期刊文献+
共找到42篇文章
< 1 2 3 >
每页显示 20 50 100
Fault Diagnosis of Motor in Frequency Domain Signal by Stacked De-noising Auto-encoder 被引量:5
1
作者 Xiaoping Zhao Jiaxin Wu +2 位作者 Yonghong Zhang Yunqing Shi Lihua Wang 《Computers, Materials & Continua》 SCIE EI 2018年第11期223-242,共20页
With the rapid development of mechanical equipment,mechanical health monitoring field has entered the era of big data.Deep learning has made a great achievement in the processing of large data of image and speech due ... With the rapid development of mechanical equipment,mechanical health monitoring field has entered the era of big data.Deep learning has made a great achievement in the processing of large data of image and speech due to the powerful modeling capabilities,this also brings influence to the mechanical fault diagnosis field.Therefore,according to the characteristics of motor vibration signals(nonstationary and difficult to deal with)and mechanical‘big data’,combined with deep learning,a motor fault diagnosis method based on stacked de-noising auto-encoder is proposed.The frequency domain signals obtained by the Fourier transform are used as input to the network.This method can extract features adaptively and unsupervised,and get rid of the dependence of traditional machine learning methods on human extraction features.A supervised fine tuning of the model is then carried out by backpropagation.The Asynchronous motor in Drivetrain Dynamics Simulator system was taken as the research object,the effectiveness of the proposed method was verified by a large number of data,and research on visualization of network output,the results shown that the SDAE method is more efficient and more intelligent. 展开更多
关键词 Big data deep learning stacked de-noising auto-encoder fourier transform
下载PDF
Fault Diagnosis for Rolling Bearings with Stacked Denoising Auto-encoder of Information Aggregation
2
作者 Li Zhang Xin Gao Xiao Xu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2019年第4期69-77,共9页
Rolling bearings are important central components in rotating machines, whose fault diagnosis is crucial in condition-based maintenance to reduce the complexity of different kinds of faults. To classify various rollin... Rolling bearings are important central components in rotating machines, whose fault diagnosis is crucial in condition-based maintenance to reduce the complexity of different kinds of faults. To classify various rolling bearing faults, a prognostic algorithm consisting of four phases was proposed. Since stacked denoising auto-encoder can be filtered, noise of large numbers of mechanical vibration signals was used for deep learning structure to extract the characteristics of the noise. Unsupervised pre-training method, which can greatly simplify the traditional manual extraction approach, was utilized to process the depth of the data automatically. Furthermore, the aggregation layer of stacked denoising auto-encoder(SDA) was proposed to get rid of gradient disappearance in deeper layers of network, mix superficial nodes’ expression with deeper layers, and avoid the insufficient express ability in deeper layers. Principal component analysis(PCA) was adopted to extract different features for classification. According to the experimental data of this method and from the comparison results, the proposed method of rolling bearing fault classification reached 97.02% of correct rate, suggesting a better performance than other algorithms. 展开更多
关键词 DEEP learning stacked DENOISING auto-encoder FAULT diagnosis PCA classification
下载PDF
Deep Learning-Based Stacked Auto-Encoder with Dynamic Differential Annealed Optimization for Skin Lesion Diagnosis
3
作者 Ahmad Alassaf 《Computer Systems Science & Engineering》 SCIE EI 2023年第12期2773-2789,共17页
Intelligent diagnosis approaches with shallow architectural models play an essential role in healthcare.Deep Learning(DL)models with unsupervised learning concepts have been proposed because high-quality feature extra... Intelligent diagnosis approaches with shallow architectural models play an essential role in healthcare.Deep Learning(DL)models with unsupervised learning concepts have been proposed because high-quality feature extraction and adequate labelled details significantly influence shallow models.On the other hand,skin lesionbased segregation and disintegration procedures play an essential role in earlier skin cancer detection.However,artefacts,an unclear boundary,poor contrast,and different lesion sizes make detection difficult.To address the issues in skin lesion diagnosis,this study creates the UDLS-DDOA model,an intelligent Unsupervised Deep Learning-based Stacked Auto-encoder(UDLS)optimized by Dynamic Differential Annealed Optimization(DDOA).Pre-processing,segregation,feature removal or separation,and disintegration are part of the proposed skin lesion diagnosis model.Pre-processing of skin lesion images occurs at the initial level for noise removal in the image using the Top hat filter and painting methodology.Following that,a Fuzzy C-Means(FCM)segregation procedure is performed using a Quasi-Oppositional Elephant Herd Optimization(QOEHO)algorithm.Besides,a novel feature extraction technique using the UDLS technique is applied where the parameter tuning takes place using DDOA.In the end,the disintegration procedure would be accomplished using a SoftMax(SM)classifier.The UDLS-DDOA model is tested against the International Skin Imaging Collaboration(ISIC)dataset,and the experimental results are examined using various computational attributes.The simulation results demonstrated that the UDLS-DDOA model outperformed the compared methods significantly. 展开更多
关键词 Intelligent diagnosis stacked auto-encoder skin lesion unsupervised learning parameter selection
下载PDF
Rock mass quality classification based on deep learning:A feasibility study for stacked autoencoders 被引量:2
4
作者 Danjie Sheng Jin Yu +3 位作者 Fei Tan Defu Tong Tianjun Yan Jiahe Lv 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第7期1749-1758,共10页
Objective and accurate evaluation of rock mass quality classification is the prerequisite for reliable sta-bility assessment.To develop a tool that can deliver quick and accurate evaluation of rock mass quality,a deep... Objective and accurate evaluation of rock mass quality classification is the prerequisite for reliable sta-bility assessment.To develop a tool that can deliver quick and accurate evaluation of rock mass quality,a deep learning approach is developed,which uses stacked autoencoders(SAEs)with several autoencoders and a softmax net layer.Ten rock parameters of rock mass rating(RMR)system are calibrated in this model.The model is trained using 75%of the total database for training sample data.The SAEs trained model achieves a nearly 100%prediction accuracy.For comparison,other different models are also trained with the same dataset,using artificial neural network(ANN)and radial basis function(RBF).The results show that the SAEs classify all test samples correctly while the rating accuracies of ANN and RBF are 97.5%and 98.7%,repectively,which are calculated from the confusion matrix.Moreover,this model is further employed to predict the slope risk level of an abandoned quarry.The proposed approach using SAEs,or deep learning in general,is more objective and more accurate and requires less human inter-vention.The findings presented here shall shed light for engineers/researchers interested in analyzing rock mass classification criteria or performing field investigation. 展开更多
关键词 Rock mass quality classification Deep learning stacked autoencoder(sae) Back propagation algorithm
下载PDF
SAE J1939协议栈设计及μC/OS-Ⅱ系统下的开发平台的研究 被引量:7
5
作者 夏继强 李晓君 +1 位作者 曹磊 孙进 《汽车工程》 EI CSCD 北大核心 2008年第12期1069-1074,共6页
设计了SAE J1939协议栈。它采用分层结构,定义了相应的报文数据结构,并实现了分段传输功能。以该协议栈为核心,提出了一种基于μC/OS-Ⅱ的SAE J1939汽车ECU通用开发平台。通过一个客车用汽车仪表的开发实例,验证了SAE J1939协议栈及该EC... 设计了SAE J1939协议栈。它采用分层结构,定义了相应的报文数据结构,并实现了分段传输功能。以该协议栈为核心,提出了一种基于μC/OS-Ⅱ的SAE J1939汽车ECU通用开发平台。通过一个客车用汽车仪表的开发实例,验证了SAE J1939协议栈及该ECU通用开发平台的正确性。应用此协议栈和通用开发平台,ECU的研发只需编写针对应用的代码,大大缩短了汽车ECU产品的开发周期。 展开更多
关键词 sae J1939 协议栈 CAN总线 ECU μC/OS—Ⅱ
下载PDF
基于独立稀疏SAE的多风电场超短期功率预测 被引量:7
6
作者 李丹 王奇 +1 位作者 杨保华 张远航 《电力系统及其自动化学报》 CSCD 北大核心 2022年第2期23-30,共8页
为应对多风电场超短期预测模型中输入和输出变量众多、变量间的时空关系复杂等问题,提出一种基于独立稀疏堆叠自编码器的多风电场超短期功率预测方法。该方法基于降维编码、特征预测和重构解码相结合的预测框架,首先设计了一种独立稀疏... 为应对多风电场超短期预测模型中输入和输出变量众多、变量间的时空关系复杂等问题,提出一种基于独立稀疏堆叠自编码器的多风电场超短期功率预测方法。该方法基于降维编码、特征预测和重构解码相结合的预测框架,首先设计了一种独立稀疏双层堆叠自编码器提取多维风电功率的空间独立特征,并将其作为预测对象分别预测,最后将特征预测的结果重构解码,获得多风电场功率的预测结果。对实际算例的验证结果表明,独立稀疏堆叠自编码器能增强提取特征的可靠性、独立性和合理性,从而有效提高多风电场超短期功率预测的精度和效率。 展开更多
关键词 多风电场 功率预测 堆叠自编码器 稀疏性约束 独立性约束
下载PDF
一种基于BOA-SAE-EELM的光伏阵列故障诊断方法 被引量:6
7
作者 陈世群 杨耿杰 高伟 《太阳能学报》 EI CAS CSCD 北大核心 2022年第4期154-161,共8页
光伏阵列非线性输出的特性以及最大功率点跟踪算法,会影响光伏阵列保护设备的工作。为了正确辨识光伏阵列的运行状态,本研究提出一种基于贝叶斯优化算法(BOA)、堆栈自动编码器(SAE)以及集成极限学习机(EELM)相结合的故障诊断方法。首先... 光伏阵列非线性输出的特性以及最大功率点跟踪算法,会影响光伏阵列保护设备的工作。为了正确辨识光伏阵列的运行状态,本研究提出一种基于贝叶斯优化算法(BOA)、堆栈自动编码器(SAE)以及集成极限学习机(EELM)相结合的故障诊断方法。首先,将光伏阵列的时序波形进行标准化处理;接着,使用SAE对标准化后的时序波形进行特征自动提取,并训练一个EELM的故障分类模型;最后,利用BOA对诊断模型的超参数进行优化。实验结果表明所提方法对仿真和实验的故障诊断准确率分别达到了98.40%和98.10%,优于反向传播(BP)神经网络、支持向量机、随机森林等方法。 展开更多
关键词 光伏阵列 故障诊断 堆栈自动编码器 极限学习机 贝叶斯优化算法 时序波形
原文传递
Fault diagnosis method of track circuit based on KPCA-SAE 被引量:2
8
作者 JIN Zuchen DONG Yu 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第1期89-95,共7页
At present,ZPW-2000 track circuit fault diagnosis is artificially analyzed and monitored.Its discrimination method not only is low efficient and takes a long period,but also requires highly experienced personnel to an... At present,ZPW-2000 track circuit fault diagnosis is artificially analyzed and monitored.Its discrimination method not only is low efficient and takes a long period,but also requires highly experienced personnel to analyze the data.Therefore,we introduce kernel principal component analysis and stacked auto-encoder network(KPCA-SAD)into the fault diagnosis of ZPW-2000 track circuit.According to the working principle and fault characteristics of track circuit,a fault diagnosis model of KPCA-SAE network is established.The relevant parameters of key components recorded in the data collected by field staff are used as the fault feature parameters.The KPCA method is used to reduce the dimension and noise of fault document matrix to avoid information redundancy.The SAE network is trained by the processed fault data.The model parameters are optimized overall by using back propagation(BP)algorithm.The KPCA-SAE model is simulated in Matlab platform and is finally proved to be effective and feasible.Compared with the traditional method of artificially analyzing fault data and other intelligent algorithms,the KPCA-SAE based classifier has higher fault identification accuracy. 展开更多
关键词 ZPW-2000 track circuit fault diagnosis stacked auto-encoder(sae) kernel principal component analysis(KPCA)
下载PDF
一种基于SAE-RF算法的配电变压器故障诊断方法 被引量:8
9
作者 陈锦锋 张军财 +3 位作者 卢思佳 高伟 范贤盛 陈致远 《电工电气》 2021年第2期17-23,共7页
为有效解决配电变压器故障诊断中面临的数据特征人工提取、机器学习调参困难等问题,提出了一种基于堆栈自编码器(SAE)和随机森林(RF)组合的配电变压器故障诊断方法。建立SAE配电变压器故障特征自动挖掘模型,利用大量的无标签数据对SAE... 为有效解决配电变压器故障诊断中面临的数据特征人工提取、机器学习调参困难等问题,提出了一种基于堆栈自编码器(SAE)和随机森林(RF)组合的配电变压器故障诊断方法。建立SAE配电变压器故障特征自动挖掘模型,利用大量的无标签数据对SAE模型中的每一个自编码器进行逐层无监督训练,通过贝叶斯优化算法自动选择模型的最优参数;通过有标签数据对模型参数进行有监督细调,挖掘出能够代表各种故障本质属性的特征量;创建一个RF分类器对故障类型进行辨识,调参过程同样实现参数的自动寻优。试验结果表明,所提方法对配电变压器故障诊断准确率达到96.67%,显著优于单独使用SAE和RF的分类结果。 展开更多
关键词 配电变压器 故障诊断 堆栈自编码器 随机森林 贝叶斯优化
下载PDF
基于SAE和GNDO-SVM的脑电信号情绪识别 被引量:1
10
作者 陈晨 任南 《计算机系统应用》 2023年第10期284-292,共9页
情感计算是现代人机交互中的关键问题,随着人工智能的发展,基于脑电信号(electroencephalogram, EEG)的情绪识别已经成为重要的研究方向.为了提高情绪识别的分类精度,本研究引入堆叠自动编码器(stacked autoencoder, SAE)对EEG多通道信... 情感计算是现代人机交互中的关键问题,随着人工智能的发展,基于脑电信号(electroencephalogram, EEG)的情绪识别已经成为重要的研究方向.为了提高情绪识别的分类精度,本研究引入堆叠自动编码器(stacked autoencoder, SAE)对EEG多通道信号进行深度特征提取,并提出一种基于广义正态分布优化的支持向量机(generalized normal distribution optimization based support vector machine, GNDO-SVM)情绪识别模型.实验结果表明,与基于遗传算法、粒子群算法和麻雀搜索算法优化的支持向量机模型相比,所提出的GNDO-SVM模型具有更优的分类性能,基于SAE深度特征的情感识别准确率达到了90.94%,表明SAE能够有效地挖掘EEG信号不同通道间的深度相关性信息.因此,利用SAE深度特征结合GNDO-SVM模型可以有效地实现EEG信号的情绪识别. 展开更多
关键词 脑电信号 情绪识别 深度特征 堆叠自动编码器 广义正态分布优化 支持向量机
下载PDF
基于SAE-GA-SVM模型的雷达新型干扰识别 被引量:8
11
作者 罗彬珅 刘利民 +1 位作者 董健 刘璟麒 《计算机工程》 CAS CSCD 北大核心 2020年第6期281-287,共7页
针对频谱弥散干扰、切片组合干扰、灵巧噪声干扰、噪声调幅-距离欺骗加性复合干扰与噪声调频-距离欺骗加性复合干扰5种干扰类型的识别问题,提出一种基于SAE-GA-SVM的检测模型算法。建立目标回波与干扰信号的数学模型,采用多域联合的特... 针对频谱弥散干扰、切片组合干扰、灵巧噪声干扰、噪声调幅-距离欺骗加性复合干扰与噪声调频-距离欺骗加性复合干扰5种干扰类型的识别问题,提出一种基于SAE-GA-SVM的检测模型算法。建立目标回波与干扰信号的数学模型,采用多域联合的特征提取方法提取47维特征。为有效去除冗余信息并保持较高的识别率,运用深度学习中的稀疏自编码器(SAE),通过SAE结构建立高维空间和低维空间的双向映射,从而获得原始数据的相应最优低维表示。利用遗传算法优化支持向量机的惩罚因子和核函数参数,构建基于SAE-GA-SVM的雷达新型干扰识别检测模型。仿真结果表明,该模型能够有效降低特征维度,相比传统的GA-SVM检测模型识别准确率提高10%。 展开更多
关键词 新型干扰 特征提取 特征降维 堆叠自编码器 遗传算法
下载PDF
An Effective Fault Diagnosis Method for Aero Engines Based on GSA-SAE 被引量:3
12
作者 CUI Jianguo TIAN Yan +4 位作者 CUI Xiao TANG Xiaochu WANG Jinglin JIANG Liying YU Mingyue 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第5期750-757,共8页
The health status of aero engines is very important to the flight safety.However,it is difficult for aero engines to make an effective fault diagnosis due to its complex structure and poor working environment.Therefor... The health status of aero engines is very important to the flight safety.However,it is difficult for aero engines to make an effective fault diagnosis due to its complex structure and poor working environment.Therefore,an effective fault diagnosis method for aero engines based on the gravitational search algorithm and the stack autoencoder(GSA-SAE)is proposed,and the fault diagnosis technology of a turbofan engine is studied.Firstly,the data of 17 parameters,including total inlet air temperature,high-pressure rotor speed,low-pressure rotor speed,turbine pressure ratio,total inlet air temperature of high-pressure compressor and outlet air pressure of high-pressure compressor and so on,are preprocessed,and the fault diagnosis model architecture of SAE is constructed.In order to solve the problem that the best diagnosis effect cannot be obtained due to manually setting the number of neurons in each hidden layer of SAE network,a GSA optimization algorithm for the SAE network is proposed to find and obtain the optimal number of neurons in each hidden layer of SAE network.Furthermore,an optimal fault diagnosis model based on GSA-SAE is established for aero engines.Finally,the effectiveness of the optimal GSA-SAE fault diagnosis model is demonstrated using the practical data of aero engines.The results illustrate that the proposed fault diagnosis method effectively solves the problem of the poor fault diagnosis result because of manually setting the number of neurons in each hidden layer of SAE network,and has good fault diagnosis efficiency.The fault diagnosis accuracy of the GSA-SAE model reaches 98.222%,which is significantly higher than that of SAE,the general regression neural network(GRNN)and the back propagation(BP)network fault diagnosis models. 展开更多
关键词 aero engines fault diagnosis optimization algorithm of gravitational search algorithm(GSA) stack autoencoder(sae)network
下载PDF
Early Detection of Heartbeat from Multimodal Data Using RPA Learning with KDNN-SAE
13
作者 A.K.S.Saranya T.Jaya 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期545-562,共18页
Heartbeat detection stays central to cardiovascular an electrocardiogram(ECG)is used to help with disease diagnosis and management.Existing Convolutional Neural Network(CNN)-based methods suffer from the less generali... Heartbeat detection stays central to cardiovascular an electrocardiogram(ECG)is used to help with disease diagnosis and management.Existing Convolutional Neural Network(CNN)-based methods suffer from the less generalization problem thus;the effectiveness and robustness of the traditional heartbeat detector methods cannot be guaranteed.In contrast,this work proposes a heartbeat detector Krill based Deep Neural Network Stacked Auto Encoders(KDNN-SAE)that computes the disease before the exact heart rate by combining features from multiple ECG Signals.Heartbeats are classified independently and multiple signals are fused to estimate life threatening conditions earlier without any error in classification of heart beat.This work contained Training and testing stages,in the preparation part at first the Adaptive Filter Enthalpy-based Empirical Mode Decomposition(EMD)is utilized to eliminate the motion artifact in the signal.At that point,the robotic process automation(RPA)learning part extracts the effective features are extracted,and normalized the value of the feature then estimated utilizing the RPA loss function.At last KDNN-SAE prepared training for the data stored in the dataset.In the subsequent stage,input signal compute motion artifact and RPA Learning the evaluation part determines the detection of Heartbeat.So early diagnosis of heart failures is an essential factor.The results of the experiments show that our proposed method has a high score outcome of 0.9997.Comparable to the CIF,which reaches 0.9990.The CNN and Artificial Neural Network(ANN)had less score 0.95115 and 0.90147. 展开更多
关键词 Deep neural network krill herd optimization stack auto-encoder adaptive filter enthalpy based empirical mode decomposition robotic process automation
下载PDF
基于深度稀疏自编码器的电抗器机械故障振动诊断方法
14
作者 刘锦伟 周杰 +2 位作者 李川 肖潇 伍惠铖 《电气传动》 2024年第9期83-89,共7页
为提高电抗器机械故障智能诊断的准确性,基于电抗器振动信号与机械状态之间的关联特性和规律,提出了一种基于深度稀疏自编码器(SAE)的电抗器机械故障振动诊断方法。首先,采用小波包分解算法对电抗器原始振动信号进行分解,提取信号的时... 为提高电抗器机械故障智能诊断的准确性,基于电抗器振动信号与机械状态之间的关联特性和规律,提出了一种基于深度稀疏自编码器(SAE)的电抗器机械故障振动诊断方法。首先,采用小波包分解算法对电抗器原始振动信号进行分解,提取信号的时频能量矩阵;然后,构建基于SAE网络的电抗器机械故障诊断模型,通过无监督自学习和有监督微调完成时频能量矩阵深层特征挖掘和电抗器机械故障识别分类;最后,以某10 kV油浸式电抗器为试验对象,使用不同机械状态下的振动数据对故障识别模型进行训练优化。算例结果表明,相比于传统振动诊断方法,所提方法能够更好地对电抗器机械故障进行识别分类,准确率可达98%。 展开更多
关键词 电抗器 机械故障 振动信号 小波包分解 深度稀疏自编码器
下载PDF
ARM+FPGA双核计算的配电自动化终端设计
15
作者 郑军生 杨俊哲 +1 位作者 许文秀 吴宏伟 《自动化仪表》 CAS 2024年第1期59-63,共5页
为了提高配电自动化终端数据信息自动化分析能力,设计了基于ARM+现场可编程门阵列(FPGA)双核计算的配电自动化终端。为了提高模块计算能力,在模块中构建了堆叠式自动编码器-神经网络(SAE-NN)深度学习算法模型。在常规堆叠式自动编码器(S... 为了提高配电自动化终端数据信息自动化分析能力,设计了基于ARM+现场可编程门阵列(FPGA)双核计算的配电自动化终端。为了提高模块计算能力,在模块中构建了堆叠式自动编码器-神经网络(SAE-NN)深度学习算法模型。在常规堆叠式自动编码器(SAE)深度学习模型基础上融合神经网络(NN)模型,应用过程中改善传统NN对分层节点数目的限制。试验结果表明,所设计终端随着系统运行能达到95%以上的精度,而现有SAE模型仅达到85%左右的精度。通过与文献[1]和文献[2]方法的对比可知,所设计终端有较高的调度能力。该设计显著提高了配电网数据信息的分析精度,大幅提升了电网应用对数据信息处理的准确度和效率。 展开更多
关键词 配电自动化终端 现场可编程门阵列 堆叠式自动编码器 神经网络 数据调试 分析精度 调度能力
下载PDF
基于栈式自编码网络的风机叶片结冰预测 被引量:16
16
作者 刘娟 黄细霞 刘晓丽 《计算机应用》 CSCD 北大核心 2019年第5期1547-1550,共4页
针对风电机组叶片结冰严重影响风机发电效率和安全性、经济性的问题,提出一种基于SCADA数据的栈式自编码(SAE)网络叶片结冰早期预测模型。该模型采用编码-解码的非监督方法对无标签的数据集预训练,再利用反向传播算法对有标签的数据集... 针对风电机组叶片结冰严重影响风机发电效率和安全性、经济性的问题,提出一种基于SCADA数据的栈式自编码(SAE)网络叶片结冰早期预测模型。该模型采用编码-解码的非监督方法对无标签的数据集预训练,再利用反向传播算法对有标签的数据集进行训练微调,实现了故障特征的自适应提取和状态分类,有效降低了传统预测模型的复杂度,同时避免了人为特征提取对模型效果的影响。利用SCADA系统采集的某15号风机的历史数据进行训练和测试,该模型测试结果准确率为97.28%。与支持向量机(SVM)和主成分分析-支持向量机(PCA-SVM)方法得到的建模分别为91%和93%的准确率进行对比分析,实验结果表明,基于栈式自编码网络的风机叶片结冰预测模型精确度更高。 展开更多
关键词 风机叶片结冰预测 栈式自编码 深度学习 预测模型
下载PDF
基于HOG的目标分类特征深度学习模型 被引量:6
17
作者 何希平 张琼华 刘波 《计算机工程》 CAS CSCD 北大核心 2016年第12期176-180,187,共6页
为提高低配置计算环境中的视觉目标实时在线分类特征提取的时效性和分类准确率,提出一种新的目标分类特征深度学习模型。根据高时效性要求,选用分类器模型离线深度学习的策略,以节约在线训练时间。针对网络深度受限和高识别率要求,提取... 为提高低配置计算环境中的视觉目标实时在线分类特征提取的时效性和分类准确率,提出一种新的目标分类特征深度学习模型。根据高时效性要求,选用分类器模型离线深度学习的策略,以节约在线训练时间。针对网络深度受限和高识别率要求,提取图像的局部方向梯度直方图(HOG)特征,构建稀疏自编码器栈对HOG特征进行深层次编码,设计Softmax多分类器对所抽取的特征进行分类。在深度神经网络模型学习过程中,引入最小化各层结构风险和微调全网参数的二阶段最优化策略。利用场景图像库Caltech101和手写数字库MNIST的训练样本与测试样本进行对比实验,结果表明,该模型在局部特征提取方面的时效优于单层卷积神经网络(CNN)模型,分类准确率高于CNN、栈式自编码器等对比模型。 展开更多
关键词 计算机视觉 目标分类 方向梯度直方图特征 栈式自编码器 深度学习
下载PDF
基于栈式自编码器的磁探测电阻抗成像算法研究 被引量:8
18
作者 陈瑞娟 戚昊峰 +2 位作者 李炳南 王慧泉 王金海 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第1期257-264,共8页
针对目前磁探测电阻抗成像算法图像重建分辨率不高、精确度低的问题,提出了一种基于栈式自编码(SAE)神经网络的磁探测电阻抗成像算法。使用方形成像体进行仿真实验,通过训练样本建立SAE神经网络模型,确定神经元权重和偏置值。利用该网... 针对目前磁探测电阻抗成像算法图像重建分辨率不高、精确度低的问题,提出了一种基于栈式自编码(SAE)神经网络的磁探测电阻抗成像算法。使用方形成像体进行仿真实验,通过训练样本建立SAE神经网络模型,确定神经元权重和偏置值。利用该网络模型重建成像体内部的电导率分布;并在异质体中心位置、算法的抗噪性能等方面将重建结果与基于Levenberg-Marquardt算法的反向传播神经网络的重建结果进行对比。结果表明栈式自编码神经网络算法显著提高了磁探测电阻抗成像的重建精度、抗噪性能。最后,通过仿体实验验证了SAE算法的可行性。根据实际测得的磁场,使用神经网络算法重建电导率,准确定位异质体位置。SAE神经网络算法的提出对于磁探测电阻抗成像技术的广泛应用具有重要意义。 展开更多
关键词 磁探测电阻抗成像 逆问题 栈式自编码 反向传播神经网络
原文传递
基于堆栈式自动编码器的加密流量识别方法 被引量:19
19
作者 王攀 陈雪娇 《计算机工程》 CAS CSCD 北大核心 2018年第11期140-147,153,共9页
基于浅层机器学习的加密流量识别方法准确率偏低,在特征提取和选择方面耗时耗力。为此,提出一种基于堆栈式自动编码器(SAE)的加密流量识别方法。该方法利用SAE的无监督特性及在数据降维等方面的优势,结合多层感知机(MLP)的有监督分类学... 基于浅层机器学习的加密流量识别方法准确率偏低,在特征提取和选择方面耗时耗力。为此,提出一种基于堆栈式自动编码器(SAE)的加密流量识别方法。该方法利用SAE的无监督特性及在数据降维等方面的优势,结合多层感知机(MLP)的有监督分类学习,实现对加密应用流量的准确识别。考虑到样本数据集的类别不平衡性对分类精度的影响,采用SMOTE过抽样方法对不平衡数据集进行处理。实验结果表明,该方法各项性能指标均优于MLP加密流量识别方法,识别精确度和召回率以及F1-Score均可达到99%。 展开更多
关键词 加密流量识别 深度学习 堆栈式自动编码器 流量分类 多层感知机 卷积神经网络
下载PDF
基于堆叠自编码网络的风电机组发电机状态监测与故障诊断 被引量:53
20
作者 赵洪山 刘辉海 +1 位作者 刘宏杨 林酉阔 《电力系统自动化》 EI CSCD 北大核心 2018年第11期102-108,共7页
为实现风力发电机的异常检测分析,提出了一种基于风电机组发电机正常状态下数据采集与监控(SCADA)样本数据的堆叠自编码网络深度学习方法。首先将多个自编码网络连接构成深度堆叠自编码网络,选取发电机SCADA状态变量数据作为网络的训练... 为实现风力发电机的异常检测分析,提出了一种基于风电机组发电机正常状态下数据采集与监控(SCADA)样本数据的堆叠自编码网络深度学习方法。首先将多个自编码网络连接构成深度堆叠自编码网络,选取发电机SCADA状态变量数据作为网络的训练输入,使网络逐层智能提取数据间的分布式规则,从而构建发电机的堆叠自编码学习模型。依据故障状态下发电机SCADA数据内部动态平衡规则被破坏,利用发电机深度学习网络的输入与重构值计算重构误差,并作为整体状态的观测量。通过采用自适应阈值检测重构误差的状态趋势变化,并作为异常预警判定准则,从而实现对发电机故障的判定。当发电机发生异常时,变量的实际值与对应模型的重构值发生较大偏差,表现为状态变量的残差趋势将会偏离原有的动态稳定状态。因此利用状态变量的残差趋势变化对异常变量进行隔离,判定可能的故障原因达到故障诊断的目的。通过对发电机故障前后记录数据进行仿真分析,结果验证了堆叠自编码网络深度学习方法对发电机状态监测与故障诊断的有效性。 展开更多
关键词 风电机组 深度学习 堆叠自编码 状态监测 故障诊断
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部