期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
Thermal safety boundary of lithium-ion battery at different state of charge
1
作者 Hang Wu Siqi Chen +8 位作者 Yan Hong Chengshan Xu Yuejiu Zheng Changyong Jin Kaixin Chen Yafei He Xuning Feng Xuezhe Wei Haifeng Dai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期59-72,共14页
Thermal runaway(TR)is a critical issue hindering the large-scale application of lithium-ion batteries(LIBs).Understanding the thermal safety behavior of LIBs at the cell and module level under different state of charg... Thermal runaway(TR)is a critical issue hindering the large-scale application of lithium-ion batteries(LIBs).Understanding the thermal safety behavior of LIBs at the cell and module level under different state of charges(SOCs)has significant implications for reinforcing the thermal safety design of the lithium-ion battery module.This study first investigates the thermal safety boundary(TSB)correspondence at the cells and modules level under the guidance of a newly proposed concept,safe electric quantity boundary(SEQB).A reasonable thermal runaway propagation(TRP)judgment indicator,peak heat transfer power(PHTP),is proposed to predict whether TRP occurs.Moreover,a validated 3D model is used to quantitatively clarify the TSB at different SOCs from the perspective of PHTP,TR trigger temperature,SOC,and the full cycle life.Besides,three different TRP transfer modes are discovered.The interconversion relationship of three different TRP modes is investigated from the perspective of PHTP.This paper explores the TSB of LIBs under different SOCs at both cell and module levels for the first time,which has great significance in guiding the thermal safety design of battery systems. 展开更多
关键词 Lithium-ion battery Battery safety Thermal runaway state of charge Numerical analysis
下载PDF
Deep learning-based battery state of charge estimation:Enhancing estimation performance with unlabelled training samples
2
作者 Liang Ma Tieling Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期48-57,I0002,共11页
The estimation of state of charge(SOC)using deep neural networks(DNN)generally requires a considerable number of labelled samples for training,which refer to the current and voltage pieces with knowing their correspon... The estimation of state of charge(SOC)using deep neural networks(DNN)generally requires a considerable number of labelled samples for training,which refer to the current and voltage pieces with knowing their corresponding SOCs.However,the collection of labelled samples is costly and time-consuming.In contrast,the unlabelled training samples,which consist of the current and voltage data with unknown SOCs,are easy to obtain.In view of this,this paper proposes an improved DNN for SOC estimation by effectively using both a pool of unlabelled samples and a limited number of labelled samples.Besides the traditional supervised network,the proposed method uses an input reconstruction network to reformulate the time dependency features of the voltage and current.In this way,the developed network can extract useful information from the unlabelled samples.The proposed method is validated under different drive cycles and temperature conditions.The results reveal that the SOC estimation accuracy of the DNN trained with both labelled and unlabelled samples outperforms that of only using a limited number of labelled samples.In addition,when the dataset with reduced number of labelled samples to some extent is used to test the developed network,it is found that the proposed method performs well and is robust in producing the model outputs with the required accuracy when the unlabelled samples are involved in the model training.Furthermore,the proposed method is evaluated with different recurrent neural networks(RNNs)applied to the input reconstruction module.The results indicate that the proposed method is feasible for various RNN algorithms,and it could be flexibly applied to other conditions as required. 展开更多
关键词 Deep learning state of charge estimation Data-driven methods Battery management system Recurrent neural networks
下载PDF
Neural Network-Based State of Charge Estimation Method for Lithium-ion Batteries Based on Temperature
3
作者 Donghun Wang Jonghyun Lee +1 位作者 Minchan Kim Insoo Lee 《Intelligent Automation & Soft Computing》 SCIE 2023年第5期2025-2040,共16页
Lithium-ion batteries are commonly used in electric vehicles,mobile phones,and laptops.These batteries demonstrate several advantages,such as environmental friendliness,high energy density,and long life.However,batter... Lithium-ion batteries are commonly used in electric vehicles,mobile phones,and laptops.These batteries demonstrate several advantages,such as environmental friendliness,high energy density,and long life.However,battery overcharging and overdischarging may occur if the batteries are not monitored continuously.Overcharging causesfire and explosion casualties,and overdischar-ging causes a reduction in the battery capacity and life.In addition,the internal resistance of such batteries varies depending on their external temperature,elec-trolyte,cathode material,and other factors;the capacity of the batteries decreases with temperature.In this study,we develop a method for estimating the state of charge(SOC)using a neural network model that is best suited to the external tem-perature of such batteries based on their characteristics.During our simulation,we acquired data at temperatures of 25°C,30°C,35°C,and 40°C.Based on the tem-perature parameters,the voltage,current,and time parameters were obtained,and six cycles of the parameters based on the temperature were used for the experi-ment.Experimental data to verify the proposed method were obtained through a discharge experiment conducted using a vehicle driving simulator.The experi-mental data were provided as inputs to three types of neural network models:mul-tilayer neural network(MNN),long short-term memory(LSTM),and gated recurrent unit(GRU).The neural network models were trained and optimized for the specific temperatures measured during the experiment,and the SOC was estimated by selecting the most suitable model for each temperature.The experimental results revealed that the mean absolute errors of the MNN,LSTM,and GRU using the proposed method were 2.17%,2.19%,and 2.15%,respec-tively,which are better than those of the conventional method(4.47%,4.60%,and 4.40%).Finally,SOC estimation based on GRU using the proposed method was found to be 2.15%,which was the most accurate. 展开更多
关键词 Lithium-ionbattery state of charge multilayer neural network long short-term memory gated recurrent unit vehicle driving simulator
下载PDF
Study about thermal runaway behavior of high specific energy density Li-ion batteries in a low state of charge 被引量:6
4
作者 Shiqiang Liu Tianyi Ma +5 位作者 Zhen Wei Guangli Bai Huitian Liu Dapeng Xu Zhongqiang Shan Fang Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期20-27,I0002,共9页
Lithium-ion batteries are widely used in electric vehicles and electronics, and their thermal safety receives widespread attention from consumers. In our study, thermal runaway testing was conducted on the thermal sta... Lithium-ion batteries are widely used in electric vehicles and electronics, and their thermal safety receives widespread attention from consumers. In our study, thermal runaway testing was conducted on the thermal stability of commercial lithium-ion batteries, and the internal structure of the battery was analyzed with an in-depth focus on the key factors of the thermal runaway. Through the study of the structure and thermal stability of the cathode, anode, and separator, the results showed that the phase transition reaction of the separator was the key factor affecting the thermal runaway of the battery for the condition of a low state of charge. 展开更多
关键词 Lithium-ion battery Thermal runaway state of charge Thermal stability
下载PDF
A Comparative Study of Fractional Order Models on State of Charge Estimation for Lithium Ion Batteries 被引量:5
5
作者 Jinpeng Tian Rui Xiong +1 位作者 Weixiang Shen Ju Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第4期98-112,共15页
State of charge(SOC)estimation for lithium ion batteries plays a critical role in battery management systems for electric vehicles.Battery fractional order models(FOMs)which come from frequency-domain modelling have p... State of charge(SOC)estimation for lithium ion batteries plays a critical role in battery management systems for electric vehicles.Battery fractional order models(FOMs)which come from frequency-domain modelling have provided a distinct insight into SOC estimation.In this article,we compare five state-of-the-art FOMs in terms of SOC estimation.To this end,firstly,characterisation tests on lithium ion batteries are conducted,and the experimental results are used to identify FOM parameters.Parameter identification results show that increasing the complexity of FOMs cannot always improve accuracy.The model R(RQ)W shows superior identification accuracy than the other four FOMs.Secondly,the SOC estimation based on a fractional order unscented Kalman filter is conducted to compare model accuracy and computational burden under different profiles,memory lengths,ambient temperatures,cells and voltage/current drifts.The evaluation results reveal that the SOC estimation accuracy does not necessarily positively correlate to the complexity of FOMs.Although more complex models can have better robustness against temperature variation,R(RQ),the simplest FOM,can overall provide satisfactory accuracy.Validation results on different cells demonstrate the generalisation ability of FOMs,and R(RQ)outperforms other models.Moreover,R(RQ)shows better robustness against truncation error and can maintain high accuracy even under the occurrence of current or voltage sensor drift. 展开更多
关键词 Electric vehicle Lithium ion battery Fractional order model state of charge
下载PDF
Co-Estimation of State of Charge and Capacity for Lithium-Ion Batteries with Multi-Stage Model Fusion Method 被引量:5
6
作者 Rui Xiong Ju Wang +2 位作者 Weixiang Shen Jinpeng Tian Hao Mu 《Engineering》 SCIE EI 2021年第10期1469-1482,共14页
Lithium-ion batteries(LIBs)have emerged as the preferred energy storage systems for various types of electric transports,including electric vehicles,electric boats,electric trains,and electric airplanes.The energy man... Lithium-ion batteries(LIBs)have emerged as the preferred energy storage systems for various types of electric transports,including electric vehicles,electric boats,electric trains,and electric airplanes.The energy management of LIBs in electric transports for all-climate and long-life operation requires the accurate estimation of state of charge(SOC)and capacity in real-time.This study proposes a multistage model fusion algorithm to co-estimate SOC and capacity.Firstly,based on the assumption of a normal distribution,the mean and variance of the residual error from the model at different ageing levels are used to calculate the weight for the establishment of a fusion model with stable parameters.Secondly,a differential error gain with forward-looking ability is introduced into a proportional–integral observer(PIO)to accelerate convergence speed.Thirdly,a fusion algorithm is developed by combining a multistage model and proportional–integral–differential observer(PIDO)to co-estimate SOC and capacity under a complex application environment.Fourthly,the convergence and anti-noise performance of the fusion algorithm are discussed.Finally,the hardware-in-the-loop platform is set up to verify the performance of the fusion algorithm.The validation results of different aged LIBs over a wide range of temperature show that the presented fusion algorithm can realize a high-accuracy estimation of SOC and capacity with the relative errors within 2%and 3.3%,respectively. 展开更多
关键词 state of charge Capacity estimation Model fusion Proportional-integral-differential observer HARDWARE-IN-THE-LOOP
下载PDF
A review of deep learning approach to predicting the state of health and state of charge of lithium-ion batteries 被引量:4
7
作者 Kai Luo Xiang Chen +1 位作者 Huiru Zheng Zhicong Shi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第11期159-173,I0006,共16页
In the field of energy storage,it is very important to predict the state of charge and the state of health of lithium-ion batteries.In this paper,we review the current widely used equivalent circuit and electrochemica... In the field of energy storage,it is very important to predict the state of charge and the state of health of lithium-ion batteries.In this paper,we review the current widely used equivalent circuit and electrochemical models for battery state predictions.The review demonstrates that machine learning and deep learning approaches can be used to construct fast and accurate data-driven models for the prediction of battery performance.The details,advantages,and limitations of these approaches are presented,compared,and summarized.Finally,future key challenges and opportunities are discussed. 展开更多
关键词 Lithium-ion battery state of health state of charge Remaining useful life DATA-DRIVEN
下载PDF
Review of lithium-ion battery state of charge estimation 被引量:5
8
作者 Ning Li Yu Zhang +4 位作者 Fuxing He Longhui Zhu Xiaoping Zhang Yong Ma Shuning Wang 《Global Energy Interconnection》 EI CAS CSCD 2021年第6期619-630,共12页
The technology deployed for lithium-ion battery state of charge(SOC)estimation is an important part of the design of electric vehicle battery management systems.Accurate SOC estimation can forestall excessive charging... The technology deployed for lithium-ion battery state of charge(SOC)estimation is an important part of the design of electric vehicle battery management systems.Accurate SOC estimation can forestall excessive charging and discharging of lithium-ion batteries,thereby improving discharge efficiency and extending cycle life.In this study,the key lithium-ion battery SOC estimation technologies are summarized.First,the research status of lithium-ion battery modeling is introduced.Second,the main technologies and difficulties in model parameter identification for lithium-ion batteries are discussed.Third,the development status and advantages and disadvantages of SOC estimation methods are summarized.Finally,the current research problems and prospects for development trends are summarized. 展开更多
关键词 Lithium-ion battery Battery model Parameter identification state of charge estimation
下载PDF
State of charge and health estimation of batteries for electric vehicles applications:key issues and challenges 被引量:1
9
作者 Samarendra Pratap Singh Praveen Prakash Singh +1 位作者 Sri Niwas Singh Prabhakar Tiwari 《Global Energy Interconnection》 CAS CSCD 2021年第2期145-157,共13页
Using electric vehicles(EVs)for transportation is considered as a necessary component for managing sustainable development and environmental issues.The present concerns regarding the environment,such as rapid fossil f... Using electric vehicles(EVs)for transportation is considered as a necessary component for managing sustainable development and environmental issues.The present concerns regarding the environment,such as rapid fossil fuel depletion,increases in air pollution,accelerating energy demands,global warming,and climate change,have paved the way for the electrification of the transport sector.EVs can address all of the aforementioned issues.Portable power supplies have become the lifeline of the EV world,especially lithium-ion(Li-ion)batteries.Li-ion batteries have attracted considerable attention in the EV industry,owing to their high energy density,power density,lifespan,nominal voltage,and cost.One major issue with such batteries concerns providing a quick and accurate estimation of a battery’s state and health;therefore,accurate determinations of the battery’S performance and health,as well as an accurate prediction of its life,are necessary to ensure reliability and efficiency.This study conducts a review of the technological briefs of EVs and their types,as well as the corresponding battery characteristics.Various aspects of recent research and developments in Li-ion battery prognostics and health monitoring are summarized,along with the techniques,algorithms,and models used for current/voltage estimations,state-of-charge(SoC)estimations,capacity estimations,and remaining-useful-life predictions. 展开更多
关键词 Electric Vehicles state of charge state of Health Battery Test
下载PDF
Reduced Switching-Frequency State of Charge Balancing Strategy for Battery Integrated Modular Multilevel Converter
10
作者 胡省 张建忠 《Journal of Donghua University(English Edition)》 CAS 2021年第6期504-510,共7页
A modular multilevel converter(MMC)integrated with split battery cells(BIMMCs)is proposed for the battery management system(BMS)and motor drive system.In order to reduce the switching losses,the state of charge(SOC)ba... A modular multilevel converter(MMC)integrated with split battery cells(BIMMCs)is proposed for the battery management system(BMS)and motor drive system.In order to reduce the switching losses,the state of charge(SOC)balancing strategy with a reduced switching-frequency(RSF)is proposed in this paper.The proposed RSF algorithm not only reduces the switching losses,but also features good balancing performance both in the unbalanced and balanced initial states.The results are verified by extensive simulations in MATLAB/Simulink surroundings. 展开更多
关键词 battery management system(BMS) energy storage system modular multilevel converter reduced switching-frequency(RSF) state of charge(SOC)balancing
下载PDF
Application of Power Electronics and Control for Dual Battery Packs Management with Voltage Balancing and State of Charge Estimation
11
作者 Stuart Brown Tsafack Pierre +2 位作者 Fendji Marie Danielle Emmanuel Tanyi Musong L. Katche 《Energy and Power Engineering》 CAS 2022年第12期762-780,共19页
Energy storage, such as lead acid batteries, is necessary for renewable energy sources’ autonomy because of their intermittent nature, which makes them more frequently used than traditional energy sources to reduce o... Energy storage, such as lead acid batteries, is necessary for renewable energy sources’ autonomy because of their intermittent nature, which makes them more frequently used than traditional energy sources to reduce operating costs. The battery storage system has to be monitored and managed to prevent serious problems such as battery overcharging, over-discharging, overheating, battery unbalancing, thermal runaway, and fire dangers. For voltage balancing between batteries in the pack throughout the charging period and the SOC estimate, a modified lossless switching mechanism is used in this research’s suggested battery management system. The OCV state of charge calculation, in the beginning, was used in conjunction with the coulomb counting approach to estimate the SOC. The results reveal that correlation factor K has an average value of 0.3 volts when VM ≥ 12 V and an average value of 0.825 when VM ≤ 12 V. The battery monitoring system revealed that voltage balancing was accomplished during the charging process in park one after 80 seconds with a SOC difference of 1.4% between Batteries 1 and 2. On the other hand, the system estimates the state of charge during the discharging process in two packs, with a maximum DOD of 10.8 V for all batteries. The project’s objectives were met since the BMS estimated SOC and achieved voltage balance. 展开更多
关键词 state of charge Battery Management System Lead Acid Battery
下载PDF
Experimental Study on the Effect of State of Charge on Failure Propagation Characteristics within Battery Modules
12
作者 Kuijie Li Yalun Li +3 位作者 Xinyu Rui Yuancheng Cao Liyun Fan Xuning Feng 《Chinese Journal of Electrical Engineering》 EI CSCD 2023年第3期3-14,共12页
To investigate the effect of different states of charge(SOC)on the thermal runaway(TR)propagation behaviors within lithium-ion-batteries based energy storage modules,an experimental setup was developed to conduct fail... To investigate the effect of different states of charge(SOC)on the thermal runaway(TR)propagation behaviors within lithium-ion-batteries based energy storage modules,an experimental setup was developed to conduct failure propagation tests on battery modules at an SOC of 97%,85%,and 50%.The result indicates that an increase in the SOC of batteries can decrease the TR trigger temperature,making batteries trigger TR earlier and reducing the average failure propagation time between two adjacent cells.In addition,the failure propagation tests reveal that at higher SOCs,the TR reaction becomes more violent,the maximal reaction temperature is also much higher,and the damage to the battery module is severe.Compared to the battery module with 97%SOC,the TR trigger time of the battery module with 50%SOC was postponed by approximately 57.8%.Meanwhile,the average failure propagation time got prolonged by approximately 36.0%.Thus,this study can provide references for the thermal safety design of energy-storage battery modules. 展开更多
关键词 Energy storage battery module thermal runaway failure propagation state of charge battery safety
原文传递
State of charge estimation by finite difference extended Kalman filter with HPPC parameters identification 被引量:12
13
作者 HE Lin HU MinKang +2 位作者 WEI YuJiang LIU BingJiao SHI Qin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第3期410-421,共12页
State of charge(SOC) is a key parameter of lithium-ion battery. In this paper, a finite difference extended Kalman filter(FDEKF)with Hybrid Pulse Power Characterization(HPPC) parameters identification is proposed to e... State of charge(SOC) is a key parameter of lithium-ion battery. In this paper, a finite difference extended Kalman filter(FDEKF)with Hybrid Pulse Power Characterization(HPPC) parameters identification is proposed to estimate the SOC. The finite difference(FD) algorithm is benefit to compute the partial derivative of nonlinear function, which can reduce the linearization error generated by the extended Kalman filter(EKF). The FDEKF algorithm can reduce the computational load of controller in engineering practice without solving the Jacobian matrix. It is simple of dynamic model of lithium-ion battery to adopt a secondorder resistor-capacitor(2 RC) network, the parameters of which are identified by the HPPC. Two conditions, both constant current discharge(CCD) and urban dynamometer driving schedule(UDDS), are utilized to validate the FDEKF algorithm.Comparing convergence rate and accuracy between the FDEKF and the EKF algorithm, it can be seen that the former is a better candidate to estimate the SOC. 展开更多
关键词 state of charge lithium-ion battery parameters identification finite difference algorithm extended Kalman filter
原文传递
Fuzzy Model for Estimation of the State-of-Charge of Lithium-Ion Batteries for Electric Vehicles 被引量:4
14
作者 胡晓松 孙逢春 程夕明 《Journal of Beijing Institute of Technology》 EI CAS 2010年第4期416-421,共6页
A fuzzy model was established to estimate the state of charge(SOC) of a lithium-ion battery for electric vehicles.The robust Gustafson-Kessel(GK) clustering algorithm based on clustering validity indices was applied t... A fuzzy model was established to estimate the state of charge(SOC) of a lithium-ion battery for electric vehicles.The robust Gustafson-Kessel(GK) clustering algorithm based on clustering validity indices was applied to identify the structure and antecedent parameters of the model.The least squares algorithm was utilized to determine the consequent parameters.Validation results show that this model can provide accurate SOC estimation for the lithium-ion battery and satisfy the requirement for practical electric vehicle applications. 展开更多
关键词 state of charge(SOC) lithium-ion battery fuzzy identification Gustafson-Kessel(GK) clustering electric vehicle
下载PDF
Automatic SOC Equalization Strategy of Energy Storage Units with DC Microgrid Bus Voltage Support
15
作者 Jingjing Tian Shenglin Mo +1 位作者 Feng Zhao Xiaoqiang Chen 《Energy Engineering》 EI 2024年第2期439-459,共21页
In this paper,an improved sag control strategy based on automatic SOC equalization is proposed to solve the problems of slow SOC equalization and excessive bus voltage fluctuation amplitude and offset caused by load a... In this paper,an improved sag control strategy based on automatic SOC equalization is proposed to solve the problems of slow SOC equalization and excessive bus voltage fluctuation amplitude and offset caused by load and PV power variations in a stand-alone DC microgrid.The strategy includes primary and secondary control.Among them,the primary control suppresses the DC microgrid voltage fluctuation through the I and II section control,and the secondary control aims to correct the P-U curve of the energy storage system and the PV system,thus reducing the steady-state bus voltage excursion.The simulation results demonstrate that the proposed control strategy effectively achieves SOC balancing and enhances the immunity of bus voltage.The proposed strategy improves the voltage fluctuation suppression ability by approximately 39.4%and 43.1%under the PV power and load power fluctuation conditions,respectively.Furthermore,the steady-state deviation of the bus voltage,△U_(dc) is only 0.01–0.1 V,ensuring stable operation of the DC microgrid in fluctuating power environments. 展开更多
关键词 Automatic equalization independent DC microgrid improve droop control secondary control state of charge
下载PDF
Empowering the Future: Exploring the Construction and Characteristics of Lithium-Ion Batteries
16
作者 Dan Tshiswaka Dan 《Advances in Chemical Engineering and Science》 CAS 2024年第2期84-111,共28页
Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic t... Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic table. The lithium atom has a strong tendency to release one electron and constitute a positive charge, as Li<sup> </sup>. Initially, lithium metal was employed as a negative electrode, which released electrons. However, it was observed that its structure changed after the repetition of charge-discharge cycles. To remedy this, the cathode mainly consisted of layer metal oxide and olive, e.g., cobalt oxide, LiFePO<sub>4</sub>, etc., along with some contents of lithium, while the anode was assembled by graphite and silicon, etc. Moreover, the electrolyte was prepared using the lithium salt in a suitable solvent to attain a greater concentration of lithium ions. Owing to the lithium ions’ role, the battery’s name was mentioned as a lithium-ion battery. Herein, the presented work describes the working and operational mechanism of the lithium-ion battery. Further, the lithium-ion batteries’ general view and future prospects have also been elaborated. 展开更多
关键词 Lithium-Ion Batteries Battery Construction Battery Characteristics Energy Storage Electrochemical Cells Anode Materials Cathode Materials state of charge (SOC) Depth of Discharge (DOD) Solid Electrolyte Interface (SEI)
下载PDF
Recent Progress and Future Trends on the State of Charge Estimation Methods to Improve Battery-storage Efficiency: A Review
17
作者 Md Ohirul Qays Yonis Buswig +1 位作者 Md Liton Hossain Ahmed Abu-Siada 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2022年第1期105-114,共10页
Battery storage systems are subject to frequent charging/discharging cycles,which reduce the operational life of the battery and reduce system reliability in the long run.As such,several Battery Management Systems(BMS... Battery storage systems are subject to frequent charging/discharging cycles,which reduce the operational life of the battery and reduce system reliability in the long run.As such,several Battery Management Systems(BMS)have been developed to maintain system reliability and extend the battery’s operative life.Accurate estimation of the battery’s State of Charge(SOC)is a key challenge in the BMS due to its non-linear characteristics.This paper presents a comprehensive review on the most recent classifications and mathematical models for SOC estimation.Future trends for SOC estimation methods are also presented. 展开更多
关键词 Battery Management System(BMS) battery modeling battery storage efficiency state of charge(SOC)
原文传递
State of Charge Estimation for Lithium-Ion Battery Based on Improved Cubature Kalman Filter Algorithm
18
作者 Guochun Li Chang Liu +1 位作者 Enlong Wang Limei Wang 《Automotive Innovation》 CSCD 2021年第2期189-200,共12页
An improved cubature Kalman filter(CKF)algorithm for estimating the state of charge of lithium-ion batteries is proposed.This improved algorithm implements the diagonalization decomposition of the covariance matrix an... An improved cubature Kalman filter(CKF)algorithm for estimating the state of charge of lithium-ion batteries is proposed.This improved algorithm implements the diagonalization decomposition of the covariance matrix and a strong tracking filter.First,a first-order RC equivalent circuit model is first established and verified,whose voltage estimation error is within 1.5%;this confirms that the model can be used to describe the characteristics of a battery.Then the calculation processes of the traditional and proposed CKF algorithms are compared.Subsequently,the improved CKF algorithm is applied to the state of charge estimation under the constant-current discharge and dynamic stress test conditions.The average errors for these two conditions are 0.76%and 1.2%,respectively,and the maximum absolute error is only 3.25%.The results indicate that the proposed method has higher filter stability and estimation accuracy than the extended Kalman filter(EKF),unscented Kalman filter(UKF)and traditional CKF algorithms.Finally,the convergence rates of the above four algorithms are compared,among which the proposed algorithm track the referenced values at the highest speed. 展开更多
关键词 Lithium-ion battery state of charge Cubature Kalman filter Strong tracking filter Covariance matrix diagonalization decomposition
原文传递
State of Health Estimation of LiFePO_(4) Batteries for Battery Management Systems
19
作者 Areeb Khalid Syed Abdul Rahman Kashif +1 位作者 Noor Ul Ain Ali Nasir 《Computers, Materials & Continua》 SCIE EI 2022年第11期3149-3164,共16页
When considering the mechanism of the batteries,the capacity reduction at storage(when not in use)and cycling(during use)and increase of internal resistance is because of degradation in the chemical composition inside... When considering the mechanism of the batteries,the capacity reduction at storage(when not in use)and cycling(during use)and increase of internal resistance is because of degradation in the chemical composition inside the batteries.To optimize battery usage,a battery management system(BMS)is used to estimate possible aging effects while different load profiles are requested from the grid.This is specifically seen in a case when the vehicle is connected to the net(online through BMS).During this process,the BMS chooses the optimized load profiles based on the least aging effects on the battery pack.The major focus of this paper is to design an algorithm/model for lithium iron phosphate(LiFePO4)batteries.The model of the batteries is based on the accelerated aging test data(data from the beginning of life till the end of life).The objective is to develop an algorithm based on the actual battery trend during the whole life of the battery.By the analysis of the test data,the complete trend of the battery aging and the factors on which the aging is depending on is identified,the aging model can then be recalibrated to avoid any differences in the production process during cell manufacturing.The validation of the model was carried out at the end by utilizing different driving profiles at different C-rates and different ambient temperatures.A Linear and non-linear model-based approach is used based on statistical data.The parameterization was carried out by dividing the data into small chunks and estimating the parameters for the individual chunks.Self-adaptive characteristic map using a lookup table was also used.The nonlinear model was chosen as the best candidate among all other approaches for longer validation of 8-month data with real driving data set. 展开更多
关键词 Aging model state of health lithium-ion cells battery management system state of charge battery modeling
下载PDF
Research on Optimal Configuration of Energy Storage in Wind-Solar Microgrid Considering Real-Time Electricity Price
20
作者 Zhenzhen Zhang Qingquan Lv +4 位作者 Long Zhao Qiang Zhou Pengfei Gao Yanqi Zhang Yimin Li 《Energy Engineering》 EI 2023年第7期1637-1654,共18页
Capacity allocation and energy management strategies for energy storage are critical to the safety and economical operation of microgrids.In this paper,an improved energymanagement strategy based on real-time electric... Capacity allocation and energy management strategies for energy storage are critical to the safety and economical operation of microgrids.In this paper,an improved energymanagement strategy based on real-time electricity price combined with state of charge is proposed to optimize the economic operation of wind and solar microgrids,and the optimal allocation of energy storage capacity is carried out by using this strategy.Firstly,the structure and model of microgrid are analyzed,and the outputmodel of wind power,photovoltaic and energy storage is established.Then,considering the interactive power cost between the microgrid and the main grid and the charge-discharge penalty cost of energy storage,an optimization objective function is established,and an improved energy management strategy is proposed on this basis.Finally,a physicalmodel is built inMATLAB/Simulink for simulation verification,and the energy management strategy is compared and analyzed on sunny and rainy days.The initial configuration cost function of energy storage is added to optimize the allocation of energy storage capacity.The simulation results show that the improved energy management strategy can make the battery charge-discharge response to real-time electricity price and state of charge better than the traditional strategy on sunny or rainy days,reduce the interactive power cost between the microgrid system and the power grid.After analyzing the change of energy storage power with cost,we obtain the best energy storage capacity and energy storage power. 展开更多
关键词 Energy storage optimization real-time electricity price state of charge energy management strategy interactive power
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部