Starting from the corrosion mechanism,this paper analyzes the characteristics of various types of stainless steel and selects the best performance composite plate composite plate stainless steel.Analyze and select the...Starting from the corrosion mechanism,this paper analyzes the characteristics of various types of stainless steel and selects the best performance composite plate composite plate stainless steel.Analyze and select the most suitable corrosion detection method based on specific practical multi working conditions,discuss the interference factors that affect metal corrosion during experimental simulation,and the advantages of newly developed sheet metal.The new development of composite board panels,with the substrate and composite materials applying their respective capabilities for MED,will bring breakthrough progress to the scientific research and engineering applica-tion of composite boards.展开更多
Ni–Cr enrichment on stainless steel SS316 L resulting from chemical activation enabled the deposition of carbon by spraying a stable suspension of carbon nanoparticles; trace Ag was deposited in situ to prepare a thi...Ni–Cr enrichment on stainless steel SS316 L resulting from chemical activation enabled the deposition of carbon by spraying a stable suspension of carbon nanoparticles; trace Ag was deposited in situ to prepare a thin continuous Ag-doped carbon film on a porous carbon-coated SS316 L substrate. The corrosion resistance of this film in 0.5 mol·L^(-1) H_2SO_4 solution containing 5 ppm F- at 80°C was investigated using polarization tests. The results showed that the surface treatment of the SS316 L strongly affected the adhesion of the carbon coating to the stainless steel. Compared to the bare SS316 L, the Ag-doped carbon-coated SS316 L bipolar plate was remarkably more stable in both the anode and cathode environments of proton exchange membrane fuel cell(PEMFC) and the interface contact resistance between the specimen and Toray 060 carbon paper was reduced from 333.0 m?·cm^2 to 21.6 m?·cm^2 at a compaction pressure of 1.2 MPa.展开更多
The effects of Cl ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel(UHSMSS) were investigated by a series of electrochemical tests combined ...The effects of Cl ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel(UHSMSS) were investigated by a series of electrochemical tests combined with observations by stereology microscopy and scanning electron microscopy. A critical Cl- ion concentration was found to exist(approximately 0.1wt%), above which pitting occurred. The pitting potential decreased with increasing Cl- ion concentration. A UHSMSS specimen tempered at 600°C exhibited a better pitting corrosion resistance than the one tempered at 400°C. The corrosion current density and passive current density of the UHSMSS tempered at 600°C decreased with increasing pH values of the corrosion solution. The pits developed a shallower dish geometry with increasing polarization potential. A lacy cover on the pits of the UHSMSS tempered at 400°C accelerated pitting, whereas corrosion products deposited in the pits of the UHSMSS tempered at 600°C hindered pitting.展开更多
In recent years,nitrogen-alloyed stainless steels have been a research hotspot in the field of stainless steel product and technology. Nitrogen-alloyed austenitic stainless steels developed by Baosteel and their appli...In recent years,nitrogen-alloyed stainless steels have been a research hotspot in the field of stainless steel product and technology. Nitrogen-alloyed austenitic stainless steels developed by Baosteel and their applications are introduced. These steels are nitrogen-controlled products 304 N and 316 LN,nitrogen containing economical products BN series and high-nitrogen stainless steel( HNS) series. The results show that the presence of nitrogen can significantly improve the strength and corrosion resistance of steel produced. By nitrogen alloying,economical austenitic stainless steels w ith considerably less nickel than 304 can be obtained; the corrosion resistances of these steels are almost the same as 304. Furthermore,by a scientific approach of nitrogen alloying,high-nitrogen steel of0. 8% nitrogen content is fabricated under the non-pressurized conditions,and the pitting potential of this steel is >1. 0 V. At present,nitrogen-alloyed steels developed by Baosteel are w idely utilized in the manufacture of cryogenic storage containers,transportation containers,and many household w ares.展开更多
316L stainless steel is widely used for fashion jewelry, but it can carry a large number of bacteria and bring the risk of infection since the steel has no antimicrobial performance. In this paper, the effects of Ce o...316L stainless steel is widely used for fashion jewelry, but it can carry a large number of bacteria and bring the risk of infection since the steel has no antimicrobial performance. In this paper, the effects of Ce on the antibacterial property, corrosion resistance and processability of 316L were studied by microscopic observation, thin- film adhering quantitative bacteriostasis, and electrochemical and mechanical tests. The results show that a trace of Ce can distribute uniformly in the matrix of 316L and slightly improve its corrosion resistance in artificial sweat. With an increase in Ce content, the Ce is prone to form clustering, which degrades the corrosion resistance and the processability. The Ce-containing 316L exhibits Hormesis effect against S. aureus. A small Ce addition stimulates the growth of S. aureus. As the Ce content increases, the modified 316L exhibits an improved antibacterial efficacy. The more Ce is added, the better antibacterial capability is achieved. Overall, if the 316L is modified with Ce alone, it is difficult to obtain the optimal combination of corrosion resistance, antibacterial performance and processability. In spite of that, 0.15 wt.%-0.20 wt.% Ce around is inferred to be the best trade-off.展开更多
C,N-codoped TiO 2 films have been deposited onto stainless steel substrates using plasma surface alloying and thermal oxidation duplex process.Composition analysis shows that the films shield the substrates entirely.T...C,N-codoped TiO 2 films have been deposited onto stainless steel substrates using plasma surface alloying and thermal oxidation duplex process.Composition analysis shows that the films shield the substrates entirely.The TiO 2 films are anatase in structure as characterized by X-ray diffraction.The electrochemical measurements show that the equilibrium corrosion potential positively shifts from-0.275 eV for bare stainless steel to-0.267 eV for C,N-codoped TiO 2 coated stainless steel,and the corrosion current density decreases from 1.3×10-5 A/cm2 to 4.1×10-6 A/cm2.The corrosion resistance obtained by electrochemistry noise also reveals that the C,N-codoped TiO 2 films provide good protection for stainless steel against corrosion in stimulated body fluid.The above results indicate that C,N-codoped TiO 2 films deposited by plasma surface alloying and thermal oxidation duplex process are effective in protecting stainless steel from corrosion.展开更多
The crack initiation mechanism of a Z3CN20.09M duplex stainless steel (DSS) during corrosion fatigue (CF) in water and air at 290 ℃ was investigated by using a CF cracking machine and a scanning electron microsco...The crack initiation mechanism of a Z3CN20.09M duplex stainless steel (DSS) during corrosion fatigue (CF) in water and air at 290 ℃ was investigated by using a CF cracking machine and a scanning electron microscopy (SEM). The cracks were initiated successively at the persistent stip bands (PSBs), phase boundaries (PBs) and pitting corrosion points (PCPs) of the specimens when they were tested in water at 290 ℃, while in airat 290 ℃ the cracks were only initiated at the PSBs and PBs. And the cracks were found mainly to initiate at the PSBs and PBs when the specimens were tested in water and air at 290 ℃, respectively. The results also reveal that the cracks were likely to be initiated at the first 20% of fatigue life of the specimens tested in water at 290 ℃. However, the cracks were not found until 50% of fatigue life when tested in air at 290 ℃. Moreover, the crack numbers of the specimens tested in water at 290 ℃ were much more than those tested in air at 290 ℃.展开更多
S32654 super austenitic stainless steel(SASS) is widely used in highly corrosive environments. However,its microbiologically influenced corrosion(MIC) behavior has not been reported yet. In this study, the corrosi...S32654 super austenitic stainless steel(SASS) is widely used in highly corrosive environments. However,its microbiologically influenced corrosion(MIC) behavior has not been reported yet. In this study, the corrosion behavior of S32654 SASS caused by a corrosive marine bacterium Pseudomonas aeruginosa was investigated using electrochemical measurements and surface analysis techniques. It was found that P. aeruginosa biofilm accelerated the corrosion rate of S325654 SASS, which was demonstrated by a negative shift of the open circuit potential(EOCP), a decrease of polarization resistance and an increase of corrosion current density in the culture medium. The largest pit depth of the coupons exposed in the P.aeruginosa broth for 14 days was 2.83 m, much deeper than that of the control(1.33 m) in the abiotic culture medium. It was likely that the P. aeruginosa biofilm catalyzed the formation of CrO_3, which was detrimental to the passive film, resulting in MIC pitting corrosion.展开更多
With Nb-Ti-stabilized 430 ferritic stainless steel(NTS430FSS) and SUS 430 ferritic stainless steel(SUS430FSS) as experimental materials, the influence of precipitation on intergranular corrosion resistance was inv...With Nb-Ti-stabilized 430 ferritic stainless steel(NTS430FSS) and SUS 430 ferritic stainless steel(SUS430FSS) as experimental materials, the influence of precipitation on intergranular corrosion resistance was investigated. A series of aging treatment were carried out. The free-exposure corrosion test and double loop electrochemical potentiokinetic reactivation(DL-EPR) test with a scan rate of 1.67 m V/s at 26 °C were applied to evaluate the intergranular corrosion(IGC) resistance. Metallographic observation, scanning electron microscope(SEM), transmission electron microscope(TEM) with energy dispersive spectroscopy(EDS) and X-ray diffraction(XRD) analysis were conducted. The results show that IGC occurred in SUS430 FSS aged above 700 °C, while it occurred in NTS430 FSS as the temperature was improved to 1 050 °C. The critical degree of sensitization Ir/Ia reaches 0.305 in SUS430 FSS, which is higher than that of NTS430 FSS, i.e. 0.010, aged at 950 °C for 2 h. The TEM, EDS and XRD results show that a large amount of Cr23C6 precipitates with size of 60 nm×22 nm are located at the SUS430 FSS grain boundaries as chains. With the addition of Nb and Ti and reduction of C, the amount of precipitates reduces significantly in NTS430 FSS. A majority of Cr23C6 were replaced by Ti C and Nb C. Only a small amount of spherical Ti C(R=186 nm) and square Ti N(312 nm×192 nm) with Nb and Cr adsorbed are left along grain boundaries. Due to the dual stabilization of Nb and Ti, the precipitation of Cr23C6 is restrained, the chromium depleted region is avoided and accordingly the resistance to the intergranular corrosion is improved.展开更多
The effect of copper addition to 2205 duplex stainless steel(DSS) on its resistance against pitting corrosion by the Pseudomonas aeruginosa biofilm was investigated using electrochemical and surface analysis techniq...The effect of copper addition to 2205 duplex stainless steel(DSS) on its resistance against pitting corrosion by the Pseudomonas aeruginosa biofilm was investigated using electrochemical and surface analysis techniques. Cu addition decreased the general corrosion resistance, resulting in a higher general corrosion rate in the sterile medium. Because DSS usually has a very small general corrosion rate, its pitting corrosion resistance is far more important. In this work, it was shown that 2205-3%Cu DSS exhibited a much higher pitting corrosion resistance against the P. aeruginosa biofilm compared with the 2205 DSS control, characterized by no significant change in the pitting potential and critical pitting temperature(CPT) values. The strong pitting resistance ability of 2205-3%Cu DSS could be attributed to the copper-rich phases on the surface and the release of copper ions, providing a strong antibacterial ability that inhibited the attachment and growth of the corrosive P. aeruginosa biofilm.展开更多
Processing schedules for grain boundary engineering involving different types of cold deformation(tension, compression, and rolling) and annealing were designed and carried out for 18Mn18Cr0.6N high nitrogen austeni...Processing schedules for grain boundary engineering involving different types of cold deformation(tension, compression, and rolling) and annealing were designed and carried out for 18Mn18Cr0.6N high nitrogen austenitic stainless steel. The grain boundary characteristic distribution was obtained and characterized by electron backscatter diffraction(EBSD) analysis. The corrosion resistance of the specimens with different grain boundary characteristic distribution was examined by using potentiodynamic polarization test. The corrosion behavior of different types of boundaries after sensitization was also studied.The fraction of low-∑ boundaries decreased with increasing strain, and it was insensitive to the type of cold deformation when the engineering strain was lower than 20%. At the strain of 30%, the largest and smallest fractions of low-∑ boundaries were achieved in cold-tensioned and rolled specimens, respectively. The fraction of low-∑ boundaries increased exponentially with the increase of grain size. The proportion of low-∑ angle grain boundaries increased with decreasing grain size. Increasing the fraction of low-∑ boundaries could improve the pitting corrosion resistance for the steels with the same grain size.After sensitization, the relative corrosion resistances of low-∑ angle grain boundaries, ∑3 boundaries, and ∑9 boundaries were 100%, 95%, and 25%, respectively, while ∑27 boundaries, other low-∑ boundaries and random high-angle grain boundaries had no resistance to corrosion.展开更多
In order to study acoustic emission (AE) characteristics of pitting corrosion on 304 stainless steel under higher than normal temperature, pitting corrosion process of 304 stainless steel in 6° ferric chloride ...In order to study acoustic emission (AE) characteristics of pitting corrosion on 304 stainless steel under higher than normal temperature, pitting corrosion process of 304 stainless steel in 6° ferric chloride solution at 70° was monitored by AE technology. Conventional parameter-based approach and signal-based analysis were combined to deal with recorded AE signals, and micrographic observation was performed for further verification. The results showed that AE hit and energy increased gradually with time and reached the peak at certain time, and then declined and maintained a stable condition. Signal waveform was mainly composed of low-frequency (〈 100 kHz) flexural wave with larger amplitude and energy and high-frequency (〉 100 kHz) expansion wave with lower amplitude and energy. The research results have some certain significance for AE monitoring of pitting corrosion on 304 stainless steel under higher than normal temperature.展开更多
Friction stir processing (FSP) was investigated as a method of repairing cracks in 12 mm thick 304L stainless steel plate. Healing feasibility was demonstrated by processing a tapered crack using a PCBN/W- Re tool w...Friction stir processing (FSP) was investigated as a method of repairing cracks in 12 mm thick 304L stainless steel plate. Healing feasibility was demonstrated by processing a tapered crack using a PCBN/W- Re tool with a 25 mm diameter shoulder and a pin length of 6.4 mm. The experiment showed that it was possible to heal a crack that begins narrow and then progressively grows up to a width of 2 mm. Bead on plate experiments were used to find the best parameters for creating a consolidated stir zone with the least amount of hardness difference compared to the base metal. Grain refinement in some specimens resulted in much higher stir zone hardness, compared to base metal, A plot of grain size versus microhardness showed a very strong inverse correlation between grain size and hardness, as expected from the Hall- Perch relationship. Corrosion testing was carried out in order to evaluate the effect of FSP on potential sensitization of the stir zone. After 1000 h of intermittent immersion in 3.5% saline solution at room temperature it was found that no corrosion products formed on the base material controls or on any of the friction stir processed specimens.展开更多
The self-healing effect of electrochemically deposited CeO2-Ce2O3 films on stainless steel OC404(SS) in 0.5 mol/L NaCl solution was studied. It was established that the corrosion potential of the steel, after coveri...The self-healing effect of electrochemically deposited CeO2-Ce2O3 films on stainless steel OC404(SS) in 0.5 mol/L NaCl solution was studied. It was established that the corrosion potential of the steel, after covering it with CeO2-Ce2O3 layer and thermal treatment(i.e. potential of the system CeO2-Ce2O3/SSt.t.), was shifted sharply to a considerably more positive value, while the corrosion current was reduced noticeably. The X-ray photoelectron spectroscopy(XPS), energy dispersive spectroscopy(EDS) and scanning electron microscopy(SEM) analyses on the observed scratched surface area of the system CeO2-Ce2O3/SSt.t., after exposure of investigated specimens to 0.5 mol/L NaCl corrosion media, showed partial accumulation of ceria, as well as remarkable increase in the concentrations of oxides of Al, Cr and Fe, on the mechanically revealed steel surface. On the basis of the obtained results one could conclude that the secondary passive oxide/hydroxide films, formed after a definite time interval of exposure to corrosion media, acted as barriers, hindering the corrosion processes in active zones. A hypothesis was put forward about the mechanism of self-repairing oxide layers on the steel surface and their corrosion protection effect respectively.展开更多
UNS S 32205 duplex stainless steel specimens were joined by continuous drive friction welding process. The experiments were conducted as per the Taguchi(L16 orthogonal array) method. The friction welding process par...UNS S 32205 duplex stainless steel specimens were joined by continuous drive friction welding process. The experiments were conducted as per the Taguchi(L16 orthogonal array) method. The friction welding process parameters such as heating pressure, heating time, upsetting pressure, upsetting time, and speed of rotation were fixed with low,medium, and high levels of range based on the machine capacity, and the required knowledge was acquired from the preliminary experiments. The joint characterization studies included micro structural examination and evaluation of mechanical properties of the joints. Microhardness variation, impact toughness, and tensile strength of the joints were evaluated. Neither a crack nor an incomplete bonding zone was observed. The tensile strength of the joints was higher than the strength of the base material, and the friction and upsetting pressures were found to influence the joint strength. The tensile strength of all the welds was observed to be increasing with an increase in the rotational speed. The toughness of the friction welds was evaluated at room temperature and also at subzero(cryo) temperature conditions. The toughness for friction welds was found to be superior to the fusion welds of duplex stainless steel at room temperature and cryo conditions. Weldments exhibited better corrosion resistance than the parent material.展开更多
文摘Starting from the corrosion mechanism,this paper analyzes the characteristics of various types of stainless steel and selects the best performance composite plate composite plate stainless steel.Analyze and select the most suitable corrosion detection method based on specific practical multi working conditions,discuss the interference factors that affect metal corrosion during experimental simulation,and the advantages of newly developed sheet metal.The new development of composite board panels,with the substrate and composite materials applying their respective capabilities for MED,will bring breakthrough progress to the scientific research and engineering applica-tion of composite boards.
基金financially supported by the National Natural Science Foundation of China(No.21106012)the Educational Department Foundation of Liaoning Province of China(NO.L2014180)
文摘Ni–Cr enrichment on stainless steel SS316 L resulting from chemical activation enabled the deposition of carbon by spraying a stable suspension of carbon nanoparticles; trace Ag was deposited in situ to prepare a thin continuous Ag-doped carbon film on a porous carbon-coated SS316 L substrate. The corrosion resistance of this film in 0.5 mol·L^(-1) H_2SO_4 solution containing 5 ppm F- at 80°C was investigated using polarization tests. The results showed that the surface treatment of the SS316 L strongly affected the adhesion of the carbon coating to the stainless steel. Compared to the bare SS316 L, the Ag-doped carbon-coated SS316 L bipolar plate was remarkably more stable in both the anode and cathode environments of proton exchange membrane fuel cell(PEMFC) and the interface contact resistance between the specimen and Toray 060 carbon paper was reduced from 333.0 m?·cm^2 to 21.6 m?·cm^2 at a compaction pressure of 1.2 MPa.
基金financially supported by the National Natural Science Foundation of China (No.51171023)the Fundamental Research Funds for the Central Universities (No.FRF-TP-14-011C1)the Major State Basic Research Development Program of China (No.2014CB643300)
文摘The effects of Cl ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel(UHSMSS) were investigated by a series of electrochemical tests combined with observations by stereology microscopy and scanning electron microscopy. A critical Cl- ion concentration was found to exist(approximately 0.1wt%), above which pitting occurred. The pitting potential decreased with increasing Cl- ion concentration. A UHSMSS specimen tempered at 600°C exhibited a better pitting corrosion resistance than the one tempered at 400°C. The corrosion current density and passive current density of the UHSMSS tempered at 600°C decreased with increasing pH values of the corrosion solution. The pits developed a shallower dish geometry with increasing polarization potential. A lacy cover on the pits of the UHSMSS tempered at 400°C accelerated pitting, whereas corrosion products deposited in the pits of the UHSMSS tempered at 600°C hindered pitting.
文摘In recent years,nitrogen-alloyed stainless steels have been a research hotspot in the field of stainless steel product and technology. Nitrogen-alloyed austenitic stainless steels developed by Baosteel and their applications are introduced. These steels are nitrogen-controlled products 304 N and 316 LN,nitrogen containing economical products BN series and high-nitrogen stainless steel( HNS) series. The results show that the presence of nitrogen can significantly improve the strength and corrosion resistance of steel produced. By nitrogen alloying,economical austenitic stainless steels w ith considerably less nickel than 304 can be obtained; the corrosion resistances of these steels are almost the same as 304. Furthermore,by a scientific approach of nitrogen alloying,high-nitrogen steel of0. 8% nitrogen content is fabricated under the non-pressurized conditions,and the pitting potential of this steel is >1. 0 V. At present,nitrogen-alloyed steels developed by Baosteel are w idely utilized in the manufacture of cryogenic storage containers,transportation containers,and many household w ares.
基金financially supported by NSFC-Guangdong Natural Science Mutual Funds(Item No.U1034002)
文摘316L stainless steel is widely used for fashion jewelry, but it can carry a large number of bacteria and bring the risk of infection since the steel has no antimicrobial performance. In this paper, the effects of Ce on the antibacterial property, corrosion resistance and processability of 316L were studied by microscopic observation, thin- film adhering quantitative bacteriostasis, and electrochemical and mechanical tests. The results show that a trace of Ce can distribute uniformly in the matrix of 316L and slightly improve its corrosion resistance in artificial sweat. With an increase in Ce content, the Ce is prone to form clustering, which degrades the corrosion resistance and the processability. The Ce-containing 316L exhibits Hormesis effect against S. aureus. A small Ce addition stimulates the growth of S. aureus. As the Ce content increases, the modified 316L exhibits an improved antibacterial efficacy. The more Ce is added, the better antibacterial capability is achieved. Overall, if the 316L is modified with Ce alone, it is difficult to obtain the optimal combination of corrosion resistance, antibacterial performance and processability. In spite of that, 0.15 wt.%-0.20 wt.% Ce around is inferred to be the best trade-off.
基金Funded by the National Natural Science Foundation of China (No.50771070)Project Innovation of the Graduate Students of Shanxi Province(No.20093038)
文摘C,N-codoped TiO 2 films have been deposited onto stainless steel substrates using plasma surface alloying and thermal oxidation duplex process.Composition analysis shows that the films shield the substrates entirely.The TiO 2 films are anatase in structure as characterized by X-ray diffraction.The electrochemical measurements show that the equilibrium corrosion potential positively shifts from-0.275 eV for bare stainless steel to-0.267 eV for C,N-codoped TiO 2 coated stainless steel,and the corrosion current density decreases from 1.3×10-5 A/cm2 to 4.1×10-6 A/cm2.The corrosion resistance obtained by electrochemistry noise also reveals that the C,N-codoped TiO 2 films provide good protection for stainless steel against corrosion in stimulated body fluid.The above results indicate that C,N-codoped TiO 2 films deposited by plasma surface alloying and thermal oxidation duplex process are effective in protecting stainless steel from corrosion.
基金financial support from the"863"Program of China under Nos.2008AA031702 and 2012AA03A507
文摘The crack initiation mechanism of a Z3CN20.09M duplex stainless steel (DSS) during corrosion fatigue (CF) in water and air at 290 ℃ was investigated by using a CF cracking machine and a scanning electron microscopy (SEM). The cracks were initiated successively at the persistent stip bands (PSBs), phase boundaries (PBs) and pitting corrosion points (PCPs) of the specimens when they were tested in water at 290 ℃, while in airat 290 ℃ the cracks were only initiated at the PSBs and PBs. And the cracks were found mainly to initiate at the PSBs and PBs when the specimens were tested in water and air at 290 ℃, respectively. The results also reveal that the cracks were likely to be initiated at the first 20% of fatigue life of the specimens tested in water at 290 ℃. However, the cracks were not found until 50% of fatigue life when tested in air at 290 ℃. Moreover, the crack numbers of the specimens tested in water at 290 ℃ were much more than those tested in air at 290 ℃.
基金financially supported by the High Technology Research and Development Program of China(No.2015AA034301)the National Natural Science Foundation of China(Grant Nos.51304041 and U1660118)Fundamental Research Funds for the Central Universities(Grant No.N150204007)
文摘S32654 super austenitic stainless steel(SASS) is widely used in highly corrosive environments. However,its microbiologically influenced corrosion(MIC) behavior has not been reported yet. In this study, the corrosion behavior of S32654 SASS caused by a corrosive marine bacterium Pseudomonas aeruginosa was investigated using electrochemical measurements and surface analysis techniques. It was found that P. aeruginosa biofilm accelerated the corrosion rate of S325654 SASS, which was demonstrated by a negative shift of the open circuit potential(EOCP), a decrease of polarization resistance and an increase of corrosion current density in the culture medium. The largest pit depth of the coupons exposed in the P.aeruginosa broth for 14 days was 2.83 m, much deeper than that of the control(1.33 m) in the abiotic culture medium. It was likely that the P. aeruginosa biofilm catalyzed the formation of CrO_3, which was detrimental to the passive film, resulting in MIC pitting corrosion.
文摘With Nb-Ti-stabilized 430 ferritic stainless steel(NTS430FSS) and SUS 430 ferritic stainless steel(SUS430FSS) as experimental materials, the influence of precipitation on intergranular corrosion resistance was investigated. A series of aging treatment were carried out. The free-exposure corrosion test and double loop electrochemical potentiokinetic reactivation(DL-EPR) test with a scan rate of 1.67 m V/s at 26 °C were applied to evaluate the intergranular corrosion(IGC) resistance. Metallographic observation, scanning electron microscope(SEM), transmission electron microscope(TEM) with energy dispersive spectroscopy(EDS) and X-ray diffraction(XRD) analysis were conducted. The results show that IGC occurred in SUS430 FSS aged above 700 °C, while it occurred in NTS430 FSS as the temperature was improved to 1 050 °C. The critical degree of sensitization Ir/Ia reaches 0.305 in SUS430 FSS, which is higher than that of NTS430 FSS, i.e. 0.010, aged at 950 °C for 2 h. The TEM, EDS and XRD results show that a large amount of Cr23C6 precipitates with size of 60 nm×22 nm are located at the SUS430 FSS grain boundaries as chains. With the addition of Nb and Ti and reduction of C, the amount of precipitates reduces significantly in NTS430 FSS. A majority of Cr23C6 were replaced by Ti C and Nb C. Only a small amount of spherical Ti C(R=186 nm) and square Ti N(312 nm×192 nm) with Nb and Cr adsorbed are left along grain boundaries. Due to the dual stabilization of Nb and Ti, the precipitation of Cr23C6 is restrained, the chromium depleted region is avoided and accordingly the resistance to the intergranular corrosion is improved.
基金support of the program of Outstanding Young Scholars, the National Natural Science Foundation of China (No. 51371182)financially supported by Shenzhen Science and Technology Research funding (JCYJ20160608153641020)+3 种基金the National Basic Research Program of China (973 Program Project No. 2014CB643300)the National Natural Science Foundation (No. 51501203 and U1660118)the National Environmental Corrosion Platform (NECP)the “Young Merit Scholars” program of the Institute of Metal Research, Chinese Academy of Sciences
文摘The effect of copper addition to 2205 duplex stainless steel(DSS) on its resistance against pitting corrosion by the Pseudomonas aeruginosa biofilm was investigated using electrochemical and surface analysis techniques. Cu addition decreased the general corrosion resistance, resulting in a higher general corrosion rate in the sterile medium. Because DSS usually has a very small general corrosion rate, its pitting corrosion resistance is far more important. In this work, it was shown that 2205-3%Cu DSS exhibited a much higher pitting corrosion resistance against the P. aeruginosa biofilm compared with the 2205 DSS control, characterized by no significant change in the pitting potential and critical pitting temperature(CPT) values. The strong pitting resistance ability of 2205-3%Cu DSS could be attributed to the copper-rich phases on the surface and the release of copper ions, providing a strong antibacterial ability that inhibited the attachment and growth of the corrosive P. aeruginosa biofilm.
基金the financial supports from the National Natural Science Foundation of China (No.51505416)the Natural Science Foundation-Steel and Iron Foundation of Hebei Province (No.E2017203041)+1 种基金the Post-Doctoral Research Project of Hebei Province (No.B2016003029)the Foundation for Young Scholars in Yanshan University(No.14LGA004)
文摘Processing schedules for grain boundary engineering involving different types of cold deformation(tension, compression, and rolling) and annealing were designed and carried out for 18Mn18Cr0.6N high nitrogen austenitic stainless steel. The grain boundary characteristic distribution was obtained and characterized by electron backscatter diffraction(EBSD) analysis. The corrosion resistance of the specimens with different grain boundary characteristic distribution was examined by using potentiodynamic polarization test. The corrosion behavior of different types of boundaries after sensitization was also studied.The fraction of low-∑ boundaries decreased with increasing strain, and it was insensitive to the type of cold deformation when the engineering strain was lower than 20%. At the strain of 30%, the largest and smallest fractions of low-∑ boundaries were achieved in cold-tensioned and rolled specimens, respectively. The fraction of low-∑ boundaries increased exponentially with the increase of grain size. The proportion of low-∑ angle grain boundaries increased with decreasing grain size. Increasing the fraction of low-∑ boundaries could improve the pitting corrosion resistance for the steels with the same grain size.After sensitization, the relative corrosion resistances of low-∑ angle grain boundaries, ∑3 boundaries, and ∑9 boundaries were 100%, 95%, and 25%, respectively, while ∑27 boundaries, other low-∑ boundaries and random high-angle grain boundaries had no resistance to corrosion.
文摘In order to study acoustic emission (AE) characteristics of pitting corrosion on 304 stainless steel under higher than normal temperature, pitting corrosion process of 304 stainless steel in 6° ferric chloride solution at 70° was monitored by AE technology. Conventional parameter-based approach and signal-based analysis were combined to deal with recorded AE signals, and micrographic observation was performed for further verification. The results showed that AE hit and energy increased gradually with time and reached the peak at certain time, and then declined and maintained a stable condition. Signal waveform was mainly composed of low-frequency (〈 100 kHz) flexural wave with larger amplitude and energy and high-frequency (〉 100 kHz) expansion wave with lower amplitude and energy. The research results have some certain significance for AE monitoring of pitting corrosion on 304 stainless steel under higher than normal temperature.
基金financial support of the project by National Science Foundation award CMII-1405508
文摘Friction stir processing (FSP) was investigated as a method of repairing cracks in 12 mm thick 304L stainless steel plate. Healing feasibility was demonstrated by processing a tapered crack using a PCBN/W- Re tool with a 25 mm diameter shoulder and a pin length of 6.4 mm. The experiment showed that it was possible to heal a crack that begins narrow and then progressively grows up to a width of 2 mm. Bead on plate experiments were used to find the best parameters for creating a consolidated stir zone with the least amount of hardness difference compared to the base metal. Grain refinement in some specimens resulted in much higher stir zone hardness, compared to base metal, A plot of grain size versus microhardness showed a very strong inverse correlation between grain size and hardness, as expected from the Hall- Perch relationship. Corrosion testing was carried out in order to evaluate the effect of FSP on potential sensitization of the stir zone. After 1000 h of intermittent immersion in 3.5% saline solution at room temperature it was found that no corrosion products formed on the base material controls or on any of the friction stir processed specimens.
基金supported by the National Science Fund,Bulgaria(Т02-22/12.12.2014)
文摘The self-healing effect of electrochemically deposited CeO2-Ce2O3 films on stainless steel OC404(SS) in 0.5 mol/L NaCl solution was studied. It was established that the corrosion potential of the steel, after covering it with CeO2-Ce2O3 layer and thermal treatment(i.e. potential of the system CeO2-Ce2O3/SSt.t.), was shifted sharply to a considerably more positive value, while the corrosion current was reduced noticeably. The X-ray photoelectron spectroscopy(XPS), energy dispersive spectroscopy(EDS) and scanning electron microscopy(SEM) analyses on the observed scratched surface area of the system CeO2-Ce2O3/SSt.t., after exposure of investigated specimens to 0.5 mol/L NaCl corrosion media, showed partial accumulation of ceria, as well as remarkable increase in the concentrations of oxides of Al, Cr and Fe, on the mechanically revealed steel surface. On the basis of the obtained results one could conclude that the secondary passive oxide/hydroxide films, formed after a definite time interval of exposure to corrosion media, acted as barriers, hindering the corrosion processes in active zones. A hypothesis was put forward about the mechanism of self-repairing oxide layers on the steel surface and their corrosion protection effect respectively.
文摘UNS S 32205 duplex stainless steel specimens were joined by continuous drive friction welding process. The experiments were conducted as per the Taguchi(L16 orthogonal array) method. The friction welding process parameters such as heating pressure, heating time, upsetting pressure, upsetting time, and speed of rotation were fixed with low,medium, and high levels of range based on the machine capacity, and the required knowledge was acquired from the preliminary experiments. The joint characterization studies included micro structural examination and evaluation of mechanical properties of the joints. Microhardness variation, impact toughness, and tensile strength of the joints were evaluated. Neither a crack nor an incomplete bonding zone was observed. The tensile strength of the joints was higher than the strength of the base material, and the friction and upsetting pressures were found to influence the joint strength. The tensile strength of all the welds was observed to be increasing with an increase in the rotational speed. The toughness of the friction welds was evaluated at room temperature and also at subzero(cryo) temperature conditions. The toughness for friction welds was found to be superior to the fusion welds of duplex stainless steel at room temperature and cryo conditions. Weldments exhibited better corrosion resistance than the parent material.