numerical simulator.The two stages are combined using sequential transfer learning.From the two most important perspectives of an evolutionary algorithm and a surrogate model,the proposed method improves adaptability to optimization problems of various reservoir types.To verify the effectiveness of the proposed method,four 100-dimensional benchmark functions and two reservoir models are tested,and the results are compared with those obtained by six other surrogate-model-based methods.The results demonstrate that our approach can obtain the maximum net present value(NPV)of the target production optimization problems.
基金the Guangdong Planning Office of Philosophy and Social Science(Grant No.GD22XYS04).
文摘Background:As the market demands change,SMEs(small and medium-sized enterprises)have long faced many design issues,including high costs,lengthy cycles,and insufficient innovation.These issues are especially noticeable in the domain of cosmetic packaging design.Objective:To explore innovative product family modeling methods and configuration design processes to improve the efficiency of enterprise cosmetic packaging design and develop the design for mass customization.Methods:To accomplish this objective,the basic-element theory has been introduced and applied to the design and development system of the product family.Results:By examining the mapping relationships between the demand domain,functional domain,technology domain,and structure domain,four interrelated models have been developed,including the demand model,functional model,technology model,and structure model.Together,these models form the mechanism and methodology of product family modeling,specifically for cosmetic packaging design.Through an analysis of a case study on men’s cosmetic packaging design,the feasibility of the proposed product family modeling technology has been demonstrated in terms of customized cosmetic packaging design,and the design efficiency has been enhanced.Conclusion:The product family modeling technology employs a formalized element as a module configuration design language,permeating throughout the entire development cycle of cosmetic packaging design,thus facilitating a structured and modularized configuration design process for the product family system.The application of the basic-element principle in product family modeling technology contributes to the enrichment of the research field surrounding cosmetic packaging product family configuration design,while also providing valuable methods and references for enterprises aiming to elevate the efficiency of cosmetic packaging design for the mass customization product model.
基金funded by the project entitled Technical Countermeasures for the Quantitative Characterization and Adjustment of Residual Gas in Tight Sandstone Gas Reservoirs of the Daniudi Gas Field(P20065-1)organized by the Science&Technology R&D Department of Sinopec.
文摘Based on an analysis of the limitations of conventional production component methods for natural gas development planning,this study proposes a new one that uses life cycle models for the trend fitting and prediction of production.In this new method,the annual production of old and new wells is predicted by year first and then is summed up to yield the production for the planning period.It shows that the changes in the production of old wells in old blocks can be fitted and predicted using the vapor pressure model(VPM),with precision of 80%e95%,which is 6.6%e13.2%higher than that of other life cycle models.Furthermore,a new production prediction process and method for new wells have been established based on this life cycle model to predict the production of medium-to-shallow gas reservoirs in western Sichuan Basin,with predication error of production rate in 2021 and 2022 being 6%and 3%respectively.The new method can be used to guide the medium-and long-term planning or annual scheme preparation for gas development.It is also applicable to planning for large single gas blocks that require continuous infill drilling and adjustment to improve gas recovery.
基金funded by the National Key R&D Program of China(Grant No.2022YFD2200500)the Forestry Public Welfare Scientific Research Project(Grant No.201504303)。
文摘Climate change and forest management are recognized as pivotal factors influencing forest ecosystem services and thus multifunctionality.However,the magnitude and the relative importance of climate change and forest management effects on the multifunctionality remain unclear,especially for natural mixed forests.In this study,our objective is to address this gap by utilizing simulations of climate-sensitive transition matrix growth models based on national forest inventory plot data.We evaluated the effects of seven management scenarios(combinations of various cutting methods and intensities)on the future provision of ecosystem services and multifunctionality in mixed conifer-broad-leaved forests in northeastern China,under four climate scenarios(SSP1-2.6,SSP2-4.5,SSP5-8.5,and constant climate).Provisioning,regulating,cultural,and supporting services were described by timber production,carbon storage,carbon sequestration,tree species diversity,deadwood volume,and the number of large living trees.Our findings indicated that timber production was significantly influenced by management scenarios,while tree species diversity,deadwood volume,and large living trees were impacted by both climate and management separately.Carbon storage and sequestration were notably influenced by both management and the interaction of climate and management.These findings emphasized the profound impact of forest management on ecosystem services,outweighing that of climate scenarios alone.We found no single management scenario maximized all six ecosystem service indicators.The upper story thinning by 5%intensity with 5-year interval(UST5)management strategy emerged with the highest multifunctionality,surpassing the lowest values by more than 20%across all climate scenarios.In conclusion,our results underlined the potential of climate-sensitive transition matrix growth models as a decision support tool and provided recommendations for long-term strategies for multifunctional forest management under future climate change context.Ecosystem services and multifunctionality of forests could be enhanced by implementing appropriate management measures amidst a changing climate.
文摘Since chemical processes are highly non-linear and multiscale,it is vital to deeply mine the multiscale coupling relationships embedded in the massive process data for the prediction and anomaly tracing of crucial process parameters and production indicators.While the integrated method of adaptive signal decomposition combined with time series models could effectively predict process variables,it does have limitations in capturing the high-frequency detail of the operation state when applied to complex chemical processes.In light of this,a novel Multiscale Multi-radius Multi-step Convolutional Neural Network(Msrt Net)is proposed for mining spatiotemporal multiscale information.First,the industrial data from the Fluid Catalytic Cracking(FCC)process decomposition using Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)extract the multi-energy scale information of the feature subset.Then,convolution kernels with varying stride and padding structures are established to decouple the long-period operation process information encapsulated within the multi-energy scale data.Finally,a reconciliation network is trained to reconstruct the multiscale prediction results and obtain the final output.Msrt Net is initially assessed for its capability to untangle the spatiotemporal multiscale relationships among variables in the Tennessee Eastman Process(TEP).Subsequently,the performance of Msrt Net is evaluated in predicting product yield for a 2.80×10^(6) t/a FCC unit,taking diesel and gasoline yield as examples.In conclusion,Msrt Net can decouple and effectively extract spatiotemporal multiscale information from chemical process data and achieve a approximately reduction of 30%in prediction error compared to other time-series models.Furthermore,its robustness and transferability underscore its promising potential for broader applications.
文摘Using the typical characteristics of multi-layered marine and continental transitional gas reservoirs as a basis,a model is developed to predict the related well production rate.This model relies on the fractal theory of tortuous capillary bundles and can take into account multiple gas flow mechanisms at the micrometer and nanometer scales,as well as the flow characteristics in different types of thin layers(tight sandstone gas,shale gas,and coalbed gas).Moreover,a source-sink function concept and a pressure drop superposition principle are utilized to introduce a coupled flow model in the reservoir.A semi-analytical solution for the production rate is obtained using a matrix iteration method.A specific well is selected for fitting dynamic production data,and the calculation results show that the tight sandstone has the highest gas production per unit thickness compared with the other types of reservoirs.Moreover,desorption and diffusion of coalbed gas and shale gas can significantly contribute to gas production,and the daily production of these two gases decreases rapidly with decreasing reservoir pressure.Interestingly,the gas production from fractures exhibits an approximately U-shaped distribution,indicating the need to optimize the spacing between clusters during hydraulic fracturing to reduce the area of overlapping fracture control.The coal matrix water saturation significantly affects the coalbed gas production,with higher water saturation leading to lower production.
基金supported by the China Postdoctoral Science Foundation(2021M702304)Natural Science Foundation of Shandong Province(ZR20210E260).
文摘The production capacity of shale oil reservoirs after hydraulic fracturing is influenced by a complex interplay involving geological characteristics,engineering quality,and well conditions.These relationships,nonlinear in nature,pose challenges for accurate description through physical models.While field data provides insights into real-world effects,its limited volume and quality restrict its utility.Complementing this,numerical simulation models offer effective support.To harness the strengths of both data-driven and model-driven approaches,this study established a shale oil production capacity prediction model based on a machine learning combination model.Leveraging fracturing development data from 236 wells in the field,a data-driven method employing the random forest algorithm is implemented to identify the main controlling factors for different types of shale oil reservoirs.Through the combination model integrating support vector machine(SVM)algorithm and back propagation neural network(BPNN),a model-driven shale oil production capacity prediction model is developed,capable of swiftly responding to shale oil development performance under varying geological,fluid,and well conditions.The results of numerical experiments show that the proposed method demonstrates a notable enhancement in R2 by 22.5%and 5.8%compared to singular machine learning models like SVM and BPNN,showcasing its superior precision in predicting shale oil production capacity across diverse datasets.
文摘To improve the productivity of oil wells,perforation technology is usually used to improve the productivity of horizontal wells in oilfield exploitation.After the perforation operation,the perforation channel around the wellbore will form a near-well high-permeability reservoir area with the penetration depth as the radius,that is,the formation has different permeability characteristics with the perforation depth as the dividing line.Generally,the permeability is measured by the permeability tester,but this approach has a high workload and limited application.In this paper,according to the reservoir characteristics of perforated horizontal wells,the reservoir is divided into two areas:the original reservoir area and the near-well high permeability reservoir area.Based on the theory of seepage mechanics and the formula of open hole productivity,the permeability calculation formula of near-well high permeability reservoir area with perforation parameters is deduced.According to the principle of seepage continuity,the seepage is regarded as the synthesis of two directions:the horizontal plane elliptic seepage field and the vertical plane radial seepage field,and the oil well productivity prediction model of the perforated horizontal well is established by partition.The model comparison demonstrates that the model is reasonable and feasible.To calculate and analyze the effect of oil well production and the law of influencing factors,actual production data of the oilfield are substituted into the oil well productivity formula.It can effectively guide the technical process design and effect prediction of perforated horizontal wells.
文摘Tea is a very important cash crop in Rwanda, as it provides crucial income and employment for farmers in poor rural areas. From 2017 to 2020, this study was intended to determine the impact of seasonal rainfall on tea output in Rwanda while still considering temperature, plot size (land), and fertiliser for tea plantations in three of Rwanda’s western, southern, and northern provinces, western province with “Gisovu” and “Nyabihu”, southern with “Kitabi”, and northern with “Mulindi” tea company. The study tested the level of statistical significance of all considered variables in different formulation of panel data models to assess individual behaviour of independent variables that would affect tea production. According to this study, a positive change in rainfall of 1 mm will increase tea production by 0.215 percentage points of tons of fresh leaves. Rainfall is a statistically significant variable among all variables with a positive impact on tea output Qitin Rwanda’s Western, Southern, and Northern provinces. Rainfall availability favourably affects tea output and supports our claim. Therefore, there is a need for collaboration efforts towards developing sustainable adaptation and mitigation options against climate change, targeting tea farming and the government to ensure that tea policy reforms are targeted towards raising the competitiveness of Rwandan tea at local and global market.
基金funded by the project entitled Technical Countermeasures for the Quantitative Characterization and Adjustment of Residual Gas in Tight Sandstone Gas Reservoirs of the Daniudi Gas Field(P20065-1)organized by the Science&Technology R&D Department of SINOPEC.
文摘Hydrocarbon production in oil and gas fields generally progresses through stages of production ramp-up,plateau(peak),and decline during field development,with the whole process primarily modeled and forecasted using lifecycle models.SINOPEC's conventional gas reservoirs are dominated by carbonates,low-permeability tight sandstone,condensate,volcanic rocks,and medium-to-high-permeability sandstone.This study identifies the optimal production forecasting models by comparing the fitting coefficients of different models and calculating the relative errors in technically recoverable reserves.To improve forecast precision,it suggests substituting exponential smoothing method-derived predictions for anomalous data caused by subjective influences like market dynamics and maintenance activities.The preferred models for carbonate gas reservoir production forecasts are the generalized Weng's,Beta,Class-I generalized mathematical,and Hu-Chen models.The Vapor pressure and Beta models are optimal for forecasting the annual productivity of wells(APW)from gas-bearing low-permeability tight sandstone reservoirs.The Wang-Li,Beta,and Yu QT tb models are apt for moderate-to-small-reserves,single low-permeability tight sandstone gas reservoirs.The Rayleigh,Hu-Chen,and generalized Weng's models are suitable for condensate gas reservoirs.For medium-to-high-permeability sandstone gas reservoirs,the lognormal,generalized gamma,and Beta models are recommended.
基金supported by the National Key Research and Development Program of China(Materials and Process Basis of Electrolytic Hydrogen Production from Fluctuating Power Sources such as Photovoltaic/Wind Power,No.2021YFB4000100).
文摘Hydrogen production by proton exchange membrane electrolysis has good fluctuation adaptability,making it suitable for hydrogen production by electrolysis in fluctuating power sources such as wind power.However,current research on the durability of proton exchange membrane electrolyzers is insufficient.Studying the typical operating conditions of wind power electrolysis for hydrogen production can provide boundary conditions for performance and degradation tests of electrolysis stacks.In this study,the operating condition spectrum of an electrolysis stack degradation test cycle was proposed.Based on the rate of change of the wind farm output power and the time-averaged peak-valley difference,a fluctuation output power sample set was formed.The characteristic quantities that played an important role in the degradation of the electrolysis stack were selected.Dimensionality reduction of the operating data was performed using principal component analysis.Clustering analysis of the data segments was completed using an improved Gaussian mixture clustering algorithm.Taking the annual output power data of wind farms in Northwest China with a sampling rate of 1 min as an example,the cyclic operating condition spectrum of the proton-exchange membrane electrolysis stack degradation test was constructed.After preliminary simulation analysis,the typical operating condition proposed in this paper effectively reflects the impact of the original curve on the performance degradation of the electrolysis stack.This study provides a method for evaluating the degradation characteristics and system efficiency of an electrolysis stack due to fluctuations in renewable energy.
文摘城市作战的重要性日益凸显,城市作战路径规划也受到了更多的关注。如何在城市复杂的环境和众多危险区中寻找安全迅速的路径是非常重要的。为保障作战安全,提出了一种基于选拔科特鸟和路径缩减的不规则危险区路径规划算法。首先,结合城市危险区特征和受限情况以构建更符合真实战场的不规则危险区数学模型。其次,建立路径空间缩减模型对路径威胁度进行评估和量化,以剔除掉高威胁路径来降低作战风险。最后,基于选拔策略的科特鸟优化算法(COOT Bird Optimization Algorithm based on Selection Strategy,SS-COOT)结合优质个体以提高算法的寻优效率。经实验验证,该算法在结合不规则危险区的城市路径规划问题上具有搜索速度快、寻优效果好的特点。
文摘This present research work focuses on the valorization of pig droppings for production of biogas in mono digestion and co-digestion with proportions of cow dung from the urban commune of N’Zérékoré. It was carried out in December 2020 in the Physics laboratory of the University of N’Zérékoré. The anaerobic digestion process took 25 days in an almost constant ambient temperature of 25˚C. Five digesters were loaded on 12/06/2020, two of which with 1 kg of pig dung and 1 kg of cow dung both in mono-digestion. The 3 other digesters in co-digestion with different proportions of pig manure and cow dung. The substrate in each digester is diluted in 2 liters of water, with a proportion of (1/2). The main results obtained are: 1) the evolution of the temperature and pH during digestion process, 2) the average biogas productions 0.61 liters for (D1);1.20 liter for (D2);1.65 liter for (D3);1.51 liter for (D4) and 1.31 liter for (D5). The cumulative amounts of biogas are respectively: D1 (7.95 liters), D2 (15.60 liters), D3 (21.50 liters), D4 (19.65 liters) and D5 (17.05 liters). The total cumulative production is 81.75 liters at the end of the process. The originality of this research work is that the proposed model examines the relation between the daily biogas production and the variation of temperature, pH and pressure. The combustibility test showed the biogas produced during the first week was no combustible (contains less than 50% methane). Combustion started from the biogas produced from the 15th day and it is from the 20th day that a significant amount of stable yellow/blue flame was observed. The results of this study show the combination of pig manure and cow dung presents advantages for optimal biogas production.
文摘Homogeneous binary function products are frequently encountered in the sub-universes modeled by databases,spanning from genealogical trees and sports to education and healthcare,etc.Their properties must be discovered and enforced by the software applications managing such data to guarantee plausibility.The(Elementary)Mathematical Data Model provides 17 types of dyadic-based homogeneous binary function product constraint categories.MatBase,an intelligent data and knowledge base management system prototype,allows database designers to simply declare them by only clicking corresponding checkboxes and automatically generates code for enforcing them.This paper describes the algorithms that MatBase uses for enforcing all 17 types of homogeneous binary function product constraint,which may also be employed by developers without access to MatBase.
基金2022 Southwest Forestry University Educational Science Research Project:Surface Project Grant(Project number:YB202227)Grant No.42 of 2024 Curriculum Civics Construction(Teaching Research Project)of Southwest Forestry University。
文摘This study takes the virtual business society environment(VBSE)practical training course as a case study and applies the theoretical framework of the context,input,process,product(CIPP)model to construct an evaluation indicator system for the application of civic and politics in professional practice courses.The context evaluation is measured from the support of the VBSE practical training course into course civic and politics,teachers’cognition,and the integration of course objectives;the input evaluation is measured from the matching degree of teachers’civic and political competence,and the matching degree of teaching resources;the process evaluation is measured from the degree of implementation of civic and politics teaching and the degree of students’acceptance;and the product evaluation is measured from the degree of impact of civic and politics teaching.
文摘This article reports on the design and implementation of feature modelling system for the CAPP of rotational symmetric components. The work deals with design by features, feature parts database design, and parts information modelling techniques realized in Personal Computer. The modular software provides utilities such as interactive component synthesis, dimensioning, tolerancing and graphical display.
基金Supported by Rural Development Research Center in Sichuan(2009CR2110921)~~
文摘With the increased competition of modern economy and globalization,consumer creation which based on the analysis of consumer behavior was more and more attentioned and respected by business.Based on the meaning and characteristics of agricultural product consumer creation,index system of value model of agricultural product consumer creation was put forward through analytical hierarchy process(AHP).The weights of the indicators and related indicators of impact on the value were analyzed,and value models of agricultural product consumer creation were constructed to provide ideas for development of agricultural product consumer market and research of consumer value.Consumer creation was constructed to provide ideas for development of agricultural product consumer market and research of consumer value.